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A B S T R A C T

This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multireso-
lution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based
on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian
process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at
high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected dur-
ing the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI,
a specific phone application for LAI estimation. Temporal evolution of the LAI estimates using Landsat and
SPOT5 data followed consistently the temporal evolution of the in situ LAI measurements acquired on several
Mediterranean rice varieties. The estimates had a root-mean-square-error (RMSE) of 0.39 and 0.51 m2/m2

in Spain and 0.38 and 0.47 m2/m2 in Italy for Landsat and SPOT5 respectively, with a strong correlation (R2

> 0.92) for both cases. Spatial-temporal assessment of the estimated LAI from Landsat and SPOT5 data con-
firmed the robustness and consistency of the retrieval chain. This paper demonstrates the importance of
an adequate characterization of the underlying rice background in order to address changes in background
condition related to water management. Results highlight the potential of the proposed chain for deriving
multitemporal near real-time decametric LAI maps fundamental for operational rice crop monitoring, and
demonstrate the readiness of the proposed method for the processing of data such as the recently launched
Sentinel-2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Green leaf area index (LAI) is a key biophysical parameter which
represents half the total intercepting leaf area per unit ground sur-
face area (Chen and Black, 1992). LAI plays an important role in veg-
etation processes such as photosynthesis and transpiration, and is
connected to meteorological/climate and ecological land processes.
LAI has been widely used in many agricultural and remote sensing
studies (Carlson and Ripley, 1997; Clevers, 1988; Gower et al., 1999;
Myneni et al., 1997). Concerning biomass and crop yield estima-
tion, LAI estimates can be assimilated in crop models (Confalonieri
et al., 2009) by means of forcing and/or recalibration techniques
(Dorigo et al., 2007; Quaife et al., 2008). LAI retrieval from satel-
lite data is among the main goals of the remote sensing community

* Corresponding author.
E-mail address: Manuel.Campos@uv.es (M. Campos-Taberner).

(Chen et al., 2002; Colombo et al., 2003; Fang and Liang, 2005)
as evidenced by the variety and usefulness of operational medium
resolution products for vegetation monitoring from satellite sen-
sors, such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Myneni et al., 2002) and the Système Pour l’Observation
de la Terre (SPOT) VEGETATION (Baret et al., 2007, 2013). Neverthe-
less, higher spatial resolutions (10–30 m) are needed to support crop
management activities at a parcel level. In this context, the Landsat
Data Continuity Mission (LDCM) (Roy et al., 2014) and the recently
European Sentinel-2 Mission (Drusch et al., 2012; Malenovský et al.,
2012) provide valuable high-resolution (HR) information for a wide
variety of land applications (Malenovský et al., 2012) including crop
monitoring.

From a methodological point of view, LAI retrieval can be faced
following either statistical, physical, or hybrid methods (Camps-Valls
et al., 2011; Verrelst et al., 2015a; Campos-Taberner et al., 2015b).
Parametric statistical methods have been developed through empir-
ical relations between in situ LAI acquisitions and vegetation indices
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derived from airborne and satellite spectra (Haboudane et al., 2004).
Alternatively, non-parametric methods do not assume an explicit
(parametric) relation between LAI and the spectral reflectance.
Non-parametric models estimate a variable of interest using a
training database of biophysical parameter and spectral data pairs. In
the last decade, non-parametric techniques excelled in biophysical
parameter retrieval, either following pure statistical or hybrid
approaches. Many methods have been used in a wide range of
applications (Atzberger and Richter, 2012; Verrelst et al., 2015a).
Specifically, current operational vegetation products such as LAI are
typically produced with neural networks (NN) (Baret et al., 2007,
2013). Nevertheless, in the recent years, Gaussian process regression
(GPR) (Rasmussen and Williams, 2006) provided encouraging results
in the framework of biophysical parameter estimation outperform-
ing the rest (Camps-Valls et al., 2016; Lazaro-Gredilla et al., 2014;
Verrelst et al., 2012a, 2015b).

In statistical approaches, concomitant in situ measurements of
the biophysical parameter of interest and the associated spectral
data from remote sensing platforms are used as a training database,
whereas the hybrid approaches rely on a database generated by a
radiative transfer model (RTM). The advantage of hybrid approaches
is that a broad range of land cover situations can be simulated (e.g.
up to hundred thousands), leading to a data set much bigger than
what can be collected during a field campaign. RTMs are based on
the physical knowledge describing the interactions between radia-
tion, canopy elements, and the soil surface. RTMs have been used
for modeling different types of vegetation, making them suitable for
general-purpose retrieval applications (Jacquemoud et al., 2000). In
particular, the PROSAIL RTM (Jacquemoud et al., 2009), which results
from the PROSPECT leaf optical model (Jacquemoud and Baret, 1990)
coupled with the SAIL canopy reflectance model (Verhoef, 1984), has
been used in several remote sensing studies. PROSAIL has been suc-
cessfully applied to a variety of crops (Duan et al., 2014). However,
it is worth noting that RTM inversion poses several methodological
problems: it may lead to high computational cost, and being an ill-
posed problem, it may give rise to unstable results. Prior information
related to the distribution of the canopy variables and representa-
tive background spectra can be implemented in the RTM to better
address the inversion process (Combal et al., 2003; Meroni et al.,
2004).

Direct validation comparing LAI predictions with in situ LAI mea-
surements is needed to report the accuracy of LAI retrievals. LAI
ground measurement methods can be divided into two categories:
direct and indirect methods (Breda, 2003; Jonckheere et al., 2004).
Direct methods involve destructive techniques and require a field
effort in collecting leaf samples. Due to the difficulty of continuous
applications of direct methods on a large scale, the use of indirect
methods based on measurements of the transmission of radiation
through the canopy have been widely used (Weiss et al., 2004). In
this context, to exploit new technologies in crop monitoring, smart-
phones have being used for indirect rice LAI measurements reporting
good consistency and performance compared with classical instru-
ments such as LAI-2000 or LAI-2200 Plant Canopy Analyzers (LI-COR,
Inc., Nebraska, USA) and digital hemispherical photography (DHP)
(Campos-Taberner et al., 2016).

In this paper, we present an operational chain for LAI retrieval
from Landsat and SPOT5 satellite data specifically calibrated for
rice crops. One specific characteristic of rice cultivation is the land
preparation followed by the pre-season flooding, this agronomic
practice characterizes worldwide the majority of rice cropping sys-
tems (namely, irrigated rice, lowland rain-fed rice and deep-water
rice) which account for over 90% of the 154 million ha (Maclean,
2002) cultivated with rice each year. In the European temperate rice
cultivation areas, the background of the fields is dry at the begin-
ning of the season, and it remains in this condition until early-May
when the fields are starting to be flooded. From this date on, the soil

background is flooded most of the time except in some dates when
the farmers pump out the water for agronomic purposes. From a
remote sensing point of view, this characteristic determines a strong
change in the soil background conditions from dry soil to stand-
ing water (Boschetti et al., 2014). Thus, the intermittent flooding in
a paddy rice field generates an uncontrolled reflectance signature,
which may confound the retrieval of rice LAI. It is therefore rele-
vant to test methods for this specific crop due also to its worldwide
importance.

