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Abstract 

In recent years, the field of neuroscience has gone through rapid experimental advances and extensive 
use of quantitative and computational methods. This accelerating growth has created a need for 
methodological analysis of the role of theory and the modeling approaches currently used in this field. 
Toward that end, we start from the general view that the primary role of science is to solve empirical 
problems, and that it does so by developing theories that can account for phenomena within their 
domain of application. We propose a commonly-used set of terms — descriptive, mechanistic, and 
normative — as methodological designations that refer to the kind of problem a theory is intended to 
solve. Further, we find that models of each kind play distinct roles in defining and bridging the multiple 
levels of abstraction necessary to account for any neuroscientific phenomenon. We then discuss how 
models play an important role to connect theory and experiment, and note the importance of 
well-defined translation functions between them. Furthermore, we describe how models themselves can 
be used as a form of experiment to test and develop theories. This report is the summary of a discussion 
initiated at the conference Present and Future Theoretical Frameworks in Neuroscience, which we hope 
will contribute to a much-needed discussion in the neuroscientific community.   
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Introduction 

Theories are the primary tools by which scientists make sense of observations and make predictions. 
Given this central role, it is surprising how little methodological attention is given within the sciences to 
the general nature of theories: what they are, how they are used, and the processes by which they are 
developed. In part, this may be due to different uses of theory across different scientific fields, but it may 
also be due to the historical accident of how different scientific fields have grown.  

Neuroscience is among the fastest growing areas in biology, due in part to strong funding boosts from 
the United States and European Union, through standard budgetary funding and special measures such 
as the BRAIN Initiative. While neuroscience has a strong history of experimental, theoretical, and 
computational interactions, often predicting biological mechanisms decades before their experimental 
confirmation (1–3), interactions within the field make it clear that there is still confusion as to the nature 
of theory, its role in neuroscience, and how it should be developed, used, and evaluated within the 
community (4, 5). Additionally, the surge of new technologies to scrutinize the nervous system at 
unprecedented levels have made clear the need to develop new theoretical frameworks to assimilate the 
growing quantities of resulting data (6) and establish relationships between their underlying processes. 

Under the auspices of the National Science Foundation and the BRAIN Initiative, dozens of theoretical 
and experimental neuroscience researchers came together for a workshop, entitled Present and Future 
Theoretical Frameworks in Neuroscience (4-8 Feb 2019, San Antonio, TX) (Rotstein HG, Santamaría F. In 
preparation), to discuss future directions in theoretical neuroscience and to explore theoretical 
frameworks that would allow the neuroscience community to benefit from novel neurotechnologies. In 
this document, we report some of the conversations and insights from the San Antonio meeting on 
classifications of scientific theory, modeling, and simulations with a specific focus in their use in 
neuroscience. This document originated from the discussions of one out of the several discussion 
workgroups, and is not meant to capture the outcome of the full meeting. Furthermore, we do not aim to 
provide definite answers, but rather open a much needed discussion among the neuroscience 
community about scientific methodology. 

Towards that end, we begin by outlining an idealized view of scientific progress we think best captures 
neuroscientific practice. By this view, science is a problem-solving endeavor in which we use models to 
connect theory and phenomena. We propose that a set of commonly-used categorizations - 
descriptive, mechanistic, and normative models - are best seen as corresponding to the type of 
problem a theory is being used to solve, and can thus act as methodological guides for scientific 
practice. We then show how this categorization has implications for how each of these approaches 
relates to the multiple levels of abstraction needed to account for neuroscientific phenomena, namely 
that descriptive models define a representation of a phenomenon at one level of abstraction, while 
mechanistic and normative models bridge levels of abstraction. These operations constitute one of the 
key roles of theoretical neuroscience, as they unify scientific theories across disparate experimental 
approaches and fields. Finally, we discuss the relationship between theory and experiment, and how 
models can themselves be used in a form of experiment in the ongoing process of theory development. 
This discussion leads to recommendations for how to formulate theory projects towards the goal of 
developing the necessary future theoretical frameworks of neuroscience. 

What is a theory and what is it good for? 

To inform the development of theoretical frameworks, we first consider the nature of theory and how it is 
used in scientific practice. Traditional descriptions of science tend to be based on the processes of 
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theory identification and falsification, with theories as proposed universal truths about the world to be 
tested and, eventually, rejected (7). In this formulation, when current theories can no longer explain 
observed data, paradigm shifts occur and new theoretical frameworks arise that can better account for 
the data (8). However, historical and sociological analyses show that these views do not describe 
scientific practice (9–12). New discoveries engender new questions not just answers (13), and scientists 
can have a variety of attitudes towards a theory rather than to simply accept or reject it (9, 14). Some 
have argued that theories need only be empirically adequate for a task at hand, without requiring belief 
in its underlying theoretical entities (15–17).  

More complex views on the general role of theory in science have been proposed, such as arguments 
for the importance of mechanistic explanations and for experiments contributing to model confirmation 
and rejection (14); arguments for the importance of applied science in providing solutions to problems of 
controlling the natural world (18, 19); and arguments for the importance of theories in the creation of new 
questions, rather than simply answering old ones (13). Additional complexity lies in the theory-laden 
nature of observation, in which the decision of what to measure, how to measure it, and what those 
measures mean all depend on theoretical assumptions (whether stated explicitly or not), and in the fact 
that experiments are by their nature fraught with potential errors (some of which may be unrecognized at 
the time (20, 21)). While these issues have been widely discussed in the philosophy community, they do 
not seem to be playing much of a role in current discussions of scientific practice. 

A pragmatic view: science as problem-solving 

We take a pragmatic view of the scientific endeavor, which we think most adequately describes and 
informs scientific practice. By this view, scientific practice is a problem-solving endeavor (10, 18, 19, 22): 
a process by which we solve empirical problems . Empirical problems are questions about observed 1

phenomena, which can range from matters of purely scientific interest such as “How does the brain 
process visual signals?” or “How does an animal select between alternative choices?” to those with 
more obvious applications such as “Which brain functions are disrupted in schizophrenia?”. Like any 
other problem, solving a scientific problem can be seen as a search to achieve a goal, which is specified 
by the statement of the problem along with criteria on what counts as an acceptable solution (23). 
However, scientific problems are often ill-defined (24), because the relevant questions and solution 
criteria are not always explicitly stated (e.g., during exploratory stages of research), and both evolve with 
additional discoveries (13). For example, the understanding that multiple memory systems (25–28) 
interact to produce multiple decision-making systems (3, 29–31) leads to the question of what happens 
when those systems are in conflict, while the question “How does the pineal gland generate 
consciousness?” (32) is now considered outdated and obsolete, if not nonsensical. Further, what may be 
seen as an adequate solution to a problem in one sociohistorical context may not be in another - as new 
data become available, standards change, or alternative solutions are presented. Despite the evolving 
landscape of problems and their proposed solutions, scientific theories have been used to make 
progressively more accurate predictions about more phenomena over history (18, 19). We maintain that 
this progress results from community-maintained standards under the drive to better predict and control 
environmental factors of potential relevance to society (19).  

