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Why do deep learning researchers and probabilistic machine
learning folks get confused when discussing variational
autoencoders? What is a variational autoencoder? Why is there
unreasonable confusion surrounding this term?

There is a conceptual and language gap. The sciences of neural
networks and probability models do not have a shared language.
My goal is to bridge this idea gap and allow for more collaboration
and discussion between these fields, and provide a consistent
implementation (Github link). If many words here are new to you,
jump to the glossary.

Tutorial - What is a variational
autoencoder?

Understanding Variational Autoencoders
(VAEs) from two perspectives: deep
learning and graphical models.

JAAN ALTOSAAR

https://github.com/altosaar/variational-autoencoder
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/
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Variational autoencoders are cool. They let us design complex
generative models of data, and fit them to large datasets. They can
generate images of fictional celebrity faces and high-resolution
digital artwork.

FICTIONAL CELEBRITY FACES GENERATED BY A VARIATIONAL AUTOENCODER
(BY ALEC RADFORD).

These models also yield state-of-the-art machine learning results in
image generation and reinforcement learning. Variational
autoencoders (VAEs) were defined in 2013 by Kingma et al. and
Rezende et al..

How can we create a language for discussing variational
autoencoders? Let’s think about them first using neural networks,
then using variational inference in probability models.

The neural net perspective

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
https://www.youtube.com/watch?v=XNZIN7Jh3Sg
https://arxiv.org/abs/1502.04623
https://arxiv.org/abs/1509.08731
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
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In neural net language, a variational autoencoder consists of an
encoder, a decoder, and a loss function.

THE ENCODER COMPRESSES DATA INTO A LATENT SPACE (Z). THE DECODER
RECONSTRUCTS THE DATA GIVEN THE HIDDEN REPRESENTATION.

The encoder  is a neural network. Its input is a datapoint , its
output is a hidden representation , and it has weights and biases .
To be concrete, let’s say  is a 28 by 28-pixel photo of a
handwritten number. The encoder ‘encodes’ the data which is -
dimensional into a latent (hidden) representation space , which is
much less than  dimensions. This is typically referred to as a
‘bottleneck’ because the encoder must learn an efficient
compression of the data into this lower-dimensional space. Let’s
denote the encoder . We note that the lower-dimensional
space is stochastic: the encoder outputs parameters to ,
which is a Gaussian probability density. We can sample from this
distribution to get noisy values of the representations .

The decoder  is another neural net. Its input is the representation ,
it outputs the parameters to the probability distribution of the data,
and has weights and biases . The decoder is denoted by .
Running with the handwritten digit example, let’s say the photos
are black and white and represent each pixel as  or . The
probability distribution of a single pixel can be then represented
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using a Bernoulli distribution. The decoder gets as input the latent
representation of a digit  and outputs  Bernoulli parameters,
one for each of the  pixels in the image. The decoder ‘decodes’
the real-valued numbers in  into  real-valued numbers
between  and . Information from the original -dimensional
vector cannot be perfectly transmitted, because the decoder only
has access to a summary of the information (in the form of a less-
than- -dimensional vector ). How much information is lost?
We measure this using the reconstruction log-likelihood 

 whose units are nats. This measure tells us how
effectively the decoder has learned to reconstruct an input image 
given its latent representation .

The loss function  of the variational autoencoder is the negative log-
likelihood with a regularizer. Because there are no global
representations that are shared by all datapoints, we can decompose
the loss function into only terms that depend on a single datapoint 

. The total loss is then  for  total datapoints. The loss
function  for datapoint  is:

The first term is the reconstruction loss, or expected negative log-
likelihood of the -th datapoint. The expectation is taken with
respect to the encoder’s distribution over the representations. This
term encourages the decoder to learn to reconstruct the data. If the
decoder’s output does not reconstruct the data well, statistically we
say that the decoder parameterizes a likelihood distribution that
does not place much probability mass on the true data. For
example, if our goal is to model black and white images and our
model places high probability on there being black spots where
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there are actually white spots, this will yield the worst possible
reconstruction. Poor reconstruction will incur a large cost in this
loss function.