In this study, LAI is estimated using hybrid methods through the
generation of a reflectance and associated LAI database from the
PROSAIL model and powerful nonlinear inversion methods, such as
neural networks, kernel ridge regression (KRR) and Gaussian process
regression. Based on experimental performance in our datasets, we
focus on GPR. This work uses for the first time GPR as the regres-
sion tool for multitemporal LAI production chain during the rice
cycle. This study shows results produced in the framework of the
ERMES project (http://www.ermes-fp7space.eu/) where rice mon-
itoring is performed exploiting seasonal remote sensing data and
crop modeling as a demonstration of potential operation system.
Actually, Landsat data were processed in near real time and the
corresponding LAI maps were provided through the web-based geo-
portal in the project framework to the crop modelers. Contrarily,
SPOT5 Take5 data were analyzed in backcasting to assess the poten-
tial use of Sentinel-2 data. Spatial and temporal consistency of the
LAI estimates were validated with the available multitemporal in situ
measurements collected in two ERMES study areas (Italy and Spain)
from sowing up to rice LAI peak.

The remainder of the paper is organized as follows. Section 2
describes the study areas for which LAI maps are derived, the in situ
LAI measurements and the remote sensing surface reflectance data.
The parameterization of the PROSAIL model, as well as the theoret-
ical basis of the regression methods, are presented in Sections 3.1
and 3.2 respectively. Section 4 evaluates the spatial-temporal con-
sistency of the obtained LAI estimates and provides an analysis
of LAI trends for different varieties and management practices as
well as discusses the impact of rice background in multitemporal
LAI retrievals. Finally, Section 5 outlines the main conclusions and
discusses the utility of the obtained results in the framework of
operational rice monitoring systems.

2. Data collection

2.1. Study areas

ERMES aims to develop a prototype of COPERNICUS down-stream
services based on the assimilation of Earth observation (EO) and in
situ data within crop modeling solutions dedicated to the rice sec-
tor. In this framework, the ERMES study areas have been selected
in Spain (Valencian area), Italy (Piedmont and Lombardy rice dis-
trict) and Greece (Thessaloniki area), which are the three countries
responsible of 85% of total European rice production. In this study,
we focus on the Italian and Spanish ERMES local study areas. Within
each study area, rice is a common crop with a long tradition and eco-
nomical value. Rice varieties in the Spanish area are mainly Bomba
and Senia belonging to the Japonica group. Sowing activities are con-
centrated around May 10–15th and fields are managed by keeping
them flooded for most of the time during the rice growing period.
In Italy, the rice cropping systems are much more variable. About
180 varieties are cultivated covering both Japonica and Indica groups
characterized by short and long cycles with a duration from 120 to
>150 days, respectively (Boschetti et al., 2009). For this reason, the
sowing date can vary from the beginning of April to mid of May.
Moreover, in Italy, the so-called dry seeding technique is increasing
year after year. This technique consists of seeding rice in rows with
a common seeder in dry soil condition and held without water until

http://www.ermes-fp7space.eu/
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Fig. 1. Study areas: Landsat 8 OLI surface reflectance RGB composite of the Spanish study area on 10 August 2015 (top) and Landsat 8 OLI surface reflectance RGB composite of
the Italian study area on 7 August 2015 (bottom). Locations of the ground measurements are displayed as red dots.

the unfolding of 2–4 leaves, and then crops are flooded. In 2014, it
was estimated that more than 30% of the rice cultivated area adopted
this technique.

The Spanish study area is located in selected farms within the rice
district of Valencia, East of Spain (see Fig. 1 (top)) belonging to the
Albufera Natural Park, which is included as a special protection area
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in the Natura 2000 network by the European Commission allowing
only rice crop practices (European Commission, 2011). The area has a
typical Mediterranean climate, with an average annual temperature
and humidity of 17 ◦ C and 65%, respectively. The mean annual pre-
cipitation is approximately 430 mm, mainly recorded in autumn. The
Spanish site is a homogeneous rice planting area of approximately
10 km × 20 km extension. The Italian study area is the Lomellina
rice district, which is located in the south-western Lombardy region,
between the Ticino, Sesia and Po rivers where rice is the dominant
crop (>90%). It is the rural part of the Pavia province, which includes
58 municipalities, and is particularly renowned for its rice cultivation
(see Fig. 1 (bottom)).

2.2. Ground measurements

In the framework of the 2015 ERMES activities, LAI ground mea-
surements were conducted over the previous study areas. Based on
land cover distribution in the areas and information provided by
farmers at the very beginning of the rice season, a reliable sampling
was achieved selecting ESUs (elementary sampling units) with dif-
ferent rice varieties and sowing dates in order to cover as much
as possible the variability of the study areas. In Spain, the total
number of ESUs was 40. For some of the ESUs, field acquisitions
were made in all field campaigns, whereas in other ESUs the tem-
poral frequency was approximately one every two field campaigns.
In the Italian study area, 10 ESUs were fixed and considered dur-
ing all the field campaigns, increasing the number of ESUs up to 19
for some dates (see Table 1). The same sampling scheme was used
over each ESU, following the guidelines and recommendations of the
Validation of Land European Remote sensing Instruments (VALERI)
protocol (http://w3.avignon.inra.fr/valeri/). For the case of row crops,
this protocol suggests to take measurements along small transects
between rows incorporating some random acquisitions to prevent
possible biases in the characterization of the row effect. We adopted
the same schema also for fields with broadcast seeding. The size of
the ESUs was approximately 20 m × 20 m, and the locations were far
from the field borders. In order to characterize the spatial variability
within each ESU, a range of 18 to 24 measurements was taken. This
number of replicates allows to obtain a statistically significant mean
LAI estimate per ESU. The center of the ESU was geo-located using a
GPS for later matching and associate the mean LAI estimate with the
corresponding satellite spectra.

LAI estimates were acquired in the two countries with smart-
phones using an app called PocketLAI (Confalonieri et al., 2013).
PocketLAI computes indirect LAI measurements through the seg-
mentation of images acquired at 57.5◦ below the canopy and showed
good performance in canopies with different structures (Francone
et al., 2014). PocketLAI estimates can reproduce destructive LAI mea-
surements with acceptable results in terms of both reliability and
accuracy (Confalonieri et al., 2013). A schematic of a single LAI
measurement using PocketLAI and the theoretical background are
shown in the supplementary material (see Appendix A). Since the

Table 1
Dates and number of ESUs sampled on the study areas during 2015.