A problem-based view of scientific progress shifts theories from “proposals of truth to be falsified” to 
“proposed problem-solving tools,” and prompts us to assess their utility: what empirical problems they 
can solve, how readily they can be used to do so, and how good their solutions are. This shift raises the 
following question: what constitutes a solution to a scientific problem? Or, equivalently, what are the 

1 Note: other kinds of scientific problems have also been discussed, such as conceptual problems: conceptual inconsistencies 
within or between theories and their associated worldviews/frameworks (8, 18). For conciseness we focus only on empirical 
problems. 
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criteria by which a theory is deemed to have “solved” a problem? Assessing solutions to scientific 
problems requires general standards to evaluate the quality of the solution and constraints on the form 
solutions can take. The first criterion (standards) may include features like accuracy of predictions, 
falsifiability, simplicity, and reproducibility - a set of epistemic virtues (15, 33, 34) which are the measure 
of a theory’s utility, as well as the foundation of any inductive relationship between scientific practice 
and truth (9). The second criterion (constraints on form) includes an overarching set of concepts which 
can be used to solve problems and thus constitute a theoretical framework (table 1): a language of 
terminology within which theories are proposed. For example, the solutions proposed under the 
framework of Freudian psychology (35) are fundamentally different from those proposed under the 
modern medicalized frameworks of psychiatry (36–39), and thus the set of theories under the two 
frameworks would be composed of fundamentally different objects and language. While Freudian 
psychology suggests subconscious consequences of parental interactions, modern medicalized 
frameworks suggest physical dysfunctions in neural structure caused by pharmacological imbalances or 
genetic differences. In effect, the theoretical framework is a set of foundational theories that make up the 
“core” of a research program, and serve as foundational assumptions for other theories and experiments 
within that program (8, 9, 18) . In addition to constraints on the content of theories, any theoretical 2

framework includes a set of general problem-solving methods used within that framework.  

We can thus consider the solution to an empirical problem to be a scientific explanation (40, 41) in which 
a theory is proposed to solve the problem  and that explanation is deemed adequate (or not) based on 3

solution criteria of the problem (24), under the constraints imposed by the current theoretical framework. 
The scientific community has a continuing responsibility to evaluate their problem-solving criteria and 
methodologies -- to assess whether modifications are required, and if those modifications should involve 
the development of new theories, or if the development of entirely new frameworks is needed. 

Model-based scientific explanation 

So what does a scientific explanation look like, particularly in the current framework of theoretical 
neuroscience? We will, broadly speaking, consider a theory to be an idea or set of ideas that can be 
used as part of an explanation for observed phenomena (i.e., to solve an empirical problem). We take the 
(pragmatic (42)) view that theories are generally amorphous and defined by their function and practice, 
namely their use for scientific explanation. The main explanatory tool of the theoretical neuroscientist is a 
model: a structure that is interpreted to represent observed or theoretical phenomena (43, 44) (Table 1). 
Unlike theories, models are well-defined to the extent that they include a description of their structure 
and its intended interpretation. For example, the equation describes a mathematicaldV /dtτ =  − V + EL  
structure that can be interpreted to represent the membrane potential, , of a passive cell with timeV  
constant, , and resting potential, (45). Mathematical or computational models force us to confrontτ EL  
hidden assumptions in our theories (46) and are amenable to simulation and analytical treatment. 
However, even if we do not explicitly express a model in mathematical terms, we can still make an 
implicit (heuristic, intuitive, or mental) model of the phenomena at hand (47). Further, models can include 
other kinds of interpreted structures, such as structural representations of the double helix of DNA (48) 
or diagrammatic representations of the protein interactions involved in signaling cascades (49). For 
example, in experimental neuroscience physical structures are used in the form of “animal models” such 
as the 6-OHDA rat or the MPTP monkey, which are interpreted to represent the pathology of Parkinson’s 
disease (50, 51). These different kinds of models are examples of the same overarching concept: namely 

2 “To accept one theory rather than another one involves a commitment to a research programme, to continuing the dialogue with 
nature in the framework of one conceptual scheme rather than another.” (15). 
3 I.e., the theory corresponds to the explanans, and the problem corresponds to the explananda (40). 
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a structure, representing some phenomenon of interest, which can be used to solve empirical problems 
about that phenomenon. 

In creating a model, a researcher has to make foundational assumptions in the terms they use, the form 
those terms take, and the relationships between them. We propose that these assumptions are the 
instantiation of a theory: they are explicit expressions of aspects of the theory in a well-defined form. The 
voltage equation above instantiates a theory that a neuron’s electrical properties arise from a 
semipermeable membrane (2, 52, 53), while the 6-OHDA model instantiates the theory that Parkinson’s 
disease arises due to dopaminergic dysfunction in the substantia nigra (54). Thus, models can 
simultaneously act as an instantiation of some aspects of a theory and as an abstraction for some 
aspects of a phenomenon (55, 56). As we will show, this dual role of models forms the foundation of 
model-based scientific explanation (57) -- one of the primary problem-solving strategies in theoretical 
neuroscience (53, 58, 59).  

Frameworks, theories, and models interact throughout neuroscientific practice. Frameworks provide the 
form in which solutions are proposed and compared. Theories are the set of ideas used in those 
explanations. Models instantiate the theories in a structure that can be directly explored. Table 1 shows 
three examples from cellular, systems, and clinical neuroscience. 

 

 

    Examples 

Cellular   Systems   Disease  

Framework 
A general description 
about the structure of the 
world, providing a 
language and a 
conceptual basis for 
developing theories. 

Explanations for differences in 
neural functional properties  
can be appropriately described 
in terms of differences in the 
electrochemical properties of 
membranes and proteins. 

Explanations of the production 
of movement by skeletal 
muscle contractions can be 
appropriately described in 
terms of patterns of action 
potentials in the central 
nervous system.  

Explanations of  
neurodegenerative diseases 
can be appropriately 
described in terms of 
dysfunction in cellular 
processes.  

Theory 
A set of ideas that can be 
used to explain a set of 
phenomena (the domain 
of the theory). 

Specific voltage gated ion 
channels enable excitable 
properties of neurons such as 
the action potential. 

Many movements are 
generated by central pattern 
generators that are primarily 
driven by internal oscillatory 
dynamics.  

Parkinson’s disease is due to 
loss of dopaminergic function 
in the substantia nigra. 

