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ABSTRACT: The first totally chemo- and diastereoselective 1,4-conjugate additions of Se-nucleophiles to a chiral bicyclic dehy-
droalanine (Dha) are described. The methodology is simple and does not require any catalyst, providing exceptional yields at room 
temperature and involves the treatment of the corresponding diselenide compound with NaBH4 in the presence of the Dha. These Se-
Michael additions provide an excellent channel for the synthesis of enantiomerically pure selenocysteine (Sec) derivatives, which	
pose	high	potential for chemical biology applications.  

Selenocysteine (Sec, U) is the 21st genetically encoded amino 
acid, which is inserted co-translationally into many proteins, 
providing different selenoproteins with a variety of appreciated 
redox properties.1,2 Different post-translational modifications of 
Sec in selenoproteins have been experimentally validated2b and 
selenoamino acids have been used in site-selective protein mod-
ification (SSPM) as precursors of dehydroalanine (Dha) ena-
bling the introduction of post-translational modifications or 
chemical tags in proteins.2 Beyond applications in bioconjuga-
tion, selenoamino acids are particularly relevant in native chem-
ical ligation (NCL), a versatile chemical approach to prepare 
large peptides and proteins that has revolutionized the field of 
protein science.3 The fundamental improvement of ligation 
chemistry using selenoamino acids is that chemoselective dese-
lenization can be accomplished under mild conditions.4 Moreo-
ver, the Sec-driven NCL is faster, more pH tolerant and efficient 
than Cys-driven NCL,5 allowing the synthesis of selenoproteins 
in high yields.6 In addition, some Se-protected Sec, which can 
be deprotected and activated on demand, have been genetically 
incorporated into proteins.7a,b Several aryl derivatives of Sec 
serve as chemical models to understand the inhibition of seleno-
enzymes, which has implications for cancer therapy.7c Thus, 
synthetic methodologies for generating libraries of diverse en-
antiomerically pure selenoamino acids are valuable to facilitate 
access to selenopeptides and selenoproteins.7  

Selenoamino acids in enantiomerically pure forms are com-
monly obtained by nucleophilic substitution reactions. In this 

regard, various methods to generate selenated nucleophiles 
have been described, especially focusing on the ring-opening 
reactions of heterocycles to access a variety of organo-selenium 
compounds, including their chiral variants.8,9 Although the Se-
nucleophilic substitution reaction has been deeply explored, 
less attention has been paid to 1,4-conjugate addition reactions. 
Few examples reported that treatment of α,β-unsaturated car-
bonyl derivatives with nucleophilic selenium species affords β-
seleno derivatives through Michael-like addition reactions.10 
However, to the best of our knowledge the asymmetric 1,4-con-
jugated addition of Se-nucleophiles to chiral Michael acceptors 
has not been reported. Hence, and following the methodology 
established by our group,11 we envisioned the synthesis of en-
antiopure selenoamino acids using the Se-nucleophilic 1,4-at-
tack to chiral dehydroalanines as a key step. First, we assayed 
the 1,4-conjugated addition using our 1st generation chiral Dha 
1’ as a Michael acceptor (Scheme 1).11a,b   

Scheme 1. Stereoselective Se-Michael addition to Dha 1’. 

 
Phenylselenolate generated in situ from diphenyl diselenide a 
in the presence of NaBH4 and acetic acid was used as a nucleo-
phile in ethanol/dichloromethane (9:1) at room temperature 
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(Scheme 1). The reaction was fast and quantitative, although a 
70:30 mixture of two diastereoisomers was detected by 1H 
NMR (Supporting Information).  

This preliminary result was improved using our 2nd generation 
chiral Dha (1),11c which showed excellent results in other Mi-
chael-type additions,11d as Se-Michael acceptor. Thus, using the 
same conditions described before, complete conversion was 
achieved in 5 min and a single diastereoisomer 2a was obtained 
(Scheme 2). Other sources of Se-nucleophiles were assayed, 
such as benzeneselenol in the presence of Al2O3 in toluene at 
room temperature. The conversion was again quantitative and 
the same single diastereoisomer 2a was obtained (Scheme S2 in 
Supporting Information).  

