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Abstract—The Internet of Things (IoT) is growing rapidly
controlling and connecting thousands of devices every day.
Software Defined Networking (SDN) simplifies network man-
agement tasks by separating the control plane. However, the
increased network traffic results in energy and Quality of Ser-
vice (QoS) efficiency issues, whereas IoT devices are susceptible
to failures and attacks that have serious security consequences.
In this regard, providing a guarantee that SDN routing satisfies
energy, QoS and security related policies is crucial for the
network management. In this paper, we propose a policy-based
framework aiming to verify that SDN routing decisions are
optimal regarding energy, QoS and security properties. The
proposed framework will enable the IoT network operator to
adjust the policy constraints according to the demands of each
use case (e.g., aiming at more secure or faster network). Finally,
our framework is illustrated using a representative evaluation
scenario.
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I. INTRODUCTION

The recent technological development of Internet of
Things (IoT) allows different devices and systems with com-
puting and sensorial functionalities to collect and transfer
data [1]. The IoT tecnologies and applications enable easy
access and interaction between a wide variety of devices
(e.g., surveillance cameras, monitoring sensors, actuators,
vehicles, etc) and effective processing of large amount and
variety of generated data. These services can be utilized
by different users (for example citizens and companies) in
many different domains, such as smart health-care, intelli-
gent transportation systems, industrial automation and smart
energy systems [2], [3], [4], [5].

Such a heterogeneous field of devices makes their commu-
nication a formidable challenge. In the traditional networks,
each forwarder uses static routing tables (control plane)
that are locally maintained in order to learn where the
data packets (data plane) will be directed. The data routing
rules cannot be modified in real-time, resulting in a static,
decentralized and very complex networking infrastructure.
On the other hand, the software-defined networking (SDN)
technology [6] separates the control plane from the data
plane, leaving the transportation of data to the forwarder

and using the SDN controller to route the data packets.
Therefore, the SDN technology facilitates dynamic network
configuration and central control of the network, thus achiev-
ing higher network performance and monitoring capabilities.

A. Motivation

Monitoring of SDN routing is essential to network man-
agement to prevent it from cyber or physical attacks that
affect the Quality of Service (QoS) and security of oT
network, while the increased network traffic leads to en-
ergy efficiency problems [7]. Provided that time-varying
communication links (i.e. flow routing paths) are defined
by the SDN infrastructure to enable the communication
between devices, the selected flow routing path leverages
the performance of the network. This dynamic character
of the IoT network allows the operator to define different
policies based on the demands of the use cases of network.
For instance, in some cases the main priority of the operator
is the data security routing over the network, while , in
other cases, the operator aims to achieve a very fast network,
without extra delays.

B. Contribution

Recent advances of SDN technology have presented
frameworks for policy-based network management that mon-
itoring the compliance of routing decisions. Such policies
are based on network data that may related to energy [8],
QoS [9] and security [10] characteristics. However, a unified
policy-based framework that takes into account energy, QoS
and security information has not yet been analyzed, to the
best of our knowledge. Toward this end, we therefore make
the following technical contributions:

• A complete policy framework for verification that the
SDN routing decisions ensure energy, QoS and security
efficiency.

• A number of routing policies are formulated that incor-
porate security, QoS and energy information.

• A methodology that estimates the optimal flow rules
with or without knowledge about the significance of
each policy.



Figure 1. The workflow of the proposed flow routing policy verification framework: An IoT network enables different devices to collect and exchange
data. To achieve this, the SDN controller generates flow rules that send the IoT data to the forwarders. The proposed policy-based framework verifies that
SDN routing decisions are optimal regarding energy, QoS and security properties. More specifically, in the Network Monitoring step, real-time network
metrics that concern energy, QoS and security information are collected. This information is used for the calculation of routing policies formulated as
Key Performance Indicators (KPIs) in the Routing Policies Formulation step and they estimate how good a routing decision is regarding energy, QoS and
security. By employing multi-objective optimization, a set of the best solutions (i.e. flow rules) is identified in the Routing Optimization step. The set of
optimal flow rules is then compared with the flow rules created by the SDN, in order to compare them and provide a deviation metric that is the actual
verification result (Routing Validation step).

C. Structure

The rest of this paper is organized as follows. First we
present related work on policy-based network management
in Section II. Section III presents the proposed routing policy
verification framework, while in Section IV, an evaluation
scenario is described that highlights the efficiency of the
proposed framework. Finally, conclusion remarks with some
future research directions are given in Section V.