Model 
An instantiation of a 
theory in an (often 
mathematical) structure, 
which is interpreted to 
represent a phenomenon. 

The Hodgkin-Huxley equations 
capture the essential qualitative 
and quantitative properties of 
the action potential. 

Half-cycle oscillators represent 
swimming processes in the 
lamprey, driven by alternating 
waves down the notochord. 
 

The 6-OHDA rat and MPTP 
monkey have dopaminergic 
loss in the substantia nigra 
and show Parkinsonian 
behaviors such as 
bradykinesia and tremors. 

Table 1: Terminology used in this manuscript. Three neuroscience examples. 
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Three kinds of theory; three kinds of models 

Theories can have multiple aspects that can be instantiated in a variety of model formulations, and 
numerous classifications have been proposed (44). A problem-solving view of scientific practice prompts 
us to consider a classification of theories and models based on the type of problem they are being used 
to solve. We describe a taxonomy of common approaches in neuroscientific practice, which are used to 
solve three different types of problems: “what” problems, “how” problems, and “why” problems (60). As 
the same model can serve different purposes, models cannot be assigned to one class or another 
without stating the problem they are being used to solve. This apparent ambiguity can result in 
disagreement as to which class a given model should be considered. However, we argue that a focus on 
problem-context can help resolve this ambiguity, and serve as a guide for researchers to identify 
common ways of solving similar problems. 

Descriptive Explanations 

The first order question encountered in scientific research is: what is the phenomenon? This problem is 
solved with a descriptive theory, which is used to provide a concise summary of the phenomenon (61). 
Descriptive models are founded on basic assumptions of which variables to observe and how to relate 
them. For example, the theory that hippocampal cells are “place cells” (3) describes a set of properties 
that could be instantiated in a model specifying when a hippocampal cell will fire within an environment 
(3, 62, 63). At its heart, a descriptive model is simply a compressed representation of phenomenological 
data -- descriptive models are often called phenomenological models (64, 65), or, when they are 
well-established, phenomenological laws (57). 

Much of the classical work in biology is in the form of descriptive models – diagrams and classification 
of observed structures in nature (66, 67). Such descriptive models were primarily qualitative, yet 
provided the basis for most biological discoveries until the mid twentieth century. Quantitative 
descriptive models specify the relationship between observable variables in a functional form for which 
modern statistical methods (68, 69) can be used to directly fit parameters to data and estimate their 
variability or goodness of fit. These methods specify relationships between variables with well-defined 
probability models and explicit statistical assumptions that can reveal ambiguities inherent in their 
qualitative counterparts (70, 71) 

In delineating the attributes that define a phenomenon, descriptive theories delineate the attributes that 
are expected to be repeatable in future experiments and the necessary conditions for repeatability. This 
is extremely important for the current replication controversy (22, 72–74). The recent National Academy 
report (75) differentiates between reproducibility and replicability - reproducibility is obtaining the same 
results from the same data, while replicability is obtaining consistent results across multiple studies. 
Several authors have pointed out that claims should be replicable, not data, and that the replication 
crisis is in fact a crisis of theory development (22, 76, 77).  

Mechanistic Explanations 

After addressing the “what” question, one might ask: how does the phenomenon arise? This problem is 
solved with a mechanistic theory, which is used to explain a phenomenon in terms of its component 
parts, their actions, and their organization (24, 64, 78). A mechanistic model is based on an assumption 
of which parts and processes are relevant to the phenomenon, and illustrates how their interaction can 
produce a phenomenon or, equivalently, how phenomena can emerge from these parts. For example, 
traffic is an emergent phenomenon that can be represented by a mechanistic model that includes 
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interactions between the nuts and bolts of cars, the timing of traffic lights, the reaction times of drivers, 
equations of non-compressible flow, etc. (79–81).  

Quantitative mechanistic models often take the form of a dynamical system (53, 58, 82–85), in which a 
set of variables (or their equilibrium conditions) represent the temporal evolution of component 
processes. For example, the classic Hodgkin-Huxley model uses a set of four coupled differential 
equations to represent the dynamics of membrane potential and voltage-dependent conductances, and 
shows how an action potential can emerge from their interaction, by producing a precise prediction of 
the progression of the membrane potential in time (2). However, qualitative mechanistic models are also 
commonly used in biology, psychology, and neuroscience, in which mechanistic theories of complex 
processes are summarized in schematic or conceptual structures that represent general properties of 
components and their interactions. For example, Hebb considered a conceptualization of neural 
processing in which coincident firing of synaptically-connected neurons strengthened the coupling 
between them. From this model, Hebb was able to intuit how memories could be retrieved by the 
completion of partial patterns (content-addressable memory) and how these processes could emerge 
from synaptic plasticity, as cells that were coactive during a particular stimulus or event would form 
assemblies with pattern-completion properties (86).  

The utility of mechanistic explanation lies in the fact that mechanistic models represent (assumed) 
underlying processes that produce the phenomenon (61, 64). As a result, a mechanistic model can be 
used to make predictions about any circumstances where the same processes are presumed to operate 
(82) - including the effects of manipulations to component parts, and even circumstances beyond the 
scope of data used to calibrate the model. When the target phenomena and its underlying processes 
correspond to simultaneously-observable quantities, causal inference methods have formalized 
statistically-rigorous ways to express and assess the causal relationships represented in mechanistic 
models (87–90). These methods can be a powerful tool to constrain mechanistic models by observable 
data, and can even be used to identify latent variables that can provide further explanatory power. The 
latent variables are identified by asking what if changes are made to a mechanistic model, which are 
done by manipulating them and asking what alternate situations would obtain (i.e. counterfactual 
simulations). Causal inference has been used to identify relationships among parameters in genetic, 
epidemiological, behavioral, and psychiatric phenomena (91–93) and has been applied to fMRI, EEG, 
MEG, local field potentials and other continuous signals in neuroscience (94, 95). However, there are still 
issues in applying these approaches to phenomena in complex, non-stationary, and uncontrollable 
background environments. Furthermore, many mechanistic models represent processes that are not 
simultaneously measureable in practice, or even in principle due to their degree of abstraction from 
observable quantities 

Normative Explanations 

In contrast to the mechanistic question of “how”, we can also ask the question: why does the 
phenomenon exist? This kind of problem is solved with a normative theory, which is used to explain a 
phenomenon in terms of a function or goal (96–98). Implicit normative theories are frequently used in 
biological sciences when we talk about the function of a system - for example that the visual system is 
“for” processing visual information. This function serves as a guiding concept that can be a powerful 
heuristic to explain the system’s behavior based on what it ought to do to perform its function. When 
quantified, normative models formalize the goal in terms of an objective function (also known as a utility 
or cost function), which can be optimized under some constraints to derive the best possible solution. 
These models are founded on an assumed statement of a goal to be optimized and the constraints 
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under which the system is achieving the goal. Further, such an approach depends on an assumption of 
optimization - that the system is attempting to optimize some well-defined cost function. 