The absolute configuration of the new stereocenter (C3) of com-
pound 2a formed in the Se-Michael addition was determined by 
X-ray analysis of monocrystals of this compound (Figure 1). 
Alternatively, this structural feature was also determined by a 
2D NOESY−NMR experiment on 2a (Supporting Information). 

 

Figure 1. ORTEP diagram of compound 2a, showing thermal el-
lipsoids at the 75% probability level. 

Remarkably, in the Se-Michael reactions on Dha 1, a single di-
astereomer was observed in the 1H NMR spectrum of the crude 
reaction mixture, indicating that they occur with complete dia-
stereoselectivity. This stereochemical outcome point to a robust 
stereoinduction mechanism for the protonation of the enolate 
adduct formed after conjugate addition, similar to that previ-
ously described for S-Michael additions11c on Dha 1 (Scheme 
S3 in Supporting Information).  

The scope of the reaction of chiral Dha 1 with several Se-nucle-
ophiles was examined under similar conditions. Other sources 
of selenium nucleophile were explored, but the diselenides in 
presence of NaBH4 proved to be more versatile and facilitated 
work-up. We carried out the conjugate additions with a wide 
variety of reagents leading to motifs that arise in nature via post-
translational modifications. In all cases, high yields and dia-
stereoselectivities were achieved and all the 1,4-conjugate ad-
ducts (2a-f) were obtained as single stereoisomers (Scheme 2). 
The absolute configuration of the new stereocenters was also 
determined by 2D NOESY-NMR experiments (Supporting In-
formation), demonstrating that the same stereochemical out-
come was achieved for all Se-nucleophiles with Dha 1. 

 L-Phenylselenocysteine (L-PhSec, 3a) is an important amino 
acid used in NCL which together with the corresponding Fmoc-
derivative have been prepared by nucleophilic substitution with 
Se-nucleophiles on adequately activated Ser-derivatives.12 The 
hydrolysis of Se-Michael adduct 2a with aqueous 4 M HCl at 
40 °C yielded enantiomerically pure L-PhSec 3a in 95% yield 
(Scheme 2). The stereochemical integrity of the α-carbon was 
maintained upon deprotection, as verified by their optical prop-
erties. 12 Thus, our methodology provides an easy entry to N-

Fmoc-PhSec12 (Scheme S4 in Supporting Information) readily 
available for being used in solid-phase peptide synthesis.  

Scheme 2. Stereoselective Se-Michael additions of Se-nucleo-
philes to Dha 1 and synthesis of selenoamino acids.  
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Se-Michael adduct 2b was easily achieved through 1,4-conju-
gate addition of di-p-methoxybenzyl diselenide, (PMBSe)2, b 
to Dha 1 in the presence of NaBH4 (Scheme 2). In this case, the 
acid hydrolysis of the corresponding Se-Michael adduct 2b 
gave enantiopure L-selenocystine 4b by complete hydrolysis of 
all the protecting groups including PMB13 and in situ oxidation 
of the corresponding L-Sec. (Scheme 2 and Scheme 3). 

Scheme 3. Synthesis of L-selenocystine 4b. 
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Selenium exerts chemopreventive activity against several types 
of cancer.14 Its biologic activity is related to its incorporation in 
a diversity of biochemical forms. For instance, Se-allylseleno-
cysteine (abbreviated as ASC, Seac or Asec, 3c) is an effective 
metabolite in inhibiting mammary carcinogenesis, but its role 
of cytotoxicity in chemoprevention is unknown.14 In addition, 
Asec allowed site-specific incorporation of Sec in proteins.7a 
Using our methodology, the Se-Michael addition to Dha 1 was 
carried out with allylselenocyanate c and NaBH4 generating the 
corresponding adduct 2c with a good yield and stereoselectiv-
ity. In this case, iPrOH was used as a cosolvent instead of EtOH 
to avoid the formation of by-products arising from the nucleo-
philic attack of EtOH to the lactone of Se-Michael adduct 2c 
(Scheme S5 in Supporting Information). This adduct 2c was hy-
drolyzed to give L-Asec (3c), whose physical properties match 
those described in the literature7a,10 (Scheme 2). 

