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We propose a method for detecting bipartite entanglement in a many-body mixed state based on
estimating moments of the partially transposed density matrix. The estimates are obtained by performing
local random measurements on the state, followed by postprocessing using the classical shadows
framework. Our method can be applied to any quantum system with single-qubit control. We provide
a detailed analysis of the required number of experimental runs, and demonstrate the protocol using
existing experimental data [Brydges et al., Science 364, 260 (2019)].
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Engineered quantummany-body systems exist in today’s
laboratories as noisy intermediate scale quantum devices
(NISQ) [1]. This provides us with novel opportunities to
study and quantify entanglement—a fundamental concept
in both quantum information theory [2] and many-body
quantum physics [3,4]. For pure (or nearly pure) states,
entanglement has been detected by measuring the second
Rényi entropy [5–10]. This has been achieved via, for
instance, many-body quantum interference [7–9,11,12]
(see also Refs. [13,14]) and randomized measurements
[10,15–18]. However, many states of interest are actually
highly mixed—either because of decoherence, or because
they describe interesting subregions of a larger, globally
entangled, system. Developing protocols which detect and
quantify mixed-state entanglement on intermediate scale
quantum devices is thus an outstanding challenge.
Below we propose and experimentally demonstrate

conditions for mixed-state entanglement and measurement
protocols based on the positive partial transpose (PPT)
condition [2,5,19]. Consider two partitions A and B
described by a (reduced) density matrix ρAB. The well-
known PPT condition checks if the partially transposed
(PT) density matrix ρTA

AB [20] is positive semidefinite, i.e.,
all eigenvalues are non-negative. If the PPT condition is
violated—i.e., ρTA

AB does have negative eigenvalues—A

and B must be entangled. It is possible to turn the PPT
condition into a quantitative entanglement measure. The
negativity N ðρABÞ ¼

P
λ<0 jλj, with λ the spectrum of ρTA

AB,
is positive if and only if the underlying state ρAB violates
the PPT condition [21]. While applicable to mixed states,
computing the negativity requires accurately estimating the
full spectrum of ρTA

AB. We bypass this challenge by consid-
ering moments of the partially transposed density matrix
(PT moments) instead:

pn ¼ Tr½ðρTA
ABÞn� for n ¼ 1; 2; 3;…: ð1Þ

These have been first studied in quantum field theory to
quantify correlations in many-body systems [22]. Clearly,
p1 ¼ trðρABÞ ¼ 1, while p2 is equal to the purity tr½ρ2AB�
(see Table I in the Supplemental Material [23] for a visual
derivation). Hence, p3 is the lowest PT moment that
captures meaningful information about the partial transpose
(see also Ref. [29]).
In this Letter, we first show that the first three PT

moments can be used to define a simple yet powerful test
for bipartite entanglement:

ρAB ∈ PPT ⇒ p3 ≥ p2
2: ð2Þ
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The p3-PPT condition is the contrapositive of this
assertion: if p3 < p2

2, then ρAB violates the PPT condition
[see Fig. 1(a)] and must therefore be entangled (see
Supplemental Material [23] for the proof). Similar to the
PPT condition, the p3-PPT condition applies to mixed
states and is completely independent of the state in
question. This is a key distinction from entanglement
witnesses [30,31], which can be more powerful, but which
usually require detailed prior information about the state.
While in general weaker than the full PPT condition, the
p3-PPT condition relies on comparing two comparatively
simple functionals and outperforms other state-independent
entanglement detection protocols, like comparing purities
of various nested subsystems [5,7–10,23]. As shown in the
Supplemental Material [23], the p3-PPT condition becomes
equivalent to the PPT condition for Werner states (in this
case, it is a necessary and sufficient condition for bipartite
entanglement [32]).
The second main contribution of this Letter is a mea-

surement protocol to determine PT moments in NISQ
devices. Crucially, we employ randomized measurements
implemented with local (single-qubit) random unitaries,
see Fig. 1(b), which are readily available in NISQ devices
and have been already successfully applied to measure
entanglement entropies, many-body state fidelities, and

