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ABSTRACT
Various models have been proposed to estimate the degree of 
backscatter in Synthetic Aperture Radar (SAR) images. However, it 
is still necessary to calibrate these models based on the character
istics of different study areas and to propose new models to 
achieve the highest possible accuracy in estimating the backscat
tering coefficient (σ0) SAR. In this study, three empirical models, 
including Champion, Sahebi and Zribi/Dechambre, were initially 
calibrated for two SAR datasets (i.e. The Airborne Synthetic 
Aperture Radar (AIRSAR) and Canadian Space Agency radar satel
lite (RADARSAT-1)) acquired over two bare soil study areas with 
various soil characteristics. The Zribi/Dechambre model was then 
modified by revising the roughness parameter to obtain higher 
accuracy in estimating σ0 over a larger range of incidence angles 
(θ). A new empirical model was also proposed by combining the 
four parameters of Soil Moisture (SM), standard deviation of sur
face height -root mean square- (rms), correlation length (l), and θ. 
To this end, the most appropriate form of the regression model 
was investigated and used for each of these parameters to obtain 
the highest correlation between the in-situ data and σ0 values. 
A comparison of the empirical models showed that the modified 
Zribi/Dechambre had the highest accuracy in predicting σ0 values 
with the Root Mean Square Errors (RMSE) of 1.20 dB and 1.59 dB 
over Oklahoma and Quebec, respectively. Furthermore, coeffi
cients values of the new proposed model remained stable in the 
two datasets unlike the other investigated models. In this study, 
the effects of l on the accuracy of the new proposed model were 
also assessed. It was concluded that l had a considerable impact 
on the accuracy of the proposed model and including this para
meter can improve the accuracy by up to 1 dB.
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1. Introduction

Synthetic Aperture Radar (SAR) is an active microwave imaging system that sends micro
wave pulses to acquire information from the surface of the Earth. This system uses the 
forward motion of a spacecraft to synthesize a much longer antenna and, thus, to provide 
high spatial resolution datasets (Hosseini and Saradjian 2011). The acquisition of high- 
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resolution, multi-dimensional, and multi-mode datasets by new SAR systems has posed 
many challenges in the processing and interpretation of the corresponding datasets (Sun, 
Shimada, and Xu. 2017). However, SAR images contain valuable information about their 
targets, making them unique compared to other remote sensing datasets. For example, 
SAR data are great resources for estimating soil parameter because SAR signals are highly 
sensitive to the soil dielectric constant and surface roughness (Ulaby, Dubois, and Van Zyl 
1996; Sahebi, Bonn, and Bénié 2004; Azimi et al. 2020). SAR can also collect data in almost 
any atmospheric condition, which makes it a suitable option in areas with frequent cloud 
cover and bad weather conditions (Amani et al. 2018; Zakharov et al. 2020). Moreover, SAR 
microwave signals can penetrate not only clouds, but also vegetation canopies and soil 
surfaces and, therefore, acquire information from areas invisible in other satellite imagery, 
such as optical satellite data (Mahdavi et al. 2017). Open-access SAR data, such as Sentinel- 
1 imagery, has facilitated frequent and high-resolution soil moisture retrieval (El Hajj et al. 
2019; Hachani et al. 2019; Ezzahar et al. 2020; Zhang et al. 2020). Consequently, SAR has 
been utilized in different environmental applications, including Earth surface monitoring, 
land cover classification, geohazard events monitoring, climate change analysis, and 
drought monitoring (Berardino et al. 2002; Tofani et al. 2013; Amani et al. 2017; Li et al. 
2020).

SAR systems generally collect the backscattering coefficient (σ0) from different targets. The 
fraction σ0 describes the amount of average backscattered energy compared to the energy of 
the incident field. This parameter depends on the SAR configuration (e.g. incidence angle (θ) 
and wavelength (λ)) and the target properties (e.g., Soil Moisture (SM) content and soil surface 
roughness) (Champion 1996). Linear correlation of radar signal and SM was first investigated 
as a function of co-polarized C-band configuration by Ulaby and Batlivala (1976). Later, 
considering the depth of soil, stronger sensitivity of radar signal to SM was observed using 
a linear relationship (Attema and Ulaby 1978) and empirical or physical radar backscattering 
models (Oh, Sarabandi, and Ulaby 2004; Fung, Li, and Chen 1992; Dubois, Van Zyl, and 
Engman 1995; Baghdadi, Aubert, and Zribi 2011), which present an increase of radar signal 
with SM. Different models have been developed to formulate the relationship between σ0 