The second term is a regularizer that we throw in (we’ll see how it’s
derived later). This is the Kullback-Leibler divergence between the
encoder’s distribution  and . This divergence
measures how much information is lost (in units of nats) when
using  to represent . It is one measure of how close  is to .

In the variational autoencoder,  is specified as a standard Normal
distribution with mean zero and variance one, or 

. If the encoder outputs representations  that are
different than those from a standard normal distribution, it will
receive a penalty in the loss. This regularizer term means ‘keep the
representations  of each digit sufficiently diverse’. If we didn’t
include the regularizer, the encoder could learn to cheat and give
each datapoint a representation in a different region of Euclidean
space. This is bad, because then two images of the same number
(say a 2 written by different people,  and ) could end up
with very different representations . We want the
representation space of  to be meaningful, so we penalize this
behavior. This has the effect of keeping similar numbers’
representations close together (e.g. so the representations of the
digit two  remain sufficiently close).

We train the variational autoencoder using gradient descent to
optimize the loss with respect to the parameters of the encoder and
decoder  and . For stochastic gradient descent with step size ,
the encoder parameters are updated using  and the
decoder is updated similarly.
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The probability model perspective

Now let’s think about variational autoencoders from a probability
model perspective. Please forget everything you know about deep
learning and neural networks for now. Thinking about the
following concepts in isolation from neural networks will clarify
things. At the very end, we’ll bring back neural nets.

In the probability model framework, a variational autoencoder
contains a specific probability model of data  and latent variables 
. We can write the joint probability of the model as 

. The generative process can be written as follows.

For each datapoint :

Draw latent variables 

Draw datapoint 

We can represent this as a graphical model:
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THE GRAPHICAL MODEL REPRESENTATION OF THE MODEL IN THE VARIATIONAL
AUTOENCODER. THE LATENT VARIABLE Z IS A STANDARD NORMAL, AND THE

DATA ARE DRAWN FROM P(X|Z). THE SHADED NODE FOR X DENOTES OBSERVED
DATA. FOR BLACK AND WHITE IMAGES OF HANDWRITTEN DIGITS, THIS DATA

LIKELIHOOD IS BERNOULLI DISTRIBUTED.

This is the central object we think about when discussing
variational autoencoders from a probability model perspective. The
latent variables are drawn from a prior . The data  have a
likelihood  that is conditioned on latent variables . The
model defines a joint probability distribution over data and latent

p(z) x

p(x ∣ z) z
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variables: . We can decompose this into the likelihood and
prior: . For black and white digits, the
likelihood is Bernoulli distributed.

Now we can think about inference in this model. The goal is to
infer good values of the latent variables given observed data, or to
calculate the posterior . Bayes says:

Examine the denominator . This is called the evidence, and we
can calculate it by marginalizing out the latent variables: 

. Unfortunately, this integral requires exponential
time to compute as it needs to be evaluated over all configurations
of latent variables. We therefore need to approximate this posterior
distribution.

Variational inference approximates the posterior with a family of
distributions . The variational parameter  indexes the
family of distributions. For example, if  were Gaussian, it would
be the mean and variance of the latent variables for each datapoint 

.

How can we know how well our variational posterior 
approximates the true posterior ? We can use the Kullback-
Leibler divergence, which measures the information lost when
using  to approximate  (in units of nats):
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Our goal is to find the variational parameters  that minimize this
divergence. The optimal approximate posterior is thus

Why is this impossible to compute directly? The pesky evidence 
 appears in the divergence. This is intractable as discussed

above. We need one more ingredient for tractable variational
inference. Consider the following function:

Notice that we can combine this with the Kullback-Leibler
divergence and rewrite the evidence as

By Jensen’s inequality, the Kullback-Leibler divergence is always
greater than or equal to zero. This means that minimizing the
Kullback-Leibler divergence is equivalent to maximizing the ELBO.
The abbreviation is revealed: the Evidence Lower BOund allows us
to do approximate posterior inference. We are saved from having
to compute and minimize the Kullback-Leibler divergence between
the approximate and exact posteriors. Instead, we can maximize the
ELBO which is equivalent (but computationally tractable).