out-of-time ordered correlators [10,33–35]. In contrast to
previous proposals for measuring PT moments, our pro-
tocol does not rely on many-body interference between
identical state copies [6,29,36], or on using global entan-
gling random unitaries [37] built from interacting
Hamiltonians [16,38–40]. Instead, it only requires single-
qubit control, and allows for the estimation of many distinct
PT moments from the same data. In particular, arbitrary
orders n ≥ 2 and arbitrary (connected, as well as discon-
nected) partitions A, B can be measured.
While the experimental setup for our measurement

protocol is reminiscent of quantum state tomography
[41–44], there are fundamental differences regarding the
required number of measurements (as independent state
copies), and the way the measured data is processed.
Without strong assumptions on the state [42,43], perform-
ing tomography to infer an ϵ-approximation of an unknown
density matrix ρAB (e.g., in order to subsequently compute
ϵ approximations of pn) requires (at least) order
2jABjrankðρABÞ=ϵ2 measurements [45,46]. In the high accu-
racy regime (ϵ ≪ 1), our direct estimation protocol instead
only requires order 2jABj=ϵ2 measurements. For highly
mixed states—the central topic of this work—this discrep-
ancy heralds a significant reduction in measurement
resources. Furthermore, we predict PT-moments through
a “direct” and (multi-) linear postprocessing of the
measurement data represented as “classical shadows”
[18]. Thus, data processing is cheap—both in memory
and runtime—and can be massively parallelized. Similar
to previous measurement [10,15,16,18,34,35,47–49] and
entanglement detection [50–54] protocols based on
randomized measurements, this is another distinct
advantage over tomography which typically requires
expensive data-processing algorithms [41] or training a
neural network [43].
Finally, we demonstrate our measurement protocol and

the p3-PPT condition experimentally in the context of the
quantum simulation of many-body systems. Here, PT
moments have been shown to reveal universal properties
of quantum phases of matter [22,55–58] and their
transitions [22,55,59,60]. Out of equilibrium, PT moments
allow to understand the dynamical process of thermalization
[61–64], and the fate of (many-body) localization in pres-
ence of decoherence [65]. In this work, we analyze the data
of Ref. [10] corresponding to the out-of-equilibrium dynam-
ics in a spin model with long-range interactions, which was
implemented in a 10-qubit trapped ion quantum simulator. In
particular, we certify the presence of mixed-state entangle-
ment via the p3-PPT condition [see Figs. 1(c)–1(d), and for
details below]. Furthermore, we monitor the time evolution
of p3 and observe dynamical signatures of entanglement
spreading and thermalization [61,62].
Protocol.—The experimental ingredients to measure PT

moments build on resources similar to the ones presented in
Ref. [16] and realized in Ref. [10] to measure Rényi

(a) (b)

(c) (d)

FIG. 1. Protocol and illustrations. (a) The p3-PPT condition can
be used to demonstrate mixed-state bipartite entanglement with
PT moments. Separable states are PPT states and also fulfill the
p3-PPT condition. Thus, quantum states which violate the
p3-PPT condition must be bipartite entangled [see also
Eq. (2)]. (b) In our protocol, PT moments are measured by
applying local random unitaries followed by computational basis
measurements. (c), (d) Violation of the p3-PPT condition, i.e.,
p2
2 > p3, is experimentally observed for connected (c) and

disconnected (separated by d ¼ 0, 2, 4 spins) (d) partitions A
and B at various times t after a quantum quench [10]. Dots:
experimental results. Error bars: Jackknife estimates of statistical
errors. Lines: numerical simulations including the decoherence
model presented in Ref. [10].
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entropies. The key new element is the postprocessing of the
experimental data [18]. As shown in Fig. 1, the quantum
state of interest is realized in a system of N qubits. In the
partitions A and B, consisting of jAj and jBj spins,
respectively, a randomized measurement is performed by
applying random local unitaries u ¼ u1 ⊗ … ⊗ ujABj, with
ui independent single qubit rotation sampled from a
unitary three design [38,66], and a subsequent projective
measurement in the computational basis with outcome
k ¼ ðk1;…; kjABjÞ. This is subsequently repeated with M
different random unitaries such that a dataset of M bit
strings kðrÞ with r ¼ 1;…;M is collected.
From this dataset, the PT moments pn can be estimated

without having to reconstruct the density matrix ρAB, and
with a significantly smaller number of experimental runsM
than required for full quantum state tomography. To obtain
such estimates, we rely on two observations. First, each
outcome kðrÞ can be used to define an unbiased estimator