and land surface parameters, which are generally called backscattering models. Over the past 
40 years, many backscattering models, from simple linear to complex theoretical models, have 
been proposed based on radar data availability and different in-situ datasets (e.g., Attema and 
Ulaby 1978; McNairn et al. 1996; Baghdadi et al. 2012; MirMazloumi and Sahebi 2016; 
Mirsoleimani et al. 2019; Ezzahar et al. 2020). In case of the effects soil roughness and θ on 
the radar signal, although low θ minimizes the effect of soil roughness (Verhoest et al. 2008), 
roughness estimation is more accurate for θ >30� (Bousbih et al. 2017). Furthermore, low to 
medium values of θ (i.e., 20�to35�) have been suggested an optimal range to estimate SM 
(Holah et al. 2005). Since relationship between σ0 and surface roughness and moisture are not 
linear (Zribi et al. 2013), several studies have proposed logarithmic (Sahebi, Bonn, and Bénié 
2004) and exponential terms (Zribi and Dechambre 2003; Baghdadi, Holah, and Zribi 2006; 
Baghdadi et al. 2007) to highlight the impacts of surface roughness on σ0 (Petropoulos, 
Ireland, and Barrett 2015).

Backscattering models are generally divided into three categories: empirical, semi- 
empirical, and theoretical or physical (MirMazloumi and Sahebi 2016). Theoretical back
scattering models, such as the Integral Equation Model (IEM) (Fung, Li, and Chen 1992), 
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Small Perturbation Model (SPM) (Ulaby, Moore, and Fung 1982; Hajnsek, Pottier, and 
Cloude 2003; Iodice, Natale, and Riccio 2011), Geometrical Optic Model (GOM) (Ulaby, 
Moore, and Fung 1982), and Physical Optic Model (POM) (Ulaby, Moore, and Fung 1986) 
are relatively complex and there are several limitations to obtain high accuracy in 
estimating soil parameters from these models. However, physical models have been 
applied to provide site-independent relationships (Baghdadi et al. 2004), indicating their 
sensitivity to dielectric constant and roughness (Baghdadi et al. 2012), as well as their 
independency to specific site calibration (Mirsoleimani et al. 2019). For instance, it is 
challenging to apply the IEM model to estimate SM content over a large area because 
surface roughness is not usually well described by the statistical representations used in 
this model (Zribi et al. 2000; Davidson et al. 2003; Callens, Verhoest, and Davidson 2006). 
Moreover, additional information, such as topography and soil type are required to 
optimize the performance of IEM (Zribi and Dechambre 2003; Notarnicola and Solorza 
2014). Furthermore, the validity domain of SPM, GOM, and POM are restricted to 
a limited surface roughness range. These models have been generally employed for 
smooth or rough surfaces. Although Hajnsek, Pottier, and Cloude (2003) and Iodice, 
Natale, and Riccio (2011) have proposed second-order polarimetric scattering models to 
expand the validity range of SPM, they were only designed for cross-polarization and 
were not suitable for short wavelength C-band (Hajnsek, Papathanassiou, and Cloude 
2001; Barrett, Dwyer, and Whelan 2009). Therefore, the estimation of soil surface para
meters using theoretical models requires very detailed knowledge of surface roughness, 
which is only achievable through intensive roughness measurement campaigns. Semi- 
empirical models, such as Oh (2004) and Dubois (Dubois, Van Zyl, and Engman 1995), on 
the other hand, require a large amount of field data to accurately model the nonlinear 
response of SAR backscattering to SM and surface roughness parameters (Zribi, Gorrab, 
and Baghdadi 2014; Petropoulos, Ireland, and Barrett 2015). Moreover, there are limita
tions to invert the physical part of the semi-empirical models to a specific geographic 
area with similar roughness characteristics (Baghdadi, Holah, and Zribi 2006; Paloscia 
et al. 2008).