The assumption of optimality is often founded on evolutionary arguments (e.g. (96, 99)), which through 
competition might be expected to optimize systems (100). Indeed, in some cases, normative models 
provide evidence that the system is performing close to optimal given physical limitations. For example, 
retinal transduction of light can be shown to be close to optimal, particularly for certain structures (such 
as rods in the eyes of cats) (101–103). However, evolution has no guarantee of optimization. For 
example, mammalian eyes are suboptimal because, in reference to the path of light, the photoreceptors 
are in the deepest layer of the retina, requiring a path for the axons (which originate from ganglion cells 
in the most superficial layer) to leave the retina, thus producing a blind spot (104). Notably, lens eyes in 
octopus and other cephalopods are not inverted in this way and do not have a blind spot (104). These 
differences speak to the limitations of evolutionary systems to achieve optimality and underlying costs 
imposed by the limitations of genetic search (105). Moreover, there are other physical processes that 
may perform some operation akin to optimization (e.g. learning, economic markets, etc. (106)). Different 
optimization processes may themselves impose distinct constraints that give unique signatures to the 
systems they optimize. 

In fact, the usefulness of normative models often lies in their ability to identify when an observed system 
is performing suboptimally (100), which can provide additional information about unexpected goals or 
constraints. As another example, in a series of papers, Redish and colleagues found that rodent foraging 
is suboptimal, under the assumption that the animals are maximizing reward intake. In particular, the 
animals tended to remain at the reward sites longer and to accept expensive (long-delay) offers more 
than what was required for an optimal reward intake, implying suboptimality in decision processes 
(107–110). However, optimality could be restored by assuming an additional hidden cost in the 
cost-function (111) . Subsequent neurophysiological, computational, and behavioral analyses have 
revealed that this hidden cost shows functionality akin to “regret” at leaving an option (107, 110, 112). 

On the context-specific nature of theory/model classification 

Neither theory nor model exist in isolation, but are embedded in scientific practice. As our categorization 
reflects the problem being solved, it can be applied to either theories or models, depending on the 
context in which they are being used and the problems they are proposed to solve. Further, models with 
the same structure can be used for different purposes, and can thus be assigned a different category in 
different contexts. For example, the integrate and fire model can be used as a descriptive model for 
membrane potential dynamics or as a mechanistic model for the neuronal input-output transformation; 
and while the Hodgkin-Huxley model was discussed above as a mechanistic model for the problem of 
spike generation, it was originally proposed to be “an empirical description of the time course of the 
changes in permeability to sodium and potassium” (2). We also note that this categorization is 
independent of an explanation being accepted by the scientific community. A mechanistic explanation 
does not cease to be mechanistic if it is not adopted (e.g., even if some of its experimental predictions 
don’t bear fruit, it is still proposed to solve the problem of how a phenomenon emerges from its parts).  

As with the context-dependence of model classification, a given theory might have descriptive, 
mechanistic, and normative aspects. In fact, a theory may start as an effort to solve one class of 
problem, but over time develop aspects to address other problems in its domain. As a case study, 
consider the theory of visual coding: a body of ideas concerning neural activity in the so-called visual 
areas of the brain and its relationship to visual stimuli. Foundational work of the theory took the form of a 
descriptive model to explain the tuning properties of single neurons in the primary visual cortex, namely 
that their responses to visual stimuli are well represented by Gabor patches with a given receptive field, 

 March 27, 2020 preprint                       Levenstein et al. - On the role of theory and modeling in neuroscience  |  8 

https://paperpile.com/c/65uU5y/9jPEs+ekMsQ
https://paperpile.com/c/65uU5y/IPQED
https://paperpile.com/c/65uU5y/z0j7N+hDMzv+jjXsi
https://paperpile.com/c/65uU5y/G58Tm
https://paperpile.com/c/65uU5y/G58Tm
https://paperpile.com/c/65uU5y/wyrqz
https://paperpile.com/c/65uU5y/nsoj6
https://paperpile.com/c/65uU5y/IPQED
https://paperpile.com/c/65uU5y/fz8xC+DBiSc+2dU58+HrKUY
https://paperpile.com/c/65uU5y/XqqtT
https://paperpile.com/c/65uU5y/fz8xC+vse9R+HrKUY
https://paperpile.com/c/65uU5y/yUFw


preferred orientation, and spatial frequency (113, 114). A mechanistic model was proposed to explain 
how the observed tuning properties arise, relying on the convergence of inputs from center/surround 
on/off cells of the visual thalamus, and further mechanistic models have since been developed and 
incorporated into the theory (115). Recent work has used generalized linear models (GLMs) to further 
refine and parameterize models that describe the relationship between sensory input and neuronal 
spiking in ways that can be directly fit to neural data (116), and these models can even be formulated in 
ways that are “biophysically-interpretable”, or directly connect to accepted mechanisms of spike 
generation (53, 117). Finally, a series of normative models have been used to explain why Gabor patches 
are the optimal solution to accurately represent visual space, under constraints such as minimizing the 
number of spikes fired (118). This example further illustrates different roles models can play and 
complement each other in a theory: often the terms in mechanistic or normative models are themselves 
descriptive models that describe the behavior of components or properties of constraints, and 
mechanistic/normative models are used to explain how/why descriptive models take the form they do, 
either as emergent properties or in order to perform some function. As we will describe in the next 
section, this corresponds to the differential role of the model types in connecting "levels of abstraction" - 
which we see as one of the primary roles of theoretical research. 

Levels of abstraction 

Abstraction consists in replacing part of the universe by a model of similar but simpler structure (55). 
Given the complexity of any phenomenon, every model is an abstraction of its target phenomena (43). It 
could be argued that abstraction is detrimental to model accuracy, and is only necessary so models can 
be tractable in light of practical and cognitive limitations (i.e. that “The best material model for a cat is 
another, or preferably the same cat”, (55)). However, we argue that the role of abstraction in scientific 
practice extends beyond addressing those limitations, and that its importance is often underestimated. 
Moreover, we argue that the appropriate abstractions to make when building a model depend on the 
problem to be solved, and that the use of similar abstractions for multiple problems of interest results in 
the development of commonly-used descriptions of phenomena that differ in their relative degree of 
abstraction (i.e. levels of abstraction).  