ρ̂ðrÞAB ¼ ⊗
i∈AB

½3ðuðrÞi Þ†jkðrÞi ihkðrÞi juðrÞi − I2� ð3Þ

of the density matrix ρAB, i.e., E½ρ̂ðrÞAB� ¼ ρAB with the
expectation value taken over the unitary ensemble and
projective measurements [17,18,67,68]. Second, the PT
moments pn can be viewed as an expectation value of an
n-copy observable Π⃗AΠ⃖B evaluated on n copies of the
original density matrix ρAB,

pn ¼ Tr½Π⃗AΠ⃖Bρ
⊗n
AB �: ð4Þ

Here, Π⃗A and Π⃖B are n-copy cyclic permutation

operators Π⃗Ajk½1�
A ;k½2�

A ;…;k½n�
A i ¼ jk½n�

A ;k½1�
A ;…;k½n−1�

A i,
Π⃖Bjk½1�

B ;k½2�
B ;…;k½n�

B i ¼ jk½2�
B ;…;k½n�

B ;k½1�
B i that act on the

partitions A and B, respectively.
Estimators of the PT moments pn can now be derived

from Eqs. (3) and (4) using U statistics [69]. Replacing ρ⊗n

with ρ̂ðr1Þ ⊗ � � � ⊗ ρ̂ðrnÞ, where r1 ≠ r2 ≠ � � � ≠ rn, corre-
sponding to independently sampled random unitaries
uðr1Þ;…; uðrnÞ, we define the U statistics

p̂n¼
1

n!

�
M

n

�
−1 X

r1≠r2≠���≠rn
Tr½Π⃗AΠ⃖Bρ̂

ðr1Þ
AB ⊗ � ��⊗ ρ̂ðrnÞAB �: ð5Þ

It follows from the defining properties of U statistics that
p̂n is an unbiased estimator of pn, i.e., E½p̂n� ¼ pn with the
expectation value taken over the unitary ensemble and
projective measurements [69]. Its variance governs the
statistical errors arising from finite M. Furthermore, a
quick inspection of Eqs. (3) and (4) reveals that the
summands in Eq. (5) completely factorize into contractions

of single qubit matrices, Tr½Π⃗AΠ⃖Bρ̂
ðr1Þ
AB ⊗ � � � ⊗ ρ̂ðrnÞAB � ¼

Πi∈ATr½ρ̂ðr1Þ;Ti � � � ρ̂ðrnÞ;Ti �Πi∈BTr½ρ̂ðr1Þi � � � ρ̂ðrnÞi �, with ρ̂ðrÞAB ¼
⊗i∈AB ρ̂ðrÞi as in Eq. (3). Thus, givenM observed bit strings
kr, one can determine p̂n with classical data processing

scaling as MnjABj, without storing exponentially large
matrices on the classical post-processing device.
Statistical errors.—As demonstrated in Figs. 1(c), 1(d),

PT moments can be inferred using a finite number of
experimental runs M. Here, we investigate in detail the
statistical errors arising from the finite value of M.
Analytically, we bound statistical errors based on the

variance of the multicopy observable in question. For
p2 ¼ Tr½ðρTA

ABÞ2�, our analysis reveals that the error decay
rate depends on number of measurementsM. In the largeM
regime, the error is proportional to 2jABjp2=

ffiffiffiffiffi
M

p
. This error

bound is multiplicative—i.e., the size of the error is
proportional to the size of the target p2—and 1=

ffiffiffiffiffi
M

p
captures the expected decay rate for an estimation
procedure that relies on empirical averaging. For small
and intermediate values ofM, the estimation error is instead
bounded by 8 × 21.5jABj=M. While this is worse in terms of
constants, the error decays at a much faster rate propor-
tional to 1=M. Qualitatively similar results apply for
estimating p3 ¼ Tr½ðρTA