Spain Italy

Date DOY ESUs Date DOY ESUs

02/06 153 24 26/05 146 10
09/06 160 24 04/06 155 16
17/06 168 22 15/06 166 18
24/06 175 20 24/06 175 19
02/07 183 22 06/07 187 19
09/07 190 22 21/07 202 19
17/07 198 19 07/08 219 19
23/07 204 20
03/08 215 27

gap fraction-LAI relationship is not linear, it is not equivalent to first
average the gap fraction and then estimate the LAI than the con-
trary (Weiss et al., 2004). However, specifically over rice crops, we
have recently shown that LAI measurements taken with PocketLAI
align well with other traditional acquisition techniques, such as plant
canopy analyzers and digital cameras for hemispherical photogra-
phy (Campos-Taberner et al., 2016). Together with PocketLAI data,
ancillary information such as rice phenology and flood condition was
taken on each ESU to better evaluate the computed LAI maps.

2.3. Landsat imagery

The United States Geological Survey (USGS) facilitates free access
to Landsat archive data (Woodcock et al., 2008). In this work, Land-
sat 8 OLI data (30 m pixel resolution) were downloaded through the
USGS Earth Resources Observation and Science (EROS) Center Sci-
ence Processing Architecture (ESPA) (http://espa.cr.usgs.gov/). The
provisional Landsat 8 Surface Reflectance product was used (LaSRC)
(Vermote et al., 2016). In order to focus on the rice areas only, the
Landsat 8 OLI images were cropped to 1500 × 800 and 480 × 431
pixel size in the case of Spain and Italy, respectively. Images were
available every 16 days in Italy. The Spanish study area lies in two
Landsat paths within the same row (198/33 and 199/33), increasing
the temporal resolution of the images to seven and nine days. Land-
sat 8 OLI surface reflectance spectral bands were filtered to relate
only the blue (B), green (G), red (R), near infrared (NIR), and the two
short wave infrared (SWIR1, SWIR2) channels with the ground LAI
measurements in the retrieval process.

Cloud contamination is a common problem which limits the util-
ity of passive optical multispectral images. To deal with this problem,
Landsat 7 ETM+ data were used for increasing the temporal res-
olution of cloud free images. Nevertheless, Landsat 7 data can be
affected by data gaps causing lost information of about 22% of the
pixels in ETM+ images (referred to as SLC-off images) (Arvidson et
al., 2006; Ju and Roy, 2008). In this study, we used the Neighborhood
Similar Pixel Interpolator (NSPI) algorithm (Chen et al., 2011), which
makes use of the neighboring pixels with similar spectral character-
istics to predict the value of missing pixels using spatial and temporal
information of gap free images (Campos-Taberner et al., 2015a). To
compute the spectral similarity between the target pixel and neigh-
boring pixels, only cloud-free observations are used, thus exploiting
information about the cloud mask and the temporal trajectory. Fig. 2
shows the available cloud-free Landsat imagery acquired during the
2015 rice season over the study areas.

It is worth noting that Landsat 7 ETM+ and Landsat 8 OLI have
different spectral response functions. This leads to slight differences
in surface reflectance for each sensor. Nevertheless, differences are
low when surface reflectance is simulated (see Fig. S2 of the sup-
plementary material in Appendix A). On the other hand, another
source of discrepancies in LAI retrievals is the atmospheric correc-
tion used for the generation of Landsat 7 ETM+ and Landsat 8

Fig. 2. Remote sensing data acquired during the 2015 rice season over the Spanish
and Italian study areas and the in situ PocketLAI acquisitions.

http://w3.avignon.inra.fr/valeri/
http://espa.cr.usgs.gov/
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OLI surface reflectance data. Although the Landsat 7 ETM+ atmo-
spheric correction (LEDAPS) is less accurate than the Landsat 8 OLI
atmospheric correction (Vermote et al., 2016) differences in surface
reflectance and LAI estimates of two consecutive images are small
(Roy et al., 2016).

2.4. SPOT5 imagery

With the aim of simulating multitemporal data from Sentinel-2
mission, the SPOT5 Take5 experiment provided 10 m pixel resolu-
tion data over selected sites every 5 days under constant angles from
end-April to early-September 2015, thus covering the majority of the
vegetation phase for summer crops in Europe. In this framework,
ESA launched a call for proposals of sites selection, and the ERMES
study areas were included in the 2015 SPOT5 Take5 acquisition plan.
A total of 17 and 18 SPOT5 cloud-free images were acquired over
the Spanish and the Italian study areas (see Fig. 2). The imagery
were downloaded through the Theia land data center, which pro-
vides a top of canopy surface reflectance product (green, red, near
infrared and short wave infrared channels) obtained applying an
ortho-rectified process (Baillarin et al., 2008) and then computing an
atmospheric correction with MACCS Software (Hagolle et al., 2008).
Images were spatially cropped to 1440 × 1293 (Italy) and 4500 ×
2400 (Spain) pixel size in order to match with the extent of the
corresponding Landsat imagery.

Note that pixels corresponding to urban areas, water bodies and
areas of ‘no interest’ such as non-rice crops were masked out during
the retrieval process in order to avoid meaningless LAI estimates over
those surfaces. The masking process was realized using official parcel
boundaries and farmers crop declaration for CAP (European Common

Agricultural Policy) obtained from the Valencian government (http://
terrasit.gva.es/) and the Lombardy regional authorities (https://
www.dati.lombardia.it/browse?category=Agricoltura).

3. Retrieval methodology

A general outline of the proposed retrieval chain is shown in
Fig. 3. The basic ingredients include the PROSAIL model and statis-
tical regression algorithms for model inversion. Once the regression
models are developed, we apply them to retrieve high-resolution LAI
maps on the study areas from corresponding Landsat and SPOT5 sur-
face reflectance data. In the following subsections we describe these
components in detail.

3.1. PROSAIL model

The PROSAIL radiative transfer model (Jacquemoud et al., 2009)
was used to build the database for training the retrieval model.
It assumes the canopy as a turbid medium for which leaves are
randomly distributed. PROSAIL simulates the top of canopy bi-
directional reflectance in the range of 400 nm to 2500 nm as a
function of input variables related to the structure of the canopy,
the leaf optical properties, the background soil reflectance and the
sun-view geometry. Leaf optical properties are expressed taking into
account the mesophyll structural parameter (N), leaf chlorophyll
(Cab), dry matter (Cm), and water (Cw) contents. Cw was tied to the
dry matter content (Cw = Cm × CwREL/(1 − CwREL)) assuming that
green leaves have a relative water content (CwREL) varying within a
relatively small range (Baret et al., 2007) (see Table 2). On the other
hand, canopy structure is characterized by the average leaf angle

Fig. 3. Operational chain followed in the multitemporal LAI retrieval.

http://terrasit.gva.es/
http://terrasit.gva.es/
https://www.dati.lombardia.it/browse?category=Agricoltura
https://www.dati.lombardia.it/browse?category=Agricoltura
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Table 2
Distribution of the canopy, leaf and soil parameters within the PROSAIL RTM.