Recently, selenium-containing analogues of modified Lys resi-
dues have been developed in order to facilitate traceless isopep-
tide bond formation through isopeptide chemical ligation.15 In 
addition, it is well-known that 4-selenalysine (SeLys) has been 
used as substitute for Lys to synthesize artificial lanthipeptides 
from in vitro translation.16 In general, the introduction of sele-
nium in the skeleton of amino acid involves the use of disodium 
diselenide and tert-butyl (2-chloroethyl)carbamate to obtain the 
respective selenium-based nucleophile di-tert-butyl (diselan-
ediylbis(ethane-2,1-diyl))dicarbamate, which is able to react in 
situ through an SN2 reaction with N-Boc--bromoalanine me-
thyl ester giving the corresponding protected SeLys. As an al-
ternative, we carried out the stereoselective synthesis of L-Se-
Lys (3d) by Se-Michael addition of di-tert-butyl (diselan-
ediylbis(ethane-2,1-diyl))dicarbamate d to Dha 1 followed by 
acid hydrolysis (Scheme 2).  

Selenolanthionine (SeLan) was selected as another selenoamino 
acid target for our methodology. Several reports17 described the 
synthesis of SeLan, including its incorporation in lanthipep-
tides,18 with a renewed interest.19 Optically active (R,R)-SeLan  
was synthesized by reacting Dha 1 with the selenolate deriva-
tive of Boc-L-Sec-OMe, which was in situ generated from Boc-
L-selenocystine-OMe e by the action of NaBH4, to give Se-Mi-
chael adduct 2e with a 85% yield and high diastereoselectivity 
(Scheme 2). In the same way, the Se-Michael reaction of e with 
the enantiomer of Dha 1 (ent-1) yielded adduct 2’e. (Scheme 
4). Both adducts 2e and 2’e were hydrolysed to give (R,R)-Se-
Lan 3e (Scheme 2) and meso-SeLan 3’e in high yields and dia-
stereomeric purities, respectively (Scheme 4).  

Scheme 4. Synthesis of meso-SeLan 3’e. 

 
Recently, a Se-mimetic of the Tn antigen derived from Thr [Se-
(α-D-GalNac)-L-selenothreonine, abbreviated as α-D-GalNac-L-
SeThr] has been reported.20 Such Tn antigen mimetic showed 
improved antibody recognition properties when incorporated 
into a peptide sequence as a result of optimized peptide/carbo-
hydrate interactions resulting from an O/Se replacement at the 

glycosidic linkage.  As an entry to diastereopure Se-Tn mimet-
ics, we assayed the reaction of diselenosugar f with Dha 1, fol-
lowing the conditions described in Scheme 2, to give adduct 2f 
as a single diastereoisomer, whose stereochemistry was deter-
mined by NOE experiments. Diselenosugar f was prepared 
from a peracetylated GalNAc derivative following the method-
ology previously described by us.20 Se-Michael adduct 2f was 
hydrolyzed in an acidic medium to give Tn antigen mimetic α-
D-GalNac-L-Sec 3f (Scheme 2). 

In conclusion, this work describes the first totally chemo- and 
stereoselective 1,4-conjugate additions of different Se-nucleo-
philes to chiral bicyclic dehydroalanine (Dha) 1. The reactions 
are carried out using a general, mild and non-catalytic method-
ology and provide good to excellent yields. Se-nucleophiles are 
generated in situ from the corresponding stable and easily ac-
cessible or commercially available diselenide derivatives, by 
the action of sodium borohydride. Simple acidic hydrolysis of 
the corresponding adducts gives access to a small collection of 
enantiopure Sec derivatives, such as L-PhSec, L-selenocystine, 
L-ASec, L-SeLys, (R,R)- and meso-SeLan, and Tn antigen mi-
metic α-Se-GalNAc-L-Sec. In fact, our methodology comprises 
a new strategy for the emerging field of stereoselective Se-gly-
cosylation.21 In summary, readily available starting materials, 
mild conditions, functional group tolerance and high yields and 
stereoselectivities make this strategy an appealing method for 
the synthesis of enantiomerically pure selenoamino acids. 
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