In the variational autoencoder model, there are only local latent
variables (no datapoint shares its latent  with the latent variable of
another datapoint). So we can decompose the ELBO into a sum
where each term depends on a single datapoint. This allows us to
use stochastic gradient descent with respect to the parameters 

E [log q (z ∣q λ x)] − E [log p(x, z)] +q log p(x)
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(important: the variational parameters are shared across datapoints
- more on this here). The ELBO for a single datapoint in the
variational autoencoder is:

To see that this is equivalent to our previous definition of the
ELBO, expand the log joint into the prior and likelihood terms and
use the product rule for the logarithm.

Let’s make the connection to neural net language. The final step is
to parametrize the approximate posterior  with an
inference network  (or encoder) that takes as input data  and
outputs parameters . We parametrize the likelihood  with
a generative network  (or decoder) that takes latent variables and
outputs parameters to the data distribution . The
inference and generative networks have parameters  and 
respectively. The parameters are typically the weights and biases of
the neural nets. We optimize these to maximize the ELBO using
stochastic gradient descent (there are no global latent variables, so
it is kosher to minibatch our data). We can write the ELBO and
include the inference and generative network parameters as:

This evidence lower bound is the negative of the loss function for
variational autoencoders we discussed from the neural net
perspective; . However, we arrived at it
from principled reasoning about probability models and
approximate posterior inference. We can still interpret the
Kullback-Leibler divergence term as a regularizer, and the expected

ELBO (λ) =i Eq (z ∣ x )[log p(x ∣λ i i z)] − KL(q (z ∣λ x ) ∣i ∣ p(z)).
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likelihood term as a reconstruction ‘loss’. But the probability model
approach makes clear why these terms exist: to minimize the
Kullback-Leibler divergence between the approximate posterior 

 and model posterior .

What about the model parameters? We glossed over this, but it is
an important point. The term ‘variational inference’ usually refers
to maximizing the ELBO with respect to the variational parameters

. We can also maximize the ELBO with respect to the model
parameters  (e.g. the weights and biases of the generative neural
network parameterizing the likelihood). This technique is called
variational EM (expectation maximization), because we are
maximizing the expected log-likelihood of the data with respect to
the model parameters.

That’s it! We have followed the recipe for variational inference.
We’ve defined:

a probability model  of latent variables and data

a variational family  for the latent variables to
approximate our posterior

Then we used the variational inference algorithm to learn the
variational parameters (gradient ascent on the ELBO to learn ).
We used variational EM for the model parameters (gradient ascent
on the ELBO to learn ).

Experiments
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Now we are ready to look at samples from the model. We have two
choices to measure progress: sampling from the prior or the
posterior. To give us a better idea of how to interpret the learned
latent space, we can visualize what the posterior distribution of the
latent variables  looks like.

Computationally, this means feeding an input image  through the
inference network to get the parameters of the Normal
distribution, then taking a sample of the latent variable . We can
plot this during training to see how the inference network learns to
better approximate the posterior distribution, and place the latent
variables for the different classes of digits in different parts of the
latent space. Note that at the start of training, the distribution of
latent variables is close to the prior (a round blob around ).

VISUALIZING THE LEARNED APPROXIMATE POSTERIOR DURING TRAINING. AS

q (z ∣λ x)

x

z

0

https://giphy.com/gifs/vae-lqq0em9cuivVNWFwSX?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fjaan.io%2F
https://giphy.com/gifs/vae-lqq0em9cuivVNWFwSX?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fjaan.io%2F


1/25/21, 10:23Tutorial - What is a variational autoencoder? – Jaan Altosaar

Page 13 of 20https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

VISUALIZING THE LEARNED APPROXIMATE POSTERIOR DURING TRAINING. AS
TRAINING PROGRESSES THE DIGIT CLASSES BECOME DIFFERENTIATED IN THE

TWO-DIMENSIONAL LATENT SPACE.