Parameter Min Max Mode Std Type

Canopy LAI (m2/m2) 0 10 3.5 4.5 Gaussian
ALA (◦) 30 80 60 20 Gaussian
Hotspot 0.1 0.5 0.2 0.2 Gaussian
vCover 0.5 1 1 0.2 Truncated Gaussian

Leaf N 1.2 2.2 1.5 0.3 Gaussian
Cab (lg • cm−2) 20 90 45 30 Gaussian
Cdm (g • cm−2) 0.003 0.011 0.005 0.005 Gaussian
CwREL 0.6 0.8 – – Uniform

Soil bs 0.3 1.2 0.9 0.25 Gaussian

inclination (ALA), the LAI and the hot-spot parameter (Hotspot). A
multiplicative brightness parameter (bs) was introduced and applied
to spectral flooded and dry soil signatures to represent different
background reflectance types (Baret et al., 2007; Claverie et al., 2013).
The system geometry was described by the solar zenith angle (hs),
view zenith angle (hv), and the relative azimuth angle between both
angles (DH).

Sub-pixel non-vegetated areas were found in the borders of rice
fields but patches of bare/flooded soil, small water stripes and chan-
nels were found in paddies as well. These conditions can be due
to water drainage, very poor soil fertility, flattening mechanical
process and other causes related to agro-practices leading to high
yield reduction. The interested reader is referred to Fig. S4 of the
supplementary material attached in Appendix A for further details.
Therefore, in order to account for these mixed conditions, a pixel
can be represented by a linear mixture of vegetation (vCover) and
bare/flooded soil (1-vCover) spectra. A linear spectral mixing model
was assumed for the sake of simplicity. Taking this heterogene-
ity into account, the pixel reflectance can be expressed as R =
Rveg × vCover + Rsoil × (1 − vCover), where Rveg and Rsoil account for
pure vegetation reflectance and background, respectively. This sim-
ple approach was introduced by Baret et al. (2007) to account for
clumping at the landscape level. Note that when validating retrieved
LAI of a mixed pixel, it is compared with LAI × vCover (see distribu-
tions of LAI and vCover in Table 2). In this study, vCover was assumed
to be independent of LAI, following a truncated Gaussian distribu-
tion. In addition, a 5% of pure background spectra (vCover=0) were
added to represent situations at the beginning of the season (no veg-
etation) and large patches of bare/flooded soil present during the rice
season.

The leaf and canopy variables as well as the soil brightness
parameter were randomly generated following specific distributions
(see Table 2). The parameterizations were similar to other studies
using high-resolution sensors (Bsaibes et al., 2009; Duveiller et al.,
2011). Nevertheless, in this study, a site-specific parameterization of
the PROSAIL model based on the available 2014 ERMES field mea-
surements was selected in order to constrain the behavior of the
model to Mediterranean rice areas reducing the equifinality of the
ill-posed PROSAIL inversion process (Combal et al., 2003). During
the ERMES 2014 rice season, leaf chlorophyll content was mea-
sured with a SPAD-502 chlorophyll meter (Campos-Taberner et al.,
2016) thus allowing to constrain the Cab range to Mediterranean
rice values which typically vary from 35 to 70 lg • cm−2 depend-
ing on the rice variety. This range was slightly extended in order to
represent rice with high leaf chlorophyll concentration due to fer-
tilization practices, as well as low leaf chlorophyll content caused
either by possible diseases, blasts or nitrogen deficits. ALA distri-
bution was selected for accounting specific leaf inclination during
rice phenological stages (Zhang et al., 2013). In order to better con-
strain the retrieval to rice crops, a spectral library of underlying
soil background was generated by considering signatures of homo-
geneous flooded and dry areas identified within rice fields in the
study areas with Landsat and SPOT5 imagery, which was spectrally

matched with typical rice background spectra collected by Boschetti
et al. (2014). Each background signature was selected randomly from
the spectral library and multiplied by the soil brightness factor (bS),
which was assumed to follow a Gaussian distribution (see Table 2).
bS is assumed to be sensitive to soil moisture, roughness and geo-
metrical configuration (Baret et al., 2007). A random Latin hypercube
sampling design allowed to populate more evenly the canopy real-
ization space (Mckay et al., 2000). For each sensor, a single dataset
of PROSAIL simulations was performed, which included all geomet-
rical configurations. The distributions for the system geometry were
randomly generated based on information in imagery metadata.

3.2. Regression methods

In this paper we propose inverting PROSAIL using machine learn-
ing statistical algorithms. For this purpose, we used three represen-
tative nonlinear regression methods: the familiar artificial neural
network, and two related kernel-based regression algorithms: the
kernel ridge regression and the Gaussian process regression. This
section reviews the three regression methods used and discusses
about the implementation issues for the interested reader.

3.2.1. Neural networks (NN)
Artificial neural networks are based on the combination of sim-

ple nonlinear processing units, called neurons, into a fully connected
hierarchical architecture. The network can model complex, nonlin-
ear input-output relations, and has been the preferred regression and
function approximation tool for decades for retrieving biophysical
parameters. Actually, the vast majority of hybrid inversion meth-
ods consider the use of neural networks (Baret et al., 1995; Baret
and Fourty, 1997; Smith, 1993) for retrieval of canopy parameters.
Essentially, each neuron in a network performs a linear regression
followed by a non-linear activation (sigmoid-like) function. Neurons
of different layers are interconnected by weights that are adjusted
during the training phase (Haykin, 1999). In order to train the net-
work (i.e. fit the weights), one has to select a cost function (in our
case the least squares loss) and an algorithm to do this (in our case
the standard back-propagation algorithm). Several hyperparameters
are involved as well and impact the solution: essentially, the num-
ber of hidden layers and neurons/nodes and the learning rate of the
back-propagation algorithm.

3.2.2. Kernel methods
Kernel methods (Shawe-Taylor and Cristianini, 2004) owe their

name to the use of kernel functions, which measure similarities
between input data examples. We used two related and powerful
kernel methods for regression: kernel ridge regression (Shawe-Taylor
and Cristianini, 2004), and Gaussian process regression (Rasmussen
and Williams, 2006). The KRR is considered as the nonlinear (kernel)
version of the canonical least squares linear regression, while the
GPR is a probabilistic approximation to nonparametric kernel-based
regression, where both a predictive mean (point-wise estimates of
LAI) and predictive variance (error bars for the LAI predictions) can be
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Fig. 4. GPR (top), NN (middle) and KRR (bottom) theoretical performances using Landsat 8 OLI (left) and SPOT5 (right) simulated data. Plots are obtained by applying the trained
models on test data. Each method was trained following either a standard fold cross-validation within the training set (KRR and NN) or by maximizing the marginal log-likelihood
of the observations, which is analytical (for the GPR).

derived. Notationally, both methods offer the same explicit form of
the predictive model, which establishes a relation between the input
(e.g., spectral data) x = [x1, . . . , xB] ∈ R

B and the output variable (i.e.,
LAI) y ∈ R of the form:

ŷ = f (x) =
N∑

i=1

aikh(xi, x) + ao, (1)

where {xi}N
i=1 are the spectra used in the training phase, ai is the

weight assigned to each one of them, ao is the bias in the regression
function, and kh is a kernel or covariance function (parametrized by
a set of hyperparameters h) that evaluates the similarity between
the test spectrum and all N training spectra.