II. RELATED WORK

The dynamic character of SDN technology enables the
network operators to define their own policies on the net-
work management. In [9] a QoS policy enforcement frame-
work for SDN has been proposed. This framework specifies
policies to enforce QoS in an OpenFlow-based network. It
checks the compliance of the policies and autonomically
adapts the flow rules to satisfy the policies if needed.

A security-related policy framework was presented in
[10]. In this framework, a network operator is able to
create and implement security policies using human-readable
language. the security policies define which security services
(e.g., deep packet inspection, intrusion detection, spam de-
tection, etc.) must be applied and specify how SDN system

reacts if malicious traffic is detected. It also provides a
detailed explanation of how these policies are converted into
a series of OpenFlow messages to implement such a policy.

[11] presented a framework for security policy manage-
ment in OpenFlow-based SDN networks. It enables the
network operator to define and manage security policies,
including for example access control rules, detecting con-
flicting policies, defining priorities, delegating rights, etc.
It translates the high-level security policies into OpenFlow
messages and monitors the network to check the security
policies.

An OpenFlow-based SDN architecture to enforce security
policies was proposed in [12]. The policy implementation
includes the installiation of the flow entries directly in
OpenFlow switches/routers and minimizes the flow table size
to avoid risks regard the configuration and updating of these
switches.

Finally, a theoretical analysis of policy-based network
management frameworks was provided in [13]. It examines
whether and how the application of such policies on the
SDN infrastructure affects the performance of the network
in terms of QoS and security.



III. FLOW ROUTING POLICY VERIFICATION

In this section, we present the flow routing policy method-
ology that is able to verify that the routing decisions taken
by the SDN infrastructure of the IoT network ensure energy,
QoS and security efficiency. The workflow of the verification
methodology is illustrated in Figure 1. In more detail,
we collect real-time metrics from the network of which
the topology is formulated as an undirected graph. This
information is used for the calculation of routing policies
formulated as Key Performance Indicators (KPIs) which
estimate how good a routing decision is and they concern
energy, QoS and security information. By employing multi-
objective optimization, a set of the best solutions (i.e. flow
rules) is identified. The set of optimal flow rules is then
compared with the flow rules created by the SDN, in order
to compare them and provide a deviation metric that is
the actual verification result. The verification is considered
successful if the deviation similarity metric is within a pre-
defined range of values.

A. Network Monitoring

This subsection briefly presents the information collected
from the SDN infrastructure which concerns security, QoS
and energy consumption information related to the for-
warders and the flows of the IoT network.

Every communication and packet transmission in the net-
work consumes some amount of electrical energy, measured
in watts. Since each watt consumed costs money, ideally
the traffic in the network should be optimized in order to
minimize the total energy consumption, and thus, have lower
operational costs. In our approach, the energy usage within
forwarder per packet (watts/packet) is collected.

The QoS is a quantitative description of the overall
performance of the services in a network. It depends in
several aspects in the network, such as packet loss, bit rate,
transmission delay, etc. In our approach, we use the delays
between forwarders when sending cognitive packets from
node to node.

Ideally the forwarders should be malware free and the
flows should not contain data related to attacks to ensure
security. Since this is not a realistic assumption, the flows
that are sensitive must be protected from alterations and
eavesdropping by avoiding paths that contain low confidence
forwarders, while sensitive forwarders must be protected
from potential attacks that may disrupt their normal oper-
ation. In our approach, we assume that each forwarder has
a confidence and a sensitivity value. Confidence represents
the (inverse) probability that the forwarder is infected by a
malware which affects the integrity and the confidentiality
of the flows. High confidence corresponds to low probability
of malware (maximum value corresponds to 1.0), while low
confidence corresponds to high probability of malware (0.0
is the minimum value). On the other hand, sensitivity mea-
sures how sensitive a forwarder is with respect to different

aspects of importance. For example, sensitive forwarders
include those forwarders that are central in the network that
process large amounts of flows, or forwarders which are used
to route sensitive (e.g. private/confidential) information.

Concluding, the SDN topology of an IoT network is
modeled as an undirected graph, G = (N,E), where
N indicates the set of the nodes (n) that represent the
forwarders of the SDN and the E is the set of edges (e) that
refer to the communication links between two forwarders.
Each node n of the graph has the following attributes:
• en corresponds to the energy consumption of the node
n (i.e. forwarder) in order to process a packet.

• sn is the the sensitivity of the node n which character-
izes how vulnerable a node is. The higher the levels of
sensitivity, the lower the selectivity of this node has to
be.

• cn represents the probability of a node n to keep
the security properties unviolated. The lower the node
confidence is, the more flows should be avoided to
travel through this node.