We can also visualize the prior predictive distribution. We fix the
values of the latent variables to be equally spaced between  and 
. Then we can take samples from the likelihood parametrized by the
generative network. These ‘hallucinated’ images show us what the
model associates with each part of the latent space.

VISUALIZING THE PRIOR PREDICTIVE DISTRIBUTION BY LOOKING AT SAMPLES
OF THE LIKELIHOOD. THE X AND Y-AXES REPRESENT EQUALLY SPACED LATENT

VARIABLE VALUES BETWEEN -3 AND 3 (IN TWO DIMENSIONS).

−3 3

https://giphy.com/gifs/vae-h8rGTcMpkPVpCzru7q?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fjaan.io%2F
https://giphy.com/gifs/vae-h8rGTcMpkPVpCzru7q?utm_source=iframe&utm_medium=embed&utm_campaign=Embeds&utm_term=https%3A%2F%2Fjaan.io%2F
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Glossary

We need to decide on the language used for discussing variational
autoencoders in a clear and concise way. Here is a glossary of terms
I’ve found confusing:

Variational Autoencoder (VAE): in neural net
language, a VAE consists of an encoder, a decoder,
and a loss function. In probability model terms, the
variational autoencoder refers to approximate
inference in a latent Gaussian model where the
approximate posterior and model likelihood are
parametrized by neural nets (the inference and
generative networks).

Loss function: in neural net language, we think of
loss functions. Training means minimizing these
loss functions. But in variational inference, we
maximize the ELBO (which is not a loss function).
This leads to awkwardness like calling
optimizer.minimize(-elbo)optimizer.minimize(-elbo) as optimizers in
neural net frameworks only support minimization.

Encoder: in the neural net world, the encoder is a
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Encoder: in the neural net world, the encoder is a
neural network that outputs a representation  of
data . In probability model terms, the inference
network parametrizes the approximate posterior
of the latent variables . The inference network
outputs parameters to the distribution .

Decoder: in deep learning, the decoder is a neural
net that learns to reconstruct the data  given a
representation . In terms of probability models,
the likelihood of the data  given latent variables 
is parametrized by a generative network. The
generative network outputs parameters to the
likelihood distribution .

Local latent variables: these are the  for each
datapoint . There are no global latent variables.
Because there are only local latent variables, we
can easily decompose the ELBO into terms  that
depend only on a single datapoint . This enables
stochastic gradient descent.

Inference: in neural nets, inference usually means
prediction of latent representations given new,
never-before-seen datapoints. In probability
models, inference refers to inferring the values of
latent variables given observed data.
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One jargon-laden concept deserves its own subsection:

Mean-field versus amortized inference

This issue was very confusing for me, and I can see how it might be
even more confusing for someone coming from a deep learning
background. In deep learning, we think of inputs and outputs,
encoders and decoders, and loss functions. This can lead to fuzzy,
imprecise concepts when learning about probabilistic modeling.

Let’s discuss how mean-field inference differs from amortized
inference. This is a choice we face when doing approximate
inference to estimate a posterior distribution of latent variables.
We might have various constraints: do we have lots of data? Do we
have big computers or GPUs? Do we have local, per-datapoint
latent variables, or global latent variables shared across all
datapoints?

Mean-field variational inference refers to a choice of a
variational distribution that factorizes across the  data points,
with no shared parameters:

This means there are free parameters for each datapoint  (e.g. 
 for Gaussian latent variables). How do we do

‘learning’ for a new, unseen datapoint? We need to maximize the
ELBO for each new datapoint, with respect to its mean-field
parameter(s) .

N
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Amortized inference refers to ‘amortizing’ the cost of inference
across datapoints. One way to do this is by sharing (amortizing) the
variational parameters  across datapoints. For example, in the
variational autoencoder, the parameters  of the inference network.
These global parameters are shared across all datapoints. If we see a
new datapoint and want to see what its approximate posterior 

 looks like, we can run variational inference again
(maximizing the ELBO until convergence), or trust that the shared
parameters are ‘good-enough’. This can be an advantage over
mean-field.