Compared to theoretical and semi-empirical models, empirical models are often 
favoured by users because they are straightforward to implement and can easily invert 
σ0 to soil surface parameters (Zribi and Dechambre 2003; Gherboudj et al. 2011; Rao et al. 
2013; Chai et al. 2015; Kirimi et al. 2016). The simplest empirical model was developed to 
represent the relationship between SM and radar response (Attema and Ulaby 1978). In 
fact, many of the first empirical models were generally proposed based on the linear 
relationship between σ0 and SM when SM content values were between about 10% and 
35% and under the assumption that roughness does not change between successive 
radar measurements (Wang and Qu 2009; Zribi et al. 2013). An exponential term was then 
included in the linear relationship to consider the effects of roughness on σ0 and, thus, to 
make empirical models more applicable (Zribi and Dechambre 2003; Baghdadi, Holah, 
and Zribi 2006; Baghdadi, Aubert, and Zribi 2011; Zribi et al. 2013). During that time, 
several other ideas were also proposed to improve the efficiency of empirical models. For 
examples, Baghdadi, Aubert, and Zribi (2011) and Baup et al. (2011) suggested that 
considering the difference between one image acquired during the wet season and 
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a reference image acquired during the dry season could further eliminate the effects of 
surface roughness.

Although many empirical backscattering models have been developed, their applic
ability and accuracy should be investigated in different study areas. This is because the 
coefficients of empirical models are usually calculated using specific in-situ datasets over 
a study area. Accordingly, these models may need to be refined or new empirical models 
developed to obtain reasonable accuracies in other regions. Thus, in this study, three 
empirical backscattering models, including those proposed by Champion (1996), 
Sahebi, Bonn, and Gwyn (2003), and Zribi and Dechambre (2003) were first investigated 
in study areas in Oklahoma, USA and in Quebec, Canada. Then, the coefficients of these 
models were calibrated to obtain better accuracies based on characteristics specific to 
the study areas. Furthermore, a modified version of the Zribi/Dechambre model (Zribi 
and Dechambre 2003) and a new empirical backscattering model that is a function of 
SM, θ, standard deviation of surface height – root mean square – (rms), and correlation 
length (l) were proposed to obtain the most accurate estimation of σ0 over the study 
areas.

2. Study areas and data

2.1. Study areas

The datasets from three bare soil regions were used in this study to consider soil types 
with various characteristics in the backscattering models. The first study area (Figure 1 (a)) 
was the Little Washita Experimental Watershed (LWREW) with an area of 611 km2, located 
in Oklahoma in the Southern Great Plains of the United States (34° 57′ N, 98° 01′ W). In this 
study area, summers are typically long, hot, and relatively dry and winters are generally 
short, temperate, and dry but are usually very cold for a few weeks. The topography of the 
LWREW is moderately rolling with a maximum relief less than 200 m. Except for a few 
rocky and steep hills near the Cement region, the upland topography is gently to 
moderately rolling. Furthermore, soils include a wide range of textures. Land use in this 
watershed is also dominated by rangeland and pasture (63%) with large areas of winter 
wheat and other croplands concentrated in the floodplain and western portions of the 
watershed (Jackson et al. 2002).

The second study area includes the Chateauguay River (45° 19′ N, 73°46′ W) and Pike 
River (45° 08′ N, 72° 54′ W) watersheds (i.e., the CRPRW study area). This study area is 
located on the south shore of the St. Lawrence River, southeast of Montréal, Quebec, 
Canada (Figure 1(b)). This region contains many agricultural fields on a relatively flat and 
relief plateau with a homogeneous soil texture composed of about 36% clay, 42% silt and 
22% sand (Sahebi, Bonn, and Gwyn 2003).

2.2. In-situ datasets

In-situ datasets collected over the study areas were used to evaluate the accuracy of the 
empirical models (see Table 1 for the amount of field data). The field data from LWREW 
were collected by the Soil Moisture Experiments (SMEX03) administration and campaign 
members. SMEX03 stations are equipped with different types of sensors to measure 

INTERNATIONAL JOURNAL OF REMOTE SENSING 1931



parameters such as the dielectric constant, volumetric and gravimetric SM contents, soil 
temperature, bulk density, and soil surface roughness (Jackson et al. 2002). In this study, 
only the volumetric SM at the depth of 0 to 6 cm and soil surface roughness collected over 
13 sites were considered. A ThetaProbe™ sensor was used to measure SM content. The 
rms height (0.2 to 2.6 cm) and l (1.9 to 7.5 cm) were also calculated through analysing the 
digitized photographs using the method described in Jackson and Cosh (2006).