In order to generate a kernel regression model, one needs to spec-
ify a covariance/kernel function kh, to infer its hyperparameters h
and model weights a. For the KRR prediction model, we used the
squared exponential (SE) kernel: k(xi, xj) = exp(− ‖ xi −xj‖2/(2s2)),
which is simply parameterized by h = s (also known as the ker-
nel length-scale) that needs to be tuned typically by cross-validation.
For the GPR prediction model, we used the so-called automatic rel-
evance determination (ARD) kernel, as an alternative generalization
of the isotropic SE prior:

k(xi, xj) = m exp

⎛
⎜⎝−

B∑
b=1

(
x(b)

i − x(b)
j

)2

2s2
b

⎞
⎟⎠ + s2

n dij, (2)
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where m is a scaling factor, B is the number of bands, and sb is a
dedicated parameter controlling the spread of the relations for each
particular spectral band b. Model hyperparameters are collectively
grouped in h = [m, sn, s1, . . . ,sB], and model weights ai can be auto-
matically optimized by maximizing the marginal likelihood in the
training set (Rasmussen and Williams, 2006; Verrelst et al., 2012b).
The obtained weights ai after optimization give the relevance of each
spectrum xi, while the inverse of sb represents the relevance of each
band b. Hence, low values of sb indicate a higher informative con-
tent of this certain band b to the training function k. In this paper we
study both the KRR and the GPR models paying attention to the band
relevance conveyed by the inferred sb values, and the prediction
uncertainty provided by the GPR model.

3.2.3. Model development and source code
Inference of the hyper-parameters for all methods and the

weights for doing predictions was done as follows. We first gen-
erated 2000 data pairs (reflectances-LAI values) with PROSAIL, and
used 70% for model selection (training set), and then evaluated and
showed the results in the remaining 30% test set, which was never
used or seen in model fitting. Even though 1400 samples could seem
to be insufficient for training purposes, increasing this number of
samples did not have a significant impact in the accuracy of the
retrievals for all methods in the test set, indicating that they did not
incur in any overfitting issue and highlighting the good representa-
tivity of the simulated data. For neural networks, the hyperparam-
eters to be chosen were the number of hidden layers and neurons
(for simplicity we evaluated one hidden layer and 2–30 hidden neu-
rons) and the learning rate between 0.001 and 0.1 in log-scale. The
bias input was set to −1 (not adjusted during training) and differ-
ent initializations of the weights were tested. For the KRR model,
we varied the length-scale s (between 0.1 and 10 times the average
distance between all training points in log-scale) and the regulariza-
tion parameter sn (between 10−5 and 10−2 in log-scale). For the case
of the GPR, we inferred the hyperparameters h = [m,sn,s1, . . . ,sB]
and model weights using an optimization of the evidence. All exper-
iments were conducted with our SimpleR MATLAB toolbox, freely
available at http://isp.uv.es/. The toolbox is intended for practition-
ers with little expertise in machine learning, and that may want to
assess advanced methods in their problems easily. The toolbox com-
pares numerically and statistically the algorithms by simply entering
the input-output (e.g. reflectances and LAI values) data matrices.

4. Results and validation

This section is devoted to show the theoretical performance of
the regression methods and experimental evidence of the perfor-
mance of the proposed processing scheme. We pay attention to the

derived HR LAI maps, and illustrate the usefulness for multitempo-
ral rice crop monitoring through a temporal evolution analysis of
LAI estimates compared to in situ measurements in the different test
sites.

4.1. Accuracy assessment over the simulated dataset

It was necessary to build a dedicated model for each of the three
remote sensing datasets (Landsat 7 ETM+, Landsat 8 OLI and SPOT5)
depending on their spectral bands and angular configurations. We
first evaluate the GPR performance compared to NN and KRR (see
Fig. 4) over the test dataset (600 samples) corresponding to Land-
sat 7 ETM+, Landsat 8 OLI and SPOT5 datasets (Landsat 7 ETM+
results were similar to Landsat 8 OLI and are not shown for brevity).
Hereafter, we will refer simply to ‘Landsat’ estimates, irrespectively
of being for Landsat 7 ETM+ or Landsat 8 OLI. Likewise, we refer
to GPR-Landsat and GPR-SPOT5 to the GPR models built using Land-
sat and SPOT5 data, respectively. Results revealed good accuracy
and low bias in both Landsat and SPOT5 simulated reflectances. GPR
outperformed NN and KRR in all statistical quality measures (see
Fig. 4). GPR-Landsat and GPR-SPOT5 performances were robust and
very similar, revealing biases of 0.02 and 0.03 m2/m2 respectively,
while a root mean squared error (RMSE) of 0.78 m2/m2 and high
determination coefficients (R2 > 0.87) were obtained in both cases.
Fig. 5 exhibits the evolution of the average RMSE as a function of
the number of predictions, and shows a consistent better perfor-
mance (i.e. improved robustness to reduced-sized datasets) of GPR
over NN and KRR. The curves are the result of averaging a num-
ber of realizations, and for each realization, we computed the RMSE
with a fixed number of predictions chosen at random. In the limit
of 100%, one obtains the results in Fig. 4. This particular plot tries
to analyze models’s robustness to local consistency and reliability
of the estimated error (Montavon et al., 2013). The shape of the
obtained curves are similar for all methods (high variance when few
predictions were evaluated, and rapid convergence to stable RMSE),
yet better for GPR. These results revealed GPR as the most accu-
rate and robust regression method in both Landsat and SPOT5 test
sets.

As discussed earlier (cf. Section 3.2), GPR provides a sb parameter
whose reciprocal represents the relevance of each band in the regres-
sion. Hence, it is possible to identify the most relevant bands used by
the GPR model, which it is not affordable when using NN and KRR.
Specifically, the most relevant bands in both cases were the green
and near infrared bands (see Fig. 6), which showed the theoretical
consistency between GPR model behaviors. The identification of the
most valuable bands for LAI retrieval was expected since the green
and near infrared bands are more related to the greenness of the veg-
etation (useful for assessing plant vigor) and leaf area index features,

Fig. 5. Performance in the test set averaged over 100 random realizations of the Landsat and SPOT5 training-test data splitting as a function of the number of used predictions.

http://isp.uv.es/
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Fig. 6. Relevance band histograms in GPR-Landsat (left) and GPR-SPOT5 (right).

respectively. Similar band ranking was obtained by Verrelst et al.
(2015b) although the results are not directly comparable because of
the different spatial and spectral resolutions.