Which one is more flexible? Mean-field inference is strictly more
expressive, because it has no shared parameters. The per-data
parameters  can ensure our approximate posterior is most
faithful to the data. Another way to think of this is that we are
limiting the capacity or representational power of our variational
family by tying parameters across datapoints (e.g. with a neural
network that shares weights and biases across data).

Sample PyTorch/TensorFlow
implementation

Here is the implementation that was used to generate the figures in
this post: Github link

Footnote: the reparametrization trick

The final thing we need to implement the variational autoencoder
is how to take derivatives with respect to the parameters of a
stochastic variable. If we are given  that is drawn from a
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https://github.com/altosaar/variational-autoencoder
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distribution , and we want to take derivatives of a function
of  with respect to , how do we do that? The  sample is fixed,
but intuitively its derivative should be nonzero.

For some distributions, it is possible to reparametrize samples in a
clever way, such that the stochasticity is independent of the
parameters. We want our samples to deterministically depend on
the parameters of the distribution. For example, in a normally-
distributed variable with mean  and standard devation , we can
sample from it like this:

where . Going from  denoting a draw from
the distribution to the equals sign  is the crucial step. We have
defined a function that depends on the parameters
deterministically. We can thus take derivatives of functions
involving ,  with respect to the parameters of its distribution 

 and .
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THE REPARAMETRIZATION TRICK ALLOWS US TO PUSH THE RANDOMNESS OF A
NORMALLY-DISTRIBUTED RANDOM VARIABLE Z INTO EPSILON, WHICH IS

SAMPLED FROM A STANDARD NORMAL. DIAMONDS INDICATE DETERMINISTIC
DEPENDENCIES, CIRCLES INDICATE RANDOM VARIABLES.

In the variational autoencoder, the mean and variance are output
by an inference network with parameters  that we optimize. The
reparametrization trick lets us backpropagate (take derivatives
using the chain rule) with respect to  through the objective (the
ELBO) which is a function of samples of the latent variables .

Further reading and improvements

If we are careful, the Bernoulli likelihood is an
incorrect choice for the MNIST dataset. The
handwritten digits are `close’ to binary-valued, but
are in fact continuous. This paper fixes the issue
with the continuous Bernoulli distribution.

θ

θ

z

https://papers.nips.cc/paper/9484-the-continuous-bernoulli-fixing-a-pervasive-error-in-variational-autoencoders.pdf
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Is anything in this article confusing or can any explanation be
improved? Please submit a pull request, tweet me, or email me :)

References for ideas and figures

Many ideas and figures are from Shakir Mohamed’s excellent blog
posts on the reparametrization trick and autoencoders. Durk
Kingma created the great visual of the reparametrization trick.
Great references for variational inference are this tutorial and
David Blei’s course notes. Dustin Tran has a helpful blog post on
variational autoencoders. The header’s molecule samples generated
from a variational autoencoder are from this paper.

Thanks to Rajesh Ranganath, Andriy Mnih, Ben Poole, Jon Berliner,
Cassandra Xia, and Ryan Sepassi for discussions and many concepts in
this article. Thanks to Batuhan Koyuncu for regenerating the GIFs!

Discussion on Hacker News and Reddit. Featured in David
Duvenaud’s course syllabus on “Differentiable inference and
generative models”.

https://github.com/altosaar/jaan.io/blob/master/_posts/blog/2016-07-18-what-is-variational-autoencoder-vae-tutorial.md
https://twitter.com/thejaan
mailto:altosaar@princeton.edu
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
http://blog.shakirm.com/2015/03/a-statistical-view-of-deep-learning-ii-auto-encoders-and-free-energy/
http://dpkingma.com/?page_id=277
https://arxiv.org/abs/1601.00670
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/variational-inference-i.pdf
http://dustintran.com/blog/denoising-criterion-for-variational-auto-encoding-framework/
https://arxiv.org/abs/1802.04364
https://bkoyuncu.github.io/
https://news.ycombinator.com/edit?id=12292576
https://www.reddit.com/r/MachineLearning/comments/4xv5b5/explainer_of_variational_autoencoders_from_a/
http://www.cs.toronto.edu/~duvenaud/courses/csc2541/