Figure 1. Study areas: (a) Little Washita Experimental Watershed (LWREW) and (b) Chateauguay River 
and Pike River watersheds (CRPRW).

Table 1. Number of in-situ datasets and ranges of parameters.

Dataset
Number of 

samples
Number of 

trains
Number of 

tests rms (cm) GSM (g g-1) *
Correlation length 

(cm)

LWREW 52 39 13 0.60 to 3.70 0.03 to 0.30 1.90 to 9.00
CRPRW 39 29 10 0.80 to 4.80 0.14 to 0.34 1.50 to 39.00

*Gravimetric soil moisture in grams of water per grams of dry soil (gg� 1)
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The in-situ data collected over CRPRW study area, also included SM and surface roughness 
data over 27 sites. A ThetaProbe™ soil moisture sensor, which measured the apparent 
dielectric constant, was used to derive the SM content at a depth of 0 to 5 cm (dictated by 
the length of the probe’s needle). Using the equation presented in the ThetaProbe SM user 
manual, the direct outputs (DC voltage in mV) were converted to soil water content ðm3 m� 3) 
and dielectric constant. Moreover, six 2 m long surface profiles with 1 cm sampling intervals 
(three parallel and three perpendicular to the soil furrows) were used at each site to calculate 
the height of the rms (1.5 to 5.4 cm). The method to extract and model roughness parameters 
is described in detail in Beaulieu, Leclerc, and Moisan (1995).

2.3. Remote sensing datasets

The information about the satellite images used in this study is provided in Table 2. Two 
types of SAR datasets were used in assessing the backscattering models to obtain a more 
comprehensive conclusion about the accuracy and limitations of each backscattering 
model. These images were acquired at the same time as the in-situ data measurements. 
Four the Airborne Synthetic Aperture Radar (AIRSAR) and two Canadian Space Agency 
radar satellite (RADARSAT-1) images were used over the LWREW and CRPRW study areas, 
respectively.

3. Methods

3.1. Satellite image processing

The AIRSAR data were initially in the Stokes matrix format and so the synthesized and 
decompressed procedures were applied to derive σ0. By doing so, the radar data were 
available in C-band and HH (Horizontal Horizontal) polarization Jackson et al. (2009). 
A resampling process was then carried out to convert the 9.26 m spatial resolution to 
a 6.70 m. Finally, Digital Ortho-photo Quadrangles (DOQs) with a 1 m pixel size were 
used for geo-referencing. To this end, 40 points distributed throughout the scene were 
employed, by which a Root Mean Square Errors (RMSE) of half a pixel size (3.3 m) was 
obtained. The RADARSAT-1 datasets included here were mainly pre-processed by 
Shepherd (1997) and Wickel, Jackson, and Wood (2001). A Landsat Thematic Mapper 
(TM) image, acquired on 25 July 1997, was applied to geo-register the RADARSAT-1 
scenes using several ground control points. Then, the RADARSAT-1 raw values were 
converted to σ0 according to the methodology described in Srivastava (1999). Finally, an 
average σ0 value was assigned to each sample with an area of 20 m × 30 m (Sahebi, 
Bonn, and Bénié 2004).

Table 2. Description of the remote sensing datasets.

Study area Satellite Acquisition date Band / polarization Incidence angles (°)
Spatial resolution 

(m, range × azimuth)

LWREW AIRSAR 03 July 2003 C / HH [47 to 64] 6.60 × 9.26
CRPRW RADARSAT-1 12 December 1999 

18 December 1999
C / HH [20 to 25] 

[40 to 49]
20 × 27

INTERNATIONAL JOURNAL OF REMOTE SENSING 1933



3.2. Empirical backscattering models

One of the basic empirical models used to characterize the relationship between σ0 and 
soil surface parameters was presented by Attema and Ulaby (1978) as follows: 

σ0 ¼ Aþ Bmv (1) 

in which σ0 (dB) and A (dB) are the total backscattering coefficient value and backscatter
ing coefficient of dry soil, respectively; mv is the volumetric SM; and B is the coefficient 
that indicates the sensitivity of the radar signal to SM. Subsequently, several advanced 
empirical models have been developed based on this basic relationship (Zribi et al. 2013). 
In the following sections, three of these models, as well as two new models developed in 
this study, are discussed in more detail.

3.2.1. The Champion model
The Champion model (Equation (2)) is a nonlinear model, developed by Champion (1996), 
to include θ in the basic backscattering model (see Equation (1)). 