Indeed, classic accounts of neuroscientific practice emphasize analysis at distinct levels of abstraction 
(64, 119–122). However, despite the ubiquity of level-based views of neuroscience and a number of 
proposed schemes, no consensus can be found on what the relevant levels of abstraction are, or even 
what defines a level (123). A particularly concrete illustrative example of levels of abstraction comes from 
computer science (124, 125), in which higher level languages abstract the details specified in lower level 
languages by concealing detailed code in a single function that provides the same relationship. 
Computational abstraction simplifies a process, such that it is independent of its component processes 
or even its physical substrate. For example, there are many algorithms that sort a list of numbers, but 
any computational sort command produces the same result regardless of the algorithm used. 
Computational abstraction is used in neuroscience, for example, when we simplify the molecular 
process of synaptic transmission in a more abstract model that represents its net effect as an increased 
firing rate of a postsynaptic neuron. This simplification is akin to conceptual abstraction (126), by which 
more abstract, or idealized, models aim to capture general properties of a process rather than the 
specific details of any one event or dataset. Distinct levels of abstraction also arise in neuroscience 
when considering problems at different spatiotemporal scales (119). For example, we might consider 
synaptic transmission in terms of the interactions of various proteins at nanometer to micrometer scales, 
or we might consider a model at a higher level of abstraction in which neural activity is propagated 
across the cortex at scales of millimeters or centimeters. When we model phenomena at a given 
spatiotemporal scale, we make an abstraction that prioritizes organizational details at that scale (e.g., 
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cellular), while further simplifying details at others (e.g., subcellular and network) (127). Given the needs 
of different problems and the range of possible abstractions one might make to solve them, it would be 
unreasonable to expect a single linear hierarchy of levels. However, we find that different forms of 
abstraction (i.e. computational or spatiotemporal) are related when we consider their treatment by 
descriptive, mechanistic, and normative models. 

Mechanistic and normative models connect levels of abstraction defined by descriptive models 

One promising perspective on the emergence of spatiotemporal levels suggests that models at higher 
levels of abstraction arise from their lower level counterparts via a natural dimensionality reduction of the 
parameter space (128, 129). Such a reduction is possible because models of complex systems are 
“sloppy”: they have a large number of dimensions in parameter space along which model parameters 
can vary without affecting relevant macroscopic observables (i.e. the microscopic parameters are 
degenerate with respect to macroscopic behavior (130); for examples in neuroscience, see e.g., (131, 
132). Thus, abstraction from lower to higher spatio-temporal scales can be seen as a reduction of the 
lower level parameter space that removes sloppy dimensions, but preserves “stiff” dimensions that have 
strong influence on observable properties at the higher level. The appropriate dimensionality reduction 
could be as simple as taking the mean or asymptote of some parameter over a population (133–135), or 
the set of microscopic parameters needed to produce the same macroscopic behavior might be 
nonlinear and complex (129, 131, 136, 137). The relationship between phenomena at the two levels can 
often be expressed in terms of a mechanistic model of a process by which higher level properties 
emerge from complex interactions of parts described by lower-level parameters. For example, we might 
abstract single-neuron activity in terms of membrane currents, or by listing the spike times, a natural 
reduction in the dimensionality, which may result from many combinations of currents . A mechanistic 
model (e.g. Hodgkin/Huxley (2)) that explains how spike times emerge from currents creates a 
connection between the abstractions made at the two different levels, and, in addition, as it does not 
claim mechanisms for how currents emerge from spike times, creates a stratification of higher and lower 
levels.  

In neuroscience, computational abstraction is often discussed in terms of David Marr’s three levels of 
analysis (120, 138): the implementational level is a low-level, concrete statement of a phenomenon, the 
algorithmic level is an abstraction of the implementational level, explaining the process by which the 
phenomenon occurs, and the computational level is a high-level (normative) statement of the goal of the 
process. Thus, normative models naturally arise from computational abstraction in that they often begin 
from the goal of the system at the computational level and link down to implementational or algorithmic 
levels by showing the optimal solution to achieve that goal, given the constraints at those lower levels. 
However, this downward linking extends beyond computational abstraction, as we need not limit our 
statement of goal to computational levels of abstraction. For example, the goal of thermostatic neurons 
in the mammalian hypothalamus is to maintain a constant body temperature (139, 140). While a 
mechanistic model could describe the process through, for example, a negative feedback loop, the 
normative theory says that the goal is the constancy of the temperature. Similar to their role in 
connecting levels of spatiotemporal abstraction, mechanistic models can connect phenomena at lower 
levels to their counterparts at higher levels of computational abstraction when they explain the process 
by which a computation is performed. 

Mechanistic and normative models cannot work with pure phenomena; they must work with a 
description of the parts, goals, and constraints. Thus, if we admit that descriptive models might describe 
theoretical, as well as observed, phenomena, we can consider the model terms at each level of 
abstraction to be a descriptive model. That is, the components of mechanistic models and the 
constraints of normative models each correspond to descriptive models at a lower level of abstraction, 
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while the emergent properties of mechanistic models and the goals of normative models each 
correspond to descriptive models at a higher level of abstraction.  

Thus, we find that our categorization of theories falls naturally into different roles a theory can play in 
terms of levels of abstraction. Descriptive theories define abstractions at different levels. Mechanistic 
and normative theories cross levels of abstraction by connecting from description at a “source” level to 
description at a higher or lower “target” level (Figure). While many philosophies of neuroscience have 
emphasized the role of multi-level mechanistic explanation (61, 64, 141), little treatment has been given 
to that of normative explanation, even though it is common in recent neuroscientific practice (e.g., (96, 
102, 103, 110, 142)). Phenomena in neuroscience are not simply mechanisms, they are mechanisms that 
perform functions. Normative explanations view neuroscience phenomena from the viewpoint of those 
functions, which may be at a range of levels, from cellular goals to behavioral or computational goals. 
Furthermore, descriptive models, rather than being a “mere” description of phenomena, are the 
foundation of normative and mechanistic explanations. Given their multi-level nature, a dialogue 
between descriptive, normative, and mechanistic models linking across levels of analysis is needed for a 
theoretical account of any neuroscientific phenomenon. 

At what level of abstraction should a model be built? 

As all models are abstractions, developing a model-based solution to a problem requires selecting a 
level of abstraction. Such a selection is rarely straightforward, but depends on the needs of the task at 
hand. Why might we pick one level over another for a given problem? To answer this question we further 
consider what is meant by level of abstraction, and from a pragmatic view, what levels of abstraction are 
good for. 

