Conference paper Open Access

Multilingual Epidemiological Text Classification: A Comparative Study

Mutuvi, Stephen; Boros, Emanuela; Doucet, Antoine; Lejeune, Gael; Jatowt, Adam; Odeo, Moses


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20210129002723.0</controlfield>
  <controlfield tag="001">4476039</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">December 8-13, 2020</subfield>
    <subfield code="g">COLING'2020</subfield>
    <subfield code="a">28th International Conference on  Computational Linguistics</subfield>
    <subfield code="c">(virtual)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of La Rochelle, L3i</subfield>
    <subfield code="a">Boros, Emanuela</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of La Rochelle, L3i</subfield>
    <subfield code="a">Doucet, Antoine</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Sorbonne University France</subfield>
    <subfield code="a">Lejeune, Gael</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kyoto University Japan</subfield>
    <subfield code="a">Jatowt, Adam</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Multimedia University Kenya</subfield>
    <subfield code="a">Odeo, Moses</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">172095</subfield>
    <subfield code="z">md5:8504a4e761204effd4aeb13e2048a3e8</subfield>
    <subfield code="u">https://zenodo.org/record/4476039/files/coling_2020_multilingual_epidemiological_text_classification__a_comparative_study.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://coling2020.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-newseye</subfield>
    <subfield code="o">oai:zenodo.org:4476039</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Multimedia University Kenya</subfield>
    <subfield code="a">Mutuvi, Stephen</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multilingual Epidemiological Text Classification: A Comparative Study</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-newseye</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">770299</subfield>
    <subfield code="a">NewsEye: A Digital Investigator for Historical Newspapers</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper, we approach the multilingual text classification task in the context of the epidemiological field. Multilingual text classification models tend to perform differently across different languages (low- or high-resourced), more particularly when the dataset is highly imbalanced, which is the case for epidemiological datasets. We conduct a comparative study of different machine and deep learning text classification models using a dataset comprising news articles related to epidemic outbreaks from six languages, four low-resourced and two high-resourced, in order to analyze the influence of the nature of the language, the structure of the document, and the size of the data. Our findings indicate that the performance of the models based on fine-tuned language models exceeds by more than 50% the chosen baseline models that include a specialized epidemiological news surveillance system and several machine learning models. Also, low-resource languages are highly influenced not only by the typology of the languages on which the models have been pre-trained or/and fine-tuned but also by their size. Furthermore, we discover that the beginning and the end of documents provide the most salient features for this task and, as expected, the performance of the models was proportionate to the training data size.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4476038</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4476039</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
33
34
views
downloads
All versions This version
Views 3333
Downloads 3434
Data volume 5.9 MB5.9 MB
Unique views 3131
Unique downloads 3434

Share

Cite as