In this work, all six Landsat optical bands were used for the GPR-
Landsat LAI retrievals although in many studies the blue band is not
used because atmospheric effects. Nevertheless, blue band was also
considered for LAI retrieval in other studies (Atzberger and Richter,
2012; Borel, 2010; Verrelst et al., 2015b) since the blue spectrum
holds information valuable for LAI and phenology (Huete et al.,
2002). Actually, GPR is very robust to moderate-to-high dimensional
spaces (i.e. few more input variables do not impact results nega-
tively). A comparison of LAI estimates obtained with or without using
the Landsat blue band revealed a slight improvement when includ-
ing the blue band in the GPR retrieval (see Fig. S3 and Table S1 of the
supplementary material in Appendix A).

4.2. Accuracy assessment over ground LAI

With the goal of assessing the accuracy of the retrievals, RMSE
between the estimates and the in situ measurements was computed.
RMSE values of 0.39, and 0.38 m2/m2 were found in Spain and Italy
respectively, showing good accuracy between GPR-Landsat map val-
ues and the in situ LAI measurements (see Fig. 7). The GPR-SPOT5
retrievals revealed good accuracies as well, showing RMSE values of
0.51 and 0.47 m2/m2 in Spain and Italy respectively. Other different
statistics, such as the mean error (ME), mean absolute error (MAE)
and the coefficient of determination were also computed to evaluate
the bias, accuracy, and the goodness-of-fit between GPR-Landsat
and GPR-SPOT5 predictions and measurements. A remarkably good
correspondence between satellite retrievals and in situ measure-
ments was found in the Spanish site, with very low bias for both

Fig. 7. Scatter plots of estimated LAI values using Landsat (left) and SPOT5 (right) data versus in situ LAI measurements acquired with PocketLAI over Spain (up) and Italy (bottom).
Standard deviation of measurements is drawn as horizontal error bars as well as bisector line (black line). For the sake of visualization, GPR prediction uncertainty (≈±1) are not
shown.
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Fig. 8. Scatter plots of the estimated LAI values of the GPR-Landsat and GPR-SPOT5 retrievals in (left) Spain and (right) Italy.

GPR-Landsat and GPR-SPOT5 models. A good agreement and low
biases were also observed for the Italian site. In all cases, very high
correlations were found with R2 > 0.92. Error bars in Fig. 7 refer
to the standard deviation of the field measurements, and are thus
related with the heterogeneity of the ESU. In addition, retrievals
were also computed using KRR and NN showing slightly less accurate
LAI estimates. The interested reader is referred to Fig. S5 of the
supplementary material attached in Appendix A.

4.3. Comparison of GPR-Landsat and GPR-SPOT5

Besides the aforementioned theoretical performance of the GPR-
Landsat and GPR-SPOT5, the experimental consistency between esti-
mates was assessed with the inter-comparison of multitemporal LAI
estimates. The closest acquisition dates between Landsat and SPOT5
were taken into account for the comparison. After the SPOT5 resam-
pling to Landsat resolution, the comparison was achieved averaging
the LAI value of the valid estimates computed over the 3 × 3 pixels
if more than 5 out of the 9 pixels were valid (Morisette et al., 2006)

in order to reduce coregistration errors between images and incon-
sistencies associated to differences in the point spread functions. In
general, the estimates provided by both GPRs were highly correlated.
However, a slight overestimation of the SPOT5 based retrievals was
observed in both study areas (see Fig. 8). In addition, spatial con-
sistency between retrievals was performed for the closest temporal
Landsat and SPOT5 images during the rice growing season. The clos-
est useful available images were found in Italy in 2015 July 22nd for
Landsat and in 2015 July 21st in the case of SPOT5. Difference (D =
GPRSPOT5 − GPRLandsat) LAI map was computed after the GPR-SPOT5
LAI map resampling into Landsat resolution (30 m). Statistical differ-
ences between GPR-SPOT5 and GPR-Landsat from ANOVA (one-way
analysis of variance) were computed revealing F-statistic and p-value
of 2.860 and 0.001 respectively, highlighting that the two distribu-
tions are not statistically different. The obtained results show 77% of
the pixels fall within ±0.5 m2/m2 interval and only 1% of the pixels
reveal differences higher than ±2 m2/m2 (see Fig. 9 (right)). The pre-
vailing light green color in Fig. 9 (left) demonstrate that the retrievals
from the two sensors are coherent and most of the rice areas have

Fig. 9. (Left) LAI differences map between GPR-SPOT5 (2015 July 21st) and GPR-Landsat (2015 July 22nd), and (right) the corresponding cumulative distribution values. Grey
mask covers non-rice areas.
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Fig. 10. Estimated LAI maps derived using Landsat (top) and SPOT5 (bottom) images over the Spanish study area in mid-May (left), early-June (middle) and mid-August (right).
Grey mask covers non-rice areas.

LAI differences around zero. Bigger differences can be partially due
to the different spatial resolution between Landsat and SPOT5.

4.4. Spatio-temporal analysis

Multitemporal LAI maps were derived for the study areas during
the 2015 rice season. Fig. 10 shows the GPR-Landsat and GPR-SPOT5
LAI maps derived for the very beginning of season (mid-May), early
growing season (early-June), and maximum leaf rice development
(mid-August) in the Spanish site. The corresponding HR estimated
LAI maps for the Italian study area are shown in Fig. 11. First inspec-
tion of the maps indicates the occurrence of very low LAI values
corresponding to mid-May since the sowing dates were around May,
10–15th in Spain. In Italy, for the same period, some rice fields have
higher LAI values (>2) because of the early sowing of some rice vari-
eties. In the Spanish site, it can be seen the expected rice emergence
in the early-June LAI maps (see Fig. 10 (middle)), while the early-July
Italian maps (Fig. 11 (middle)) show already higher LAI estimates due
to the advanced phenological growing state corresponding to the rice
stem elongation phase. Eventually, the mid-August maps (Figs. 10
and 11 right panels) show the highest LAI estimates because rice
plants reached the heading phase and the LAI seasonal peak. All 2015
derived high-resolution maps can be investigated by registering and

joining as local user into the ERMES web-based geo-portal (http://
ermes.dlsi.uji.es/prototype/geoportal/) or can be found in the ERMES
catalogs (http://get-it.ermes-fp7space.eu/).

The in situ LAI data points allowed us to compare the temporal
evolution of field measurements over the study areas (see Fig. 12).
In general, LAI estimates derived from the proposed algorithm using
GPR-Landsat and GPR-SPOT5 data agree with regard to the sea-
sonal rice phenological cycle in the two countries and followed the
temporal dynamics of the ground measurements. The different LAI
evolutions that can be observed in Fig. 12, show coherent tempo-
ral behaviors as a consequence of either different rice varieties or
sowing dates that determine a shift in the development curve. The
interested reader is referred to Fig. S6 of the supplementary mate-
rial attached in Appendix A for further details. It is interesting to
note that the difference between Landsat 7 ETM+ and Landsat 8
OLI did not induce large difference in LAI retrieval. For example, LAI
estimates of Landsat-8 DOY=190 and Landsat-7 DOY=191 for the
Spanish site showed differences lower than 0.25 m2/m2 (see blue
profiles in Fig. 12).

