Software Open Access

Building Location Embeddings from Physical Trajectories and Textual Representations

Biester, Laura; Banea, Carmen; Mihalcea, Rada


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20210130002709.0</controlfield>
  <controlfield tag="001">4479440</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-7 December, 2020</subfield>
    <subfield code="g">AACL-IJCNLP 2020</subfield>
    <subfield code="a">1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing</subfield>
    <subfield code="c">Virtual</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Michigan</subfield>
    <subfield code="a">Banea, Carmen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Michiagn</subfield>
    <subfield code="a">Mihalcea, Rada</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">196657</subfield>
    <subfield code="z">md5:1f2671cb1cc2fdf33b4429e4eceea890</subfield>
    <subfield code="u">https://zenodo.org/record/4479440/files/Location-Embeddings.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://aacl2020.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o">oai:zenodo.org:4479440</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Michigan</subfield>
    <subfield code="0">(orcid)0000-0003-3901-2968</subfield>
    <subfield code="a">Biester, Laura</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Building Location Embeddings from Physical Trajectories and Textual Representations</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Code for building and evaluating location embeddings for the 2020 AACL-IJCNLP&amp;nbsp;paper &amp;quot;Building Location Embeddings from Physical Trajectories and Textual Representations.&amp;quot;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Abstract:&amp;nbsp;&lt;/strong&gt;Word embedding methods have become the de-facto way to represent words, having been successfully applied to a wide array of natural language processing tasks. In this paper, we explore the hypothesis that embedding methods can also be effectively used to represent spatial locations. Using a new dataset consisting of the location trajectories of 729 students over a seven month period and text data related to those locations, we implement several strategies to create location embeddings, which we then use to create embeddings of the sequences of locations a student has visited. To identify the surface level properties captured in the representations, we propose a number of probing tasks such as the presence of a specific location in a sequence or the type of activities that take place at a location. We then leverage the representations we generated and employ them in more complex downstream tasks ranging from predicting a student&amp;#39;s area of study to a student&amp;#39;s depression level, showing the effectiveness of these location embeddings.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Contact:&lt;/strong&gt;&amp;nbsp;Please contact Laura Biester (lbiester@umich.edu) with questions.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a">https://www.aclweb.org/anthology/2020.aacl-main.44/</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4479439</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4479440</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
34
3
views
downloads
All versions This version
Views 3434
Downloads 33
Data volume 590.0 kB590.0 kB
Unique views 2828
Unique downloads 33

Share

Cite as