Dataset Open Access

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings

Torres-Salinas, Daniel; Robinson-García, Nicolás; van Schalkwyk, François; Nane, Gabriela F.; Castillo-Valdivieso, Pedro


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4478251</identifier>
  <creators>
    <creator>
      <creatorName>Torres-Salinas, Daniel</creatorName>
      <givenName>Daniel</givenName>
      <familyName>Torres-Salinas</familyName>
      <affiliation>Universidad de Granada</affiliation>
    </creator>
    <creator>
      <creatorName>Robinson-García, Nicolás</creatorName>
      <givenName>Nicolás</givenName>
      <familyName>Robinson-García</familyName>
      <affiliation>Universidad de Granada</affiliation>
    </creator>
    <creator>
      <creatorName>van Schalkwyk, François</creatorName>
      <givenName>François</givenName>
      <familyName>van Schalkwyk</familyName>
      <affiliation>Stellenbosch University</affiliation>
    </creator>
    <creator>
      <creatorName>Nane, Gabriela F.</creatorName>
      <givenName>Gabriela F.</givenName>
      <familyName>Nane</familyName>
      <affiliation>TU Delft</affiliation>
    </creator>
    <creator>
      <creatorName>Castillo-Valdivieso, Pedro</creatorName>
      <givenName>Pedro</givenName>
      <familyName>Castillo-Valdivieso</familyName>
      <affiliation>Universidad de Granada</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>forescast</subject>
    <subject>covid</subject>
    <subject>covid19</subject>
    <subject>bibliometrics</subject>
    <subject>dimensions</subject>
    <subject>Growth</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-01-29</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4478251</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4478250</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Submitted to&amp;nbsp;The ISSI 2021 Conference.&amp;nbsp;The conference is organised by KU Leuven in close collaboration with the university of Antwerp under the auspices of ISSI &amp;ndash; the International Society for Informetrics and Scientometrics (&lt;a href="http://www.issi-society.org/"&gt;http://www.issi-society.org/&lt;/a&gt;).&amp;nbsp;&lt;/p&gt;

&lt;p&gt;We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information on the date in which papers were indexed.&amp;nbsp; We present global predictions, plus predictions in three specific settings: by type of access (Open Access), by NLM source (PubMed and PMC), and by domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.&lt;/p&gt;</description>
  </descriptions>
</resource>
142
13
views
downloads
All versions This version
Views 142142
Downloads 1313
Data volume 2.9 MB2.9 MB
Unique views 123123
Unique downloads 1313

Share

Cite as