Finally, each edge e of the graph has the de attribute which
is the delay of the communication between two forwarders.

B. Routing Policies Formulation

The communication between two network connected de-
vices can be done through various alternative paths of
forwarders of the SDN infrastructure of an IoT network. A
path p corresponds to a flow rule and consists of a number
of forwarders n and links between forwarders e, while the
set of all the alternative paths is devoted by P , where p ∈ P .
This subsection presents four flow routing policies expressed
as KPIs that verify that flow rules generated by the SDN
concern security, QoS and energy consumption information.
In more detail, the following policies must be followed:

1) Minimize energy consumption: The energy KPI is
defined as

J1(p) =
∑
n∈p

en, (1)

where en is the energy usage per packet of the
forwarder n belonging to the path p. The energy KPI
J1(p) should be as small as possible.

2) Maximize the network QoS: The QoS KPI is defined
as

J2(p) =
∑
e∈p

de, (2)

where de is the connection delay of a the communi-
cation link e belonging to the path p . The QoS KPI
J2(p) should be as small as possible.

3) Protect sensitive flows along the paths they follow
by avoiding low confidence forwarders: The flow
security violation KPI is defined as

J3(p) = −
∑
n∈p

cn, (3)



where cn is the confidence of the forwarder n be-
longing to the path p. The flow security violation KPI
J3(p) should be as big as possible. Here, the minus
is used, since the confidence is inversely proportional
with the probability that a forwarder has affected by
a malware.

4) Protect sensitive forwarders from possible malware
infections, by avoiding sending low confidence flows
through them: The forwarder security violation KPI
is defined as

J4(p) =
∑
n∈p

sn, (4)

where sn is the sensitivity of the forwarder n belong-
ing to the path p. The forwarder security violation KPI
J4(p) should be as small as possible.

C. Routing Optimization

In order to optimize the above KPIs simultaneously, our
methodology is based on multi-objective optimization ap-
proaches. The optimization objectives may be contradicting,
i.e. optimizing the value of one objective may be affecting
negatively the values of other objectives. In such cases, there
are not exist a single trivial solution, but instead the multi-
objective optimization identifies a set of optimal solutions.
The solutions included in this set are called Pareto optimal
[14]. Without additional subjective preferences regarding the
significance of the optimization objectives, all the solutions
within the Pareto front are considered as equally good, and
there is no way to pick a single solution as the best overall
one. An example of Pareto optimal solutions is illustrated
in 2. In this example, two objectives must be minimized
simultaneously, J1 and J2. SF represents the set of all
possible solutions and SP the set of Pareto optimal solutions.
Two solutions selected from the Pareto are p1 and p2.
Solution p1 has larger J2 value than p2, but also smaller
J1 value than p2.

Figure 2. An example of Pareto optimal solutions [14]: Two objectives,
J1 and J2, must be simultaneously minimized. The set of optimal solutions
is represented as SP . Two solutions from the Pareto set are p1 and p2. SF

represents the set of possible solutions.

In the general case (i.e. without knowledge about the sig-
nificance of the optimization objectives (KPIs)), the multi-

objective optimization problem is formulated as follows:

arg min
p

(J1(p), J2(p), J3(p), J4(p))

subject to Jmin
i ≤ Ji(p) ≤ Jmax

i ,∀i ∈ [1, 4], p ∈ P,
(5)

where P is the possible set of solutions, Ji,∀i ∈ [1, 4]
are the objective functions (equations (1), (2), (3) and (4),
respectively) that must be minimized simultaneously and
Jmin
i ≤ Ji(p) ≤ Jmax

i are optional constraints that the
objectives might have.

In case where the network operator has references regard-
ing the importance of each objective, the unique optimal
solution can by found by minimizing the following objective
function

arg min
p

α J1(p) + β J2(p) + γ J3(p) + δ J4(p), (6)

where α+β+γ+ δ = 1. The values of α, β, γ, δ define the
user preference for each policy.

D. Routing Validation

The set of optimal flow rules is compared with the flow
rule created by the SDN, in order to verify whether the SDN
flow rule is in the optimal solutions set. In case that the
solution proposed by the SDN is not in the set of optimal
solutions, we conclude that the policy verification failed, and
the degree of deviation from the optimal solution is defined
as follows:

Deviation degree = arg min
p∈Poptimal

1

4

4∑
i=1

θ ((Ji(p)− Ji(pSDN ))
2

(7)
Where Ji is the ith KPI, Poptimal is the set of optimal
solutions, pSDN is the solution proposed by the SDN, and
θ is a normalizing constant utilized in order to make the
KPIs have the same scaling. More specifically, the deviation
degree is the mean square distance of the SDN solution from
the closest solution within the Pareto set. In case that the
SDN solution is within the optimal set, then this distance is
zero.