On the other hand, both GPR-Landsat and GPR-SPOT5 models also
provided a prediction uncertainty for the LAI estimates (see Fig. 12).
Although these uncertainties cannot be used as a validation per se,
they can be useful to draw conclusions about the quality of the

http://ermes.dlsi.uji.es/prototype/geoportal/
http://ermes.dlsi.uji.es/prototype/geoportal/
http://get-it.ermes-fp7space.eu/
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Fig. 11. Estimated LAI maps derived using Landsat (top) and SPOT5 (bottom) images over the Italian study area in mid-May (left), early-July (middle) and mid-August (right).
Grey mask covers non-rice areas.

retrievals. Apparently, the prediction uncertainties look constant for
the multitemporal LAI estimates, nevertheless a deeper look reveals a
change in the behavior: at the beginning of the rice season (no vege-
tation) values are high (≈1.25) and when rice starts to emerge (about
day of year 140–150) the uncertainty decreases significantly (≈0.95),
while during the rice development period it remains virtually con-
stant. This reflects the fact that the simulations include a large
amount of cases with intermediate and high LAI values. It is worth
mentioning that the GPR prediction uncertainty only depends on
the training reflectance. Thus, if the test and training reflectance are
deemed similar, the uncertainty for the test set decreases because we
are dealing with similar input features. Therefore, prediction uncer-
tainty must be interpreted as a qualitative variable associated to
the estimates: the higher the uncertainty, the lower the confidence
on the associated estimate. As a matter of fact, this interpretation
comes from the PROSAIL training data set used in the GPRs since
unrepresented spectra, such as non-vegetated bodies, lead to higher
uncertainties for its associated retrievals. In Section 4.5, we analyze
the impact of using different background spectra in PROSAIL on LAI
prediction uncertainties.

The rate of LAI development depends on the occurrence of specific
phenological phases. Green-up corresponds to the end of the tiller-
ing phase, the rapid LAI increase occurs during stem the elongation
phase and the plateau of maximum LAI is reached in correspondence
of heading for all the flowering period. From the analysis of LAI pro-
files for different ESUs, especially in Italy, it is possible to appreciate

a variability in the occurrence of the mentioned phenological stages
due to different sowing dates and cultivated varieties. A deeper inter-
comparison of LAI time series derived from GPR-SPOT5 in the Italian
case study was conducted over selected monitored fields to better
exhibit these behaviors. Fig. 13 reports the average time series of
LAI for each monitored field in 2015. A buffer of 5 m was considered
in order to get rid of the field border in the average computa-
tion. In the figure, the different monitored parcels are indicated in
numerical order and different varieties in color (see legend), dotted
vertical lines represent the date of sowing and the sowing practices
as provided by the farmers (i.e. direct sowing in dry soil or seed
broadcasting in flood condition in red and blue color respectively).
It is possible to appreciate how rice is usually cultivated in mono-
culture and sowed in dry bare soil or in water (low/zero LAI value
at the beginning of the series). It is noteworthy that anomalous high
early LAI values in some fields (fields # 68 or # 384) are indicative
of a cover crop preceding the rice season (observation confirmed by
farmers communication). An early crop establishment period, about
DOY 92 (fields # 50 and # 55), determined crop presence (e.g. LAI
value) around DOY 130 to 150 when other fields (fields # 61, # 282
and # 384) were just sown. As a consequence of different sowing
dates and varieties, the periods of maximum LAI plateau and senes-
cence occur in different moment. Those fields with an early sowing
(DOY 90 to 111) reached the LAI peak around DOY 180 whereas the
variety sowed around DOY 140 (Sirio CL, Selenio) reached the LAI
peak after DOY 200. The interested reader is referred to Fig. S7 in the
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Fig. 12. Temporal dynamics of the Landsat and SPOT5 LAI estimates and the field LAI measurements within four representative ESUs in (top) the Spanish and (bottom) the Italian
study areas. The prediction uncertainty provided by the GPRs is shown in shaded blue (GPR-Landsat) and orange (GPR-SPOT5) around the mean prediction; in violet the overlap.
The standard deviations of the in situ measurements are displayed as error bars.

supplementary material attached in Appendix A for further analysis
on LAI temporal behavior according to sowing date and cultivated
variety.

The analysis of profiles reveals that LAI estimates are in agree-
ment with the qualitative behavior of rice growth in the different
conditions. LAI trends do not show artifacts due to changes in spec-
tral background conditions related to water management. When
soil changes from dry and flood condition (or vice versa) in the
early growing stages (e.g. for dry sowing field # 106 and # 118; for
flood sowing field # 62 and # 102) anomalies in LAI retrievals can
be appreciated. The small fluctuations within each temporal profile
are mainly due to the residual of atmospheric contamination; for
example the SPOT5 image acquired at DOY 142 shows a haze pat-
tern from east to west that can justify the small peak in several plots
both in flood (# 102) and dry conditions (# 120). The LAI values of

these peaks/drops are anyway within the expected uncertainty of the
retrieval.

These results highlight the usefulness of the retrieved LAI time
series at high resolution to perform field level crop monitoring and
site specific assimilation in crop models.

4.5. Assessing the influence of rice background in LAI retrievals

In this study, we used a representative set of background spectra
taking into account all possible expected conditions of the field. The
influence of background characteristics in LAI retrievals was assessed
introducing different types of background spectra in the training
database. Firstly, we trained and inverted the PROSAIL model using
typical spectra of dry bare soils which were present at the very
beginning of the rice season. Secondly, we used a set of flooded soil
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Fig. 13. Average behavior of estimated LAI over the monitored fields. Dotted vertical bars indicate the sowing date in dry soil (red) or in food condition (blue). Black squares
indicates the soil condition recorded during the periodical field campaign.

signatures representing typical background conditions during the
rice growing (from sowing to harvest). Eventually, we used both dry
and flooded spectra. Note that during these experiments the distri-
butions of PROSAIL parameters for the crop were kept constant, and
only the set of background spectra was changed (i.e. dry, flooded
and both dry + flooded conditions). Table 3 exhibits the statistics
when estimates from Landsat over Spain are compared with in situ
LAI data. Similar results were obtained in the case of Italy and SPOT5
data (results not shown for brevity). The best results were obtained
when a background spectral library composed by flooded and dry
soils was used. Conversely, when considering only flooded or dry
backgrounds high errors were found during the initial development
stages of the plants (during tillering and before panicle formation),
as the reflectance of the background constitutes a significant com-
ponent of the overall spectral signature recorded by the sensor.
Thus, a correct characterization of the soil conditions in the train-
ing database is mandatory in order to obtain time series of realistic
LAI estimates and avoid meaningless values in the first rice growing
stages.

Fig. 14 shows a typical example of the SPOT5 LAI evolution
retrieved for a rice pixel in a representative Italian and Spanish ESUs.
They reflect a common situation in which the soil was dry until DOY

Table 3
Statistical scores between the Landsat estimated LAI taking into account different
background conditions and ground measurements over Spain. In all field conditions,
the number of samples used for the generation of the statistics was 171.

