Conference paper Open Access

Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems

Irurozki, Ekhiñe; López-Ibáñez, Manuel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Combinatorial optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bayesian optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Expensive black-box optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Estimation of distribution  algorithms</subfield>
  </datafield>
  <controlfield tag="005">20210416100106.0</controlfield>
  <controlfield tag="001">4500974</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Málaga, Spain</subfield>
    <subfield code="0">(orcid)0000-0001-9974-1295</subfield>
    <subfield code="a">López-Ibáñez, Manuel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">43490345</subfield>
    <subfield code="z">md5:40f68a9638025435438ecb4005b2da21</subfield>
    <subfield code="u">https://zenodo.org/record/4500974/files/umm.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-02-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4500974</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Telecom Paris, France</subfield>
    <subfield code="0">(orcid)0000-0003-3218-5735</subfield>
    <subfield code="a">Irurozki, Ekhiñe</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Reproducible Artifacts for the paper:&lt;/p&gt;

&lt;p&gt;Ekhine Irurozki and Manuel L&amp;oacute;pez-Ib&amp;aacute;&amp;ntilde;ez. &lt;strong&gt;Unbalanced Mallows Models for Optimizing Expensive Black-Box Permutation Problems.&lt;/strong&gt; In &lt;em&gt;Genetic and Evolutionary Computation Conference (GECCO &amp;rsquo;21)&lt;/em&gt;, July 10&amp;ndash;14, 2021, Lille, France. ACM, New York, NY, USA, 9 pages. &lt;a href="https://doi.org/10.1145/3449639.3459366"&gt;https://doi.org/10.1145/3449639.3459366&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;Expensive black-box combinatorial optimization problems arise in practice when the objective function is evaluated by means of a simulator or a real-world experiment. Since each fitness evaluation is expensive in terms of time or resources, only a limited number of evaluations is possible, typically several orders of magnitude smaller than in non-expensive problems. In this scenario, classical optimization methods such as mixed-integer programming and local search are not useful.&amp;nbsp; In the continuous case, Bayesian optimization, in particular using Gaussian processes, has proven very effective under these conditions. Much less research is available in the combinatorial case. In this paper, we propose and analyze UMM, an estimation-of-distribution (EDA) algorithm based on a Mallows probabilistic model and unbalanced rank aggregation (uBorda). Experimental results on black-box versions of LOP and PFSP show that UMM is able to match, and sometimes surpass, the solutions obtained by CEGO, a Bayesian optimization algorithm for combinatorial optimization. Moreover, the computational complexity of UMM increases linearly with both the number of function evaluations and the permutation size.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4500973</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4500974</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
218
30
views
downloads
All versions This version
Views 218218
Downloads 3030
Data volume 1.3 GB1.3 GB
Unique views 176176
Unique downloads 2929

Share

Cite as