ABÞ3�, but there can be three decay
regimes. For large M, the estimation error is bounded by
2jABjp2

2=
ffiffiffiffiffi
M

p
. This again captures the asymptotically opti-

mal rate 1=
ffiffiffiffiffi
M

p
associated with empirical averaging, but

the constant is suppressed by p2
2, not p3 itself. For

intermediate M, the error decay rate is proportional to
1=M, while an even faster rate ∝ 1=M3=2 governs the error
decay for small M. We refer to the Supplemental Material
[23] for detailed statements and proofs.
Now, we test these predictions numerically by simulating

the experimental protocol for various values of M
in systems with N ¼ jABj qubits where a pure GHZ state
ρ ¼ jϕGHZihϕGHZj is prepared. Here, A corresponds to the
first N=2 qubits, and B is the complement. The results are
shown in Fig. 2 and support our analytical error bounds.
They highlight in particular that the number of measure-
ment repetitions necessary to achieve a desired accuracy of
∼0.1 scales as 2jABj. This enables the estimation of PT
moments in state of the art platforms with high repetition
rates. These findings are discussed and confirmed for the
ground state of the transverse Ising model in the
Supplemental Material [23].

(a) (b)

FIG. 2. Statistical errors for the GHZ state. Dashed lines
represent scalings of ∝ 1=M, and ∝ 1=

ffiffiffiffiffi
M

p
. In both cases, the

number of measurements to estimate p2 (a) and p3 (b) with
accuracy 0.1 is of the order of 100 × 2jABj.
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PT-moments in a trapped-ion quantum simulator.—
Below, we discuss the experimental demonstration of the
measurement of PT moments in a trapped ion quantum
simulator. To this end, we evaluate data taken in the context
of Ref. [10]. Here, the Rényi entropy growth in quench
dynamics was investigated. The system, consisting in total
of N ¼ 10 qubits, was initialized in the Néel state
j↑↓↑↓…i, and time evolved with

HXY ¼ ℏ
X
i<j

Jijðσþi σ−j þ σ−i σ
þ
j Þ þ ℏB

X
i

σzi ; ð6Þ

with σzi the third spin-1=2 Pauli operator, σþi ðσ−i Þ the spin-
raising (lowering) operators acting on spin i, and Jij ≈
J0=ji − jjα the coupling matrix with an approximate
power-law decay α ≈ 1.24 and J0 ¼ 420 s−1. After time
evolution, randomized measurements were performed,
using M ¼ 500 random unitaries and P ¼ 150 projective
measurements per random unitary.
From these data, PT moments can be inferred [70], with

results presented in Fig. 3. For the purity p2 (a),(b) we
observe good agreement with theory for up to N ¼ 8 qubits
partitions, in particular the raise of p2 for partition sizes
approaching the total system size which is expected for
such nearly pure states. For 9,10-qubit partitions, the data is
not shown since the relative statistical error of the estimated

data points approaches unity [71]. We, however, note that
the measured p̂2 is slightly underestimated. This is due to
imperfect realizations of the random unitaries, which tend
to reduce the estimation of the overlap Trðρr1ρr2Þ. This
effect is also present when measuring cross-platform
fidelities [34]. For the third PT moment p3 (c), (d), we
observe the same kind of agreement between theory value
and experimental measurements. In particular, at large
partition sizes, the protocol is able to measure with high
precision small values of p3. These small values are indeed
fundamental to detect entanglement: a PPT violating state
has a negative eigenvalue which reduces the value of p3, in
comparison with the purity p2. This effect is mathemati-
cally captured by the p3-PPT condition and allowed us to
detect PPT violation and thus entanglement for many-body
mixed states [see Fig. 1(c)]. In the Supplemental Material
[23], we present additional simulations showing the power
of the p3-PPT condition, in comparison with the negativity
and the condition based on purities of nested subsystems.
The third PT moment p3 does not only allow to detect