ME RMSE MAE R2

Dry −0.50 1.09 0.85 0.81
Flooded 0.10 0.62 0.40 0.90
Dry+flooded 0.08 0.39 0.28 0.95

132 (Italian area) and DOY 130 (Spanish area), and flooded imme-
diately before sowing and during plant development. The figure
compares the retrievals taking into account both dry and flooded
conditions (red line), and the influence of using only dry soils (yel-
low line) or flooded soils (blue line). It can be observed that the
use of a complete and representative spectral database (flooded +
dry background) in the PROSAIL simulation provides realistic LAI
evolutions (red line) which agree well with field measurements. It
should be noted that in this situation LAI remains close to 0 before
the rice emergence (from DOY 100 to 150 approx.), irrespectively of
the flooded/non-flooded condition of the soil background. In a sce-
nario where the training database does not characterize the flooded
conditions (yellow line), the retrieved LAI is unrealistically high
after the flooding during the first crop development stages, but as
LAI increases canopy closure minimizes the importance of spectral
background in the retrieval. The prediction uncertainty reflects this
unreliability of the estimates, producing very high values (about 3)
in the first crop stages (DOY 125–160). Similarly, when the train-
ing database does not characterize the dry conditions (blue line), the
retrieved LAI is also unrealistically high before the real flooding of
the fields.

In conclusion, the unrealistic effects produced by wrong spec-
tra background can be very critical when time series analysis of
rice crop dynamics is conducted. The increase of LAI at the begin-
ning of the season would determine an unrealistic simulation of crop
growth and identification of a wrong sowing date/emergence period
respectively. This assessment demonstrates the importance of train-
ing correctly the RTM to produce a reliable data set for the retrieval
process. In addition, retrieval of prediction uncertainty together with
the LAI map can be useful to automatically identify non-agronomical
areas and targets for which the model was not calibrated and/or
performed well.
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Fig. 14. Temporal evolution of GPR-SPOT5 LAI estimates within an ESU using different soil background in (top) Spain and (bottom) Italy.

5. Conclusions

In this study, a fully operational chain for deriving high-resolution
LAI maps over Mediterranean rice crops is presented. The main nov-
elties of this work include the following : 1) the use of sound machine
learning algorithms trained on simulated RTM data specifically gen-
erated to characterize rice cropping features, 2) LAI estimates were
originally validated with measurements acquired by a smartphone
app (at affordable cost both in time, post-processing and human
resources), 3) spatially and time-resolved estimations of LAI (not just
static estimates) were produced, 4) different areas with particularly
different rice crop specificities and spectral background conditions
related to water management were analyzed, 5) seasonal remote
sensing data from two multispectral sensors were exploited allow-
ing to simulate the future potential of the operational chain with the
Sentinel-2 constellation, 6) band ranking for rice monitoring where
vegetation and water features make the problem more challenging
was studied, and 7) the estimation of prediction uncertainties in a
temporal manner were derived from the Gaussian process model and
their validity and consistency were assessed. The proposed approach
was illustrated in two rice study areas characterized by different rice
varieties and agro-practices.

The production of the multitemporal local LAI maps was based
on the PROSAIL RTM inversion with Gaussian process regression and
Landsat/SPOT5 surface reflectance data. GPR proved to be a highly
efficient and accurate method to invert the PROSAIL model, out-
performing NN and KRR. However, the flexibility of the processing
chain allows its application to any other regression method of choice.
Theoretical performances of the regressions were satisfactory, and

a deeper analysis of the GPR-Landsat and GPR-SPOT5 training pro-
cess showed that both models identified the green and near infrared
channels as the most relevant bands in the retrieval process.

The multitemporal HR LAI maps captured the range and the
temporal evolution of rice growth and resulted in agreement with
corresponding in situ LAI measurements obtained from PocketLAI
in two different countries. In addition, a comparison of the multi-
temporal estimates provided by both GPR-Landsat and GPR-SPOT5
retrievals showed good temporal consistency between them. How-
ever, a slight overestimation of the GPR-SPOT5 was observed during
the period of the rice development.

In the development of the operational chain, the only user-
demanding requirement refers to the provision of physical prior
knowledge: site-specific characteristics need to be introduced in the
model parameterization, such as rice plant and soil characteristics of
the interested study area. Results highlight how a correct characteri-
zation of the underlying rice background is needed to obtain realistic
LAI estimates during the initial development stages of the plants. The
use of a training database comprising flooded and dry soil signatures
showed to be robust against changes in background condition related
to water management.

GPR retrievals also provided associated uncertainty for the pre-
dictions as a very valuable side information. This uncertainty is
helpful a) for the scientist as a product to understand where potential
errors in the retrieval exist, and b) for expert users, such as crop mod-
elers, in order to weight LAI estimates in the assimilation process
according to their error/goodness. The prediction uncertainty can
also be used for diagnosing the presence of surfaces not addressed
in the simulated database. Therefore, inspection of the uncertainty
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provided with insights to (1) refine the selection of PROSAIL inputs,
such as certain backgrounds not initially included in the preliminary
retrieval, and (2) identify non-rice pixels thus identifying possible
errors in the rice mask.

The near-real time production of HR LAI maps is useful in plan-
ning the management practices (i.e. fertilization) to minimize the
yield pattern variability within each parcel. This information is par-
ticularly important for precision farming activities, since farmers are
expecting to be supported in prescription map production for top-
dress fertilization. A dense temporal data set of LAI maps is also
fundamental to perform expert crop monitoring and/or improve crop
model estimations exploiting assimilation techniques. It is important
to mention that, whenever no external information able to represent
the real variability in the field is provided for crop modeling, model
simulation will provide the same results. This is the case when the
aim is to apply crop models in an operational way at a parcel level.
It is in fact not possible to obtain micro-meteorological information
able to provide information changing from field to field. Moreover, it
is not realistic to have detailed soil maps that usually exist at regional
level with a scale ranging from 1:25.000 to 1:100.000. In this case,
if the sowing date and variety are the same, or slightly different, the
only way to capture the real spatio-temporal changes in crop devel-
opment and production is to assimilate exogenous observation of
crop status such as the information provided by EO LAI maps.

These results demonstrate the consistency and robustness of
the presented processing chain for rice monitoring, which can be
considered satisfactory for the production of HR LAI maps, and suit-
able to be assimilated by crop models. The proposal is aimed to
improve crop monitoring and is specially suited for precision agricul-
ture applications. Future work will include the use of the Sentinel-2
constellation whose spectral and temporal characteristics will make
possible to increase the temporal resolution of the LAI estimates
due to the combination with Landsat imagery, leading to further
high-resolution multi-sensor studies in the framework of crop mon-
itor and management specially in near real time. The presented
processing chain has been operational during the 2016 ERMES rice
season.
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