First, by restricting our consideration to a given level, abstraction allows us to ignore aspects at other 
levels. Due to practical and cognitive limitations, this information reduction is imperative to explain any 
phenomenon in a useful manner. In current neuroscientific practices, there are two general approaches 
for selecting the appropriate level of abstraction, which serve different purposes. The first approach is to 
choose the lowest possible level that includes experimentally-supported details while still accounting for 
the phenomenon. This approach provides many details that can be matched to observable features of a 
phenomenon. However, it requires extensive calibration from data to ensure the model is accurate, and 
can be very sensitive to missing, degenerate, or improperly tuned parameters. The second approach is 
to choose the highest level of abstraction that can account for the phenomenon. Models built at higher 
levels of abstraction provide conceptual benefits in that they reduce a complicated system to a small 
number of effective parameters, which can then be used for powerful analysis on the influences to the 
systems properties, and to build intuition for how the system works. Highly abstract models are 
especially useful for generalization when similar abstractions can be made for different systems. 
Generalization can be useful to explain many different phenomena beyond the specifics of any one event 
and provides the basis for our understanding of broad classes of phenomena (143, 144). 

Second, different levels may match with different experimental modalities. Every measurement is in fact 
an abstraction, in that it is a reduced description of the part of the universe corresponding to the 
measurement (33). The abstraction made by one measurement device might lend itself to explanations 
at a given level, but not others. Imagine, for example, trying to solve a problem (such as identifying the 
sources of social preference) that involves collective properties of neurons across the brain only with 
data from single-neuron recordings. The problem with such an approach is not just that the sheer 
amount of data to be analyzed is daunting, but that going from single-neuron data to cognitive functions 
requires crossing multiple levels of abstraction.  
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Third, distinct levels promote the development of distinct scientific communities or fields. While we 
shouldn’t equate levels with scientific fields (because fields can organize around a range of shared 
explanatory goals, concepts, vocabularies, or techniques and methods, and can span multiple levels), 
different levels are often studied by distinct scientific communities. While a given level may not seem 
ideal to the problem at hand, the existence of a literature with a rich body of relevant work may influence 
the use of a model at that level, rather than reinventing the wheel at a new level of abstraction. Recent 
work using modeling approaches to study scientific organization indicates that having distributed 
communication networks might actually be beneficial for scientific progress (145, 146), and can allow for 
simultaneous development of diverse approaches and problem-solving tools. However, selecting or 
crossing levels can be a sociological problem as well as a methodological one because different fields of 
study often use different languages and operate under different theoretical frameworks that need to be 
navigated between. 

Finally, the structure of nature itself might group entities into distinct levels (127). We emphasize that the 
levels we describe are levels of description, and need not correspond to any discretization in nature. 
However, an interesting scientific question is when, why, and how distinct levels might appear in natural 
phenomena (e.g., with the emergence of patterns with characteristic spatiotemporal scales, the 
emergence of computational systems, or the emergence of systems with goals). In these cases, discrete 
levels may reflect local maxima in the degree of regularity of entities at specific spatiotemporal scales 
(119, 147, 148) or hierarchical structures in causal organization (64), in which case identifying 
abstractions that correspond to those levels is akin to “carving nature at its joints”. 

In conclusion, it is very important that researchers spell out the abstraction being made, including both 
its purpose and what its limitations are. Given that every model is an abstraction, it is important for all 
models to do this. While these descriptions are often provided for highly abstract models, researchers 
working at models of lower spatio-temporal scales (such as detailed compartmental models of neurons) 
often claim to be building biologically realistic models. Our assertion is that these models are also 
abstractions, albeit at a different level, and a proper description of the abstractions made will help clarify 
both the uses and the limitations of the model. 

Theory and experiment 

We might consider that the overarching goal of science is to produce theories that are precise (i.e. make 
specific predictions), general (for a wide domain of phenomena), and accurate (that align closely to 
data). Once established, such theories can then be used to solve empirical problems as they arise and to 
direct scientific and engineering efforts towards the discovery, prediction, and eventual control of further 
phenomena. Achieving these epistemic virtues cannot be done with theoretical work alone, but relies on 
an interaction between theory and experiment. Traditional views emphasize the role of experiments to 
test theories (7), and even consider an interplay in which theories suggest new experiments and 
experiments require new theories to explain their results (10, 18). However, theories are not born 
fully-formed, but are developed over time. Such development generally does not happen independently 
of experiment, but often goes hand-in-hand. Unlike the Popperian propose-and-reject philosophy (7), in 
practice, theories change over time through their interaction with experiment, and we cannot understand 
the nature of theories without understanding this process of theory development (10, 18, 19, 149). 
Models play a key role in this process, and can be used as experiments even in the absence of data (43, 
150). Together, this reveals a picture in which theoretical research is not relegated to simply proposing 
theories-to-be-tested, but instead plays an active role in the simultaneous development and assessment 
of theories. 
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Linking Theory and Phenomena 

We define the domain of a theory as the set of phenomena that a theory sets out to explain. By being 
explicit about the intended domain of a theory, we provide an experimental range for the theory to be 
applied to. For example, the theory that action potentials arise from changes in ion-flow due to 
voltage-dependent changes in permeability (2, 45, 151, 152) should apply to the domain of all action 
potentials in all neurons. But we should not expect action potentials in all neurons to be driven by the 
same ion channels. Similarly, the theory of weakly coupled oscillators (153) can be applied to neural 
oscillators that interact through weak interactions, but not those that strongly reset when they interact. 
We can think of the domain as a set of data-imposed constraints on the theory, and that a good theory 
should provide the (minimal) set of explanations that satisfy the constraints. One can, of course, attempt 
to apply a theory outside of its original intended domain, and successfully doing so may reflect a serious 
development of the theory, but we argue that theoretical papers should be explicit about what 
phenomena do and do not lie in the intended domain. Further, we should not strictly judge nascent 
theories by their ability to explain all of the data in their proposed domain (12, 18) but should take into 
account an assessment of their ability to do so with further development (9). A good theory should be 
able to, for example, become more specific as more data become available. 

How do we assess a theory’s ability to explain phenomena in its domain? The strength of model-based 
explanation lies in our ability to directly compare parts of a model to experimental data, which lets us 
connect the theory that the model instantiates with phenomena they are proposed to explain. However, 
no model is directly comparable to experimental data by virtue of its structure alone. Such a comparison 
requires a translation function: a statement of how the model maps onto its target phenomena. By 
specifying the intended correspondence between model terms and phenomena, the translation function 
operationalizes the concepts associated with those terms in the theory (154, 155). The translation 
function can itself be a separate testable component of the model, similar to the “linking hypothesis” 
used to link parts of cognitive models to experimentally observed quantities (156). Translation functions 
are necessary to make experimental predictions from theories, and should be provided as part of the 
model definition. The closer experimentally-observable phenomena are to identifiable model 
components, the simpler the translation function can be. In some cases the translation function might be 
as simple as “variable V represents the membrane potential in mV”, but it can also be that “variable V 
qualitatively corresponds to the slow changes in the membrane potential” and ignores, for example, all 
spiking activity. In other cases the translation function can be more complex, as parts of the model can 
have a loose correspondence to general features of large classes of data, and can represent highly 
abstract effective parameters or qualitative behaviors. For example, the units in Hopfield’s attractor 
network models (157–159) are not meant to directly correspond to measurable properties of biological 
neurons, but are instead intended to reflect qualitative features of neural activity -- namely that neural 
populations are “active” or not.  