mixed-state entanglement. It can also be used to study the
dynamics of entanglement in various many-body quantum
systems [22,59–61,65]. Here, we analyze the behavior of
the dimensionless ratio R3 ¼ − log2½p3=Trðρ3ABÞ�, which,
as shown in quantum field theory, follows the same
universal behavior as the negativity during evolution with
a local Hamiltonian [61]. We remark that R3 is however
only well defined for states with p3 > 0 (Werner states in
large dimensions are a counterexample [23]). Furthermore,
R3 is not an entanglement monotone [65]. It vanishes for all
product states, but can still be strictly positive for certain
separable states [2,65].
Figure 4 illustrates the time evolution of R3 for (a) con-

nected and (b) disconnected subsystems AB, respectively.
The appearing peaks ofR3 have been predicted and analyzed
for various one-dimensional quantum systems subject to
local interactions [61,62] (and have also been studied in the
context of Rényi mutual information [72,73]). They can be
understood in terms of propagating quasi-particles which

(a) (b)

(c) (d)

FIG. 3. Reconstruction of p2 ¼ Tr½ðρTA
ABÞ2� and p3 ¼

Tr½ðρTA
ABÞ3� from experimental data [10]. A and B are parts of a

total system of 10 qubits. In (a) and (c), we take A ¼
½1;…; bjABj=2c� and B ¼ ½bjABj=2c þ 1;…; jABj�. In (b) and
(d), we take A ¼ f1; 2; 3g and B ¼ f4þ d; 5þ d; 6þ dg with
d ¼ 0; 1;…4. Dots are obtained with the shadow estimator
[Eq. (5) second and third order], crosses with the direct estimator
(second order) of Ref. [10]. Different colors correspond to
different times after the quantum quench with purple [0 ms]
corresponding to the initial product state. For each time,M ¼ 500
unitaries and P ¼ 150 measurements per unitary were used.
Lines: theory simulation including decoherence [10]. The ratio
p2
2=p3, detecting entanglement according to the p3-PPT con-

dition, is shown in Figs. 1(c) and 1(d).

(a) (b)

FIG. 4. Evolution of the ratio R3 from experimental data [10].
(a) Connected partitions. (b) Disconnected partitions separated by
d ¼ 0, 1, 2, 3 spins. Different colors correspond to different
partitions AB. Dots are obtained with the shadow estimator
Eq. (5) using experimental data [10]. Solid (dashed) lines: theory
simulation of unitary dynamics (including decoherence [10]).
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describe collective excitations in the system [61,62]. In this
picture, entanglement between two partitions A and B is
induced by the presence of entangled pairs of quasi-particles
shared between A and B. For each pair, the individual
quasiparticles propagate in opposite directions and start to
entangle, in the course of the time evolution, partitions that
are more and more separated [61,62]. In particular, for two
adjacent partitions (a), R3 increases at early times, which is
consistent with the picture of shared pairs of entangled
quasiparticles entering the two partitions immediately. After
a certain time R3 reaches a maximum and starts to decrease,
which can be understood as the timewhen the quasiparticles
start to escape the regionAB. For separated partitions (b), the
peaks are delayeddue to the finite speedofpropagationof the
quasiparticles. In addition, their maximum value is lowered
because of the finite lifetimes of quasiparticles. The latter
feature is characteristic to chaotic (nonintegrable) thermal-
izing systems [72] and is in our case further enhanced by
decoherence.
Conclusion.—Our protocol extends the paradigm of

randomized measurements, yielding the first direct
measurement of PT moments in a many-body system.
U statistics provides the key ingredient there and enables us
to harness a remarkable advantage over state tomography in
terms of statistical errors. At a fundamental level, it is
therefore natural to investigate how to access new important
physical quantities based on random measurement data,
and with significant savings in terms of measurement and
classical postprocessing over existing methods. This
approach can be used to derive protocols to directly infer
entanglement measures (including nonpolynomial func-
tions of the density matrix), such as the von-Neumann
entropy and the negativity.
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