Dataset Open Access

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings

Torres-Salinas, Daniel; Robinson-García, Nicolás; van Schalkwyk, François; Nane, Gabriela F.; Castillo-Valdivieso, Pedro


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">forescast</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">covid</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">covid19</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">bibliometrics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dimensions</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Growth</subfield>
  </datafield>
  <controlfield tag="005">20210129122714.0</controlfield>
  <controlfield tag="001">4478251</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universidad de Granada</subfield>
    <subfield code="a">Robinson-García, Nicolás</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Stellenbosch University</subfield>
    <subfield code="a">van Schalkwyk, François</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">TU Delft</subfield>
    <subfield code="a">Nane, Gabriela F.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universidad de Granada</subfield>
    <subfield code="a">Castillo-Valdivieso, Pedro</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">224152</subfield>
    <subfield code="z">md5:087b55d8319821a48ba58efebc13e2dd</subfield>
    <subfield code="u">https://zenodo.org/record/4478251/files/Open data2 - The growth of COVID-19 scientific literature.xlsx</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:4478251</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Universidad de Granada</subfield>
    <subfield code="a">Torres-Salinas, Daniel</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Submitted to&amp;nbsp;The ISSI 2021 Conference.&amp;nbsp;The conference is organised by KU Leuven in close collaboration with the university of Antwerp under the auspices of ISSI &amp;ndash; the International Society for Informetrics and Scientometrics (&lt;a href="http://www.issi-society.org/"&gt;http://www.issi-society.org/&lt;/a&gt;).&amp;nbsp;&lt;/p&gt;

&lt;p&gt;We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information on the date in which papers were indexed.&amp;nbsp; We present global predictions, plus predictions in three specific settings: by type of access (Open Access), by NLM source (PubMed and PMC), and by domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4478250</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4478251</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
139
12
views
downloads
All versions This version
Views 139139
Downloads 1212
Data volume 2.7 MB2.7 MB
Unique views 120120
Unique downloads 1212

Share

Cite as