IV. EVALUATION SCENARIO

To illustrate the proposed routing policy verification
methodology, we applied it in a synthetic representative
example. In more detail, we assume that there is a request
for communication between two network-connected IoT
devices, (i.e. IoT 1 and IoT 2) and the data flow can be
routed from a set of forwarder elements. For each forwarder
and communication link between forwarders, we randomly
assigned values that correspond to network metrics, namely
energy consumption (en) each forwarder, connection delays
(de) between forwarders and forwarder sensitivity (sn) and
confidentiality (cn) values. Using these values, we computed
the four KPIs (i.e. equations (1), (2), (3) and (4), respec-
tively) for all the possible paths (i.e. flow rules) between



(a) Optimal flow rule #1. The more blue a node is colored,
the less energy the node consumes.

(b) Optimal flow rule #2. The more blue a communication
link between forwarders appears, the less connection delays
are experienced.

(c) Optimal flow rule #3. The more sensitivity a node has,
the more blue the node is colored.

(d) Optimal flow rule #4. The more blue a node appears,
the higher confidence it has.

Figure 3. The estimated Pareto optimal solution set for the data flow IoT 1 and IoT 2 consists of 4 flow rules (i.e. paths BHGF, BCE, AIGF and BCD)
that are red highlighted, as computed by simultaneously optimizing the four KPIs (i.e. equations (1), (2), (3) and (4), respectively). As can be seen, the
proposed routing policy verification methodology is able to define a set with optimal flow rules corresponding to optimal QoS (flow rule #2) or energy
usage (flow rule #1), while the flow rules avoid to include forwarder with low confidence (flow rule #4) or high sensitivity (flow rule #3).

IoT 1 and IoT 2 and, then, the Pareto optimal solution set
was calculated by equation (5).

The estimated Pareto optimal solution set for the data
flow IoT 1 and IoT 2 consists of 4 flow rules that red
highlighted in Figure 3, as computed by simultaneously
optimizing the four KPIs. Additionally, the forwarder nodes
and links are colored according to their efficiency in energy,
QoS and flow and forwarder security. More specifically,
the sub-figure 3a depicts the optimal flow rule #1 (path
BHGF), while the forwarder nodes are colored based on
the energy usage within the forwarder. The more blue a
node is colored, the less energy this node consumes and

thus more energy efficiency is achieved. As can be seen, the
path BHGF is energy efficient, since it consists of forwarders
with low energy usage. In the sub-figure 3b, the more blue
a communication link between forwarders appears, the less
connection delays are experienced and, thus, it corresponds
to more QoS efficient option. Indeed, the depicted optimal
flow rule #2 (path BCE) corresponds to the optimal flow
rule from a QoS perspective. In the sub-figure 3c, the more
sensitivity a node has, the more blue the node is colored.
The optimal flow rule #3 (path AIGF) depicted in this sub-
figure indeed corresponds to the optimal path, since it avoids
forwarders with high sensitivity. Finally, the sub-figure 3d



depicts the last estimated optimal flow rule #4 (path BCD).
In this sub-figure, the more blue a node appears, the higher
confidence the node has. As can be seen, the path BCD
consists of forwarders with high confidence. It should be
noted that the last flow rule also corresponds to the case
where all the four KPIs have the same weight (equation
(6)). Whether the SDN flow rule corresponds to these four
solutions, the deviation degree (equation (7)) is zero and we
can conclude that the policy verification succeeded.

In conclusion, the proposed routing policy verification
methodology is able to define a set with optimal flow rules
corresponding to optimal QoS or energy usage, while the
flow rules avoid to include forwarder with low confidence
or high sensitivity. According to the special demands of
the network, the operator can define its own routing policy
by accordingly weighting the importance of each KPI by
equation (6).

V. CONCLUSION

In this paper we presented a policy framework for verifica-
tion of SDN routing decisions of an IoT network, involving
security, QoS and energy information to ensure confidential-
ity, integrity and availability security properties. The policy
constraints can be defined by the IoT network operator
depending on the demands of the network and the use cases.
In future work, evolutionary algorithms will be employed in
multi-objective optimization for quick verification of routing
policies, while the presented verification frameworks will
be evaluated using real scenarios with heterogeneous IoT
platforms and devices including domains such as surveil-
lance, intelligent transport systems and flexible manufac-
turing. Finally, we will study how the objective functions
of routing policies can be enriched using more real-time
network metrics in order to better represent security, QoS
and energy information.
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