Given a translation function, we can imagine a number of strategies for connecting theory to experiment. 
The simplest way to connect to data is via descriptive models - their variables correspond to 
observables and parameters can be fit to approximate the relationships between those observables. 
Mechanistic and normative models can connect to data by virtue of descriptive models at either the 
target or source level of abstraction. An ultimate test of a mechanistic or normative explanation is to 
produce a descriptive model at the target level of abstraction that is comparable to measurements. We 
can then say that the assumptions in the model (i.e. the theory) can account for the phenomenon. In the 
case of mechanistic models, their strength lies in the ability to combine many descriptive models at the 
source level (each of which may be fit to data) into a single unified mechanism. However, the vast 
majority of mechanistic models in neuroscience are too complicated to derive an analytical relationship 
between lower level parameters and a descriptive model at the target level of abstraction (i.e. in the 
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resulting dynamics). For example, although there are numerous models of rhythm generation in the 
medulla that behave akin to the inspiratory phase of mammalian respiration (160, 161), there is still no 
consensus model that parameterizes properties of the respiration rhythm (e.g., frequency) in terms that 
correspond to specific properties of medullary neurons (e.g., ion channel composition; (162, 163). To 
overcome such limitations, researchers often skip creating a descriptive model and match features of 
the simulated dynamics of mechanistic models to desired features of the data directly (164–166). 

Modeling Experiments 

Like their physical counterparts, mathematical and computational models can themselves be used in a 
form of experiment to test the viability of a theory (53, 58, 59, 167). They instantiate the theory in 
foundational assumptions that act as the hypothesis of the experiment and test if those assumptions are 
sufficient to account for data from the phenomena. If so, the modeling experiment can be seen to 
support the theory. For example, based on a theory, a researcher may hypothesize that some 
observations are relevant to system function, build a mechanistic model corresponding to the proposed 
relevant parts and their interactions to test if they’re sufficient to reproduce features of the data. 
Alternatively, a researcher can hypothesize that the system is performing some function, make a 
normative model, and see if data from the system behaves as if the system is optimizing that function. If 
not, this suggests the need to look for missing constraints on the system or other functions the system is 
trying to solve. In each case, if the assumptions are unable to account for the data, such a modeling 
experiment can bring into question the viability of a theory, including its model instantiation or the 
translation function. One can imagine treating different parameters or model instantiations as 
independent variables in the experiment, and testing their sufficiency to achieve different aspects of the 
phenomenon (the dependent variables) (168, 169). 

Such modeling experiments can be carried out even in the absence of data, as phenomena at both the 
target and source levels of abstraction can be pure theoretical entities. One can test the feasibility of 
theoretical claims by studying models that instantiate those theories in tractable idealized systems. For 
example, Hopfield’s attractor network models (157, 158) provided strong support for Hebb’s theory (86) 
that co-active firing of neurons leading to increased connectivity would create associative memory, by 
showing that strong connections between simple neuron-like entities were sufficient to produce cell 
assemblies that could be accessed through a pattern-completion process (159). 

Thus, modeling experiments can be used to apply existing theories to account for observed phenomena, 
compare possible predictions within a theory, or even to compare theories with overlapping domains to 
see which does better. Such uses are analogous to confirmatory (hypothesis-testing) experiments. 
However, the value of modeling experiments extends beyond confirmatory research. Like their physical 
analogues (e.g. the 6-OHDA rat or the MPTP monkey), models are analogous processes that can be 
used for exploratory (hypothesis-generating) research: building an interactive set of sub-phenomena to 
observe what sorts of phenomena might emerge from it (just the expected ones, or maybe also 
unpredicted phenomena?), and can thus be used to explore the implications of the theory or extend its 
scope.  

Exploratory modeling experiments produce new observations that can provide new hypotheses to 
incorporate into theories and to design physical experiments, for example, instantiating theories in 
not-yet-observed systems can be used to predict novel phenomena. The Hopfield model and others like 
it (157, 158, 170, 171) led to new experimental predictions that could be tested, including 
psychological-level cognitive science categorization experiments (172, 173), neural-level long-term 
changes in tuning curve experiments (174–181), and direct observations of pattern completion 
processes (182–186). Furthermore, exploratory modeling experiments can instantiate idealized aspects 
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of a theory to help build intuition for the theory itself. Hopfield’s model and its subsequent derivatives 
have provided researchers with a deeper understanding of important properties of how memories can be 
accessed by content through pattern-completion processes and concepts such as “basins of attraction” 
- the set of patterns that will resolve to the same final pattern (157, 159). These computational 
discoveries can help build understanding of the theory, and lead to predictions and ideas for new 
experiments, which will lead back to new observations that need to be incorporated into the theories.  

The utility of modeling experiments extends beyond testing and exploring the implications of existing 
theories; modeling experiments are extremely useful to the theorist in the context of theory development 
(187). When an explanation for a phenomenon is not readily available in an existing theory, or if the 
available explanations are unclear or conflicting, assumptions can be hypothesized that form the basis of 
a modeling experiment, from which the behavior of the model can reveal the sufficiency (or insufficiency) 
of the assumptions to account for the phenomenon. Often these modeling experiments precede a 
well-formed theory, and a theorist will perform numerous experiments with different models in the 
process of developing a theory (188). Over time, specific model formulations can become closely 
associated with the theory (become canonical instantiations of the theory), making the theory itself more 
readily applicable to specific problems and more precise in its proposed solutions.  

From this perspective, an established theory can be considered a body of assumptions, which have 
been tested through “modeling experiments” in which those assumptions were found to be sufficient to 
account for some aspect of a phenomenon. A theory in this sense is not a formal set of laws, but a 
continuously developing body of canonical models and model-phenomenon correspondences, bound 
together partly by history and partly by shared problem-solving methods and standards (189).  

Towards Future Frameworks in Theoretical Neuroscience 

A scientific theory is a thinking tool: a set of ideas used to solve specific problems. As suggested in this 
manuscript, we can think of theoretical neuroscience as a field which approaches problems in 
neuroscience with the following problem-solving methodology: theories are instantiated in models 
which, by virtue of a translation function, can be used to assess a theory’s ability to account for 
phenomena in the theory’s domain or explore its further implications.  

We identified three kinds of theoretical constructs that play distinct roles in this process: descriptive 
theories and models, which define the abstractions by which we describe a phenomenon; mechanistic 
theories and models which explain phenomena at higher levels of abstraction in terms of lower level 
parts and their interactions; and normative theories and models, which explain phenomena at lower 
levels of abstraction in terms of a higher level function or goal. 

A conceptual or theoretical framework provides a language within which specific theories abide. The 
stability of an overarching framework allows theories to develop and change without rebuilding their 
conceptual foundations. For example, early theories of action potential function identified voltage-gated 
sodium channels as the primary depolarizing component (2), but when it was found that some cells 
showed action potentials that were not related to sodium concentrations (such as Purkinje cell complex 
spikes), it was easy to add the effects of other voltage-gated channels within the same conceptual 
framework and theoretical language (45, 53, 58). Such change is inevitable in the life of a theory. As 
theories become more strongly corroborated and more precise, they become better for solving empirical 
problems, provide more reliable and more accurate predictions, and can be applied more generally for 
larger domains. Over time and through the development of canonical model formulations, theories 
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become more rigorous, such that researchers agree on how they should be implemented to explain 
specific domains. 

Frameworks themselves change as well. For example, as noted earlier, under the Freudian framework in 
psychiatry in the early 20th century explanations of psychiatric disorder are found in theories involving 
subconscious desires due to developmental relationships with one’s parents, and would need to be 
treated with talk therapy. The medicalized framework that emerged in the late 20th century framed 
explanations of psychiatric disorders as changes in brain function to be treated with physical (e.g., 
pharmacological or electrical) manipulations of brain function. Even the categorizations of psychiatric 
phenomena are different under these paradigms, making theoretical comparisons difficult. Thus, 
changes in a dominant framework are proposed to be more dramatic and may be akin to paradigm shifts 
(8) and directly comparing explanations for the same phenomena across frameworks may be difficult or 
even impossible (12) . However, this does not mean that all frameworks are equivalent. If theories within 4

existing frameworks repeatedly fail to produce adequate solutions to new problems or to predict new 
phenomena in their domain, it may indicate that the conceptual foundation provided by the framework is 
inadequate. However, such shifts rarely happen without alternative competing frameworks that show 
promise in explaining phenomena in overlapping domains (9). In the last decade, a new framework 
known as computational psychiatry has emerged in which psychiatric disorders are identified as 
computational “failure modes” in the systems architecture of the brain (190–194). Under this framework, 
explanations for such disorders are to be found in theories that involve changes in information 
processing, and would be potentially treatable by changing that information processing, e.g., by 
changing the physical substrate (e.g. through electrical stimulation), by encouraging compensation 
processes (e.g. through cognitive training), or changes in the environment (e.g. by giving a student with 
ADHD extra time on a test). Interestingly, computational psychiatry emerged by applying conceptual 
frameworks of reliability engineering to computational neuroscience, suggesting that framework shifts 
may often arise from the translation of existing theories applied to new domains. 

So, are new theoretical frameworks needed for progress in neuroscience? A number of recent proposals 
have suggested framework development in light of recent progress, including, for example, progress in 
deep learning (195), behavior (196, 197), and neural coding (198) or the combination of the dynamic and 
statistical languages (199). As these works have already led to extensive discussion within the 
community (e.g. in commentaries, conferences, and online communities), we conclude that development 
of the content-related constraints of our current framework is needed, but that such development is 
already under way. We have instead chosen to focus on the general problem-solving methodology and 
explanatory strategies of the current framework. It is our view that closer attention should be paid to 
these strategies, and doing so will help guide development of the necessary future frameworks of 
neuroscience. One way to implement these efforts is to better specify the deliverables of theory projects, 
both to funding agencies in grant proposals and to our experimental colleagues, as we discuss in the 
following section. 

Deliverables 

A major purpose of the San Antonio meeting was to help NSF, NIH and other funding agencies 
determine what to expect from grant proposals that have a theoretical component. The typically 
constructed grant that proposes to perform a traditional experiment is well-designed for experimental 
research, but less well-designed for theoretical research. We hope that the formulation of theoretical 

4 As pointed out by (18) and (19), because science includes both theoretical abstractions and applied 
practical components, one can compare across conceptual frameworks by asking how well they allow 
us to control our environment, i.e. by comparing their epistemic virtues. 
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neuroscience put forward in this manuscript can provide guidance for what constitutes a good theory 
project. We summarize our assertions in the following points. 

Be specific. A theory should be specific, not necessarily in terms of what the theory is, but rather what 
the theory is attempting to explain and the strategies for doing so. In particular the theory should define 
what problems it is trying to solve, and provide the criteria for an adequate solution. It is important to 
define the descriptive, mechanistic, and normative components of the theory as well as the levels of 
abstraction and the rationale behind their selection.  

Identify the domain and translation function. The utility of a theory is not just in the equations, but in 
describing the relationship of its components to component parts of the phenomena within its domain. 
Be clear about how the theory relates to experimental observations, which data it explains and what 
experimental predictions it makes. 

Define which aspects of the research are exploratory and which are confirmatory. The fact that 
models are a form of experiment creates a way forward for theoretical grant proposals. For example, a 
researcher can propose to build a model that crosses levels in order to address the question of 
theoretical viability. Such a proposal may have preliminary data to show that one can build models at 
each level, even if the researcher has not yet put those levels together. Similarly, a grant proposal can 
define the domain even if the literature review is incomplete. One can also identify that one is going to 
explore the parameter space of a set of models to determine how those parameters affect phenomena 
across levels. 

By being explicit about the scientific question being addressed, about the assumptions of the theory, the 
domain the theory is purporting to address, and the process of building and testing models underlying 
that theory, grant proposals could be viable even if the theory itself remains incomplete. We call on 
funding agencies and reviewers to recognize that theory is the foundation of any science, and that 
construction of rigorous theory and systematic computational modeling are time-consuming processes 
that require dedicated personnel with extensive training. Our hope is that the framework and associated 
language outlined in this document can be used to specify deliverables that can be understood by both 
funders and investigators. 

Finally, it is interesting to consider that we might apply our taxonomy to our own metatheoretical 
framework. The concept that the ultimate goal of a theory is to provide tools that allow one to better 
explain and control one’s environment is a normative theory of the goal of scientific theories; the 
concept that models instantiate theories and allow one to test their viability and their relationship to 
phenomena is a mechanistic theory of how those theories achieve that goal; and the concept that 
theories live within a framework that a community applies to them is a descriptive theory of theories. One 
could imagine a metascientific research program which studies the available phenomena - for example, 
the scientific literature - to test and further develop those theories, and even the use of models of the 
scientific process (e.g. (200)). The benefits of such a research program extend beyond satisfying an 
esoteric interest in scientific methodology, but could prove as impactful for scientific practice as other 
theories have proven for manipulation of phenomena in their domain. 
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