σ0 ¼ C1 þ C2 cosθð Þ
C3 þ Dmv (2) 

where C1, C2, C3 (dB) refer to the dependence of σ0 on θ. C1 is σ0 of dry soil when θ ¼ 90�; 
C2 is the total dynamics of soil response over θ ¼ 0�to60�; and C3 is the shape factor of the 
cosine function. The main limitation of this model is that it neglects the effects of other 
surface parameters, such as soil surface roughness, on the backscattering values.

3.2.2. The Sahebi model
Because the Champion model does not consider roughness parameters, Sahebi, Bonn, 
and Bénié (2004) included the effects of soil surface roughness on σ0 by adding rms in 
their empirical model (Equation (3)). 

σ0 ¼ A1 þ A2 cosθð Þ
A3 þ A4 ln rmsð Þ þ Dmv (3) 

where A1, A2, A3, A4, and D are coefficients determined using training datasets. In Sahebi, 
Bonn, and Gwyn (2003), the constants of A1, A2, A3, A4, and D were calculated for 
a configuration of C-band and HH polarization using the nonlinear least squares method.

3.2.3. The Zribi and Dechambre model
One of the limitations of empirical models such as the Sahebi model is that they do not 
consider l, although several studies have demonstrated the effects of this parameter on σ0 

(Baghdadi, Holah, and Zribi 2006; Verhoest et al. 2008; Choker et al. 2017). The l parameter 
describes the horizontal distance over which the surface profile is autocorrelated. The 
effect of l on surface analysis have been investigated in several studies. For example, 
Davidson et al. (2003), Verhoest et al. (2008), and Zribi, Gorrab, and Baghdadi (2014) 
proposed l and rms as a single term or a function of surface roughness. Moreover, 
Baghdadi, Holah, and Zribi (2006), Choker et al. (2017), and Mirsoleimani et al. (2019) 
fitted an optimum parameter in which l was a function of θ, rms, and polarization type. 
Finally, Álvarez-Mozos, Gonzalez-Audícana, and Casalí (2007) and MirMazloumi and 
Sahebi (2016) considered l separately from rms.
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Zribi and Dechambre (2003) developed an empirical model (the Zribi/Dechambre 
model, Equation (4)) to consider SM, rms height, and l. The authors proposed the use of 
Zrms cmð Þ= rms2ð Þ=l in their empirical model because it was challenging to separately 
estimate the effects of the rms height and l using empirical backscattering models over 
rough surfaces. 

σ0 ¼ Aþ B ln Zrmsð Þ þ Dmv (4) 

3.2.4. The modified Zribi and Dechambre model
The Zribi/Dechambre model used only backscatters with θ ¼ 25�; 39� and, thus, their 
model did not result in reasonable accuracies for θ ¼ 20�to25� and θ ¼ 45�to70� (Zribi 
and Dechambre 2003). In the current study, this model was modified by (1) considering 
SAR data acquired with θ ¼ 20�to64� and (2) adding minus power to Zrms in the original 
equation (named the modified Zribi/Dechambre model) as provided in Equation (5). In 
this study, this was added because it was observed that exp � Zrmsð Þ had highest correla
tion with σ0 when compared to ln Zrmsð Þ. 

σ0 ¼ Aþ B exp � Zrmsð Þ þ Dmv (5) 

3.2.5. New proposed empirical backscattering model
In this study, a new empirical backscattering model (Equation (6)) was developed to (1) 
consider all parameters that can affect σ0 (i.e., SM, θ, rms and l) (MirMazloumi and 
Sahebi 2016), and (2) consider each of these parameters as a separate term within 
a single model. Moreover, the proposed model was assumed to be comprehensive 
because it was developed based on datasets collected from areas with various land 
cover characteristics. Compared to other empirical models, another new aspect of the 
proposed model is that it utilizes rms in the power of the exponential. This was 
because it was observed that using rms in the power of exponential increased the 
correlation with σ0 compared to other forms of statistical models, such as logarithmic 
or linear. 

σ0 ¼ A1 þ cosθð Þ
A2 þ exp A3 rmsð Þð Þ þ A4mv þ A5 ln lð Þ (6) 

In which the series of A coefficients were calculated for band C and HH polarization using 
the least square method. Each term of the equation was obtained by the method 
proposed by Attema and Ulaby (1978), in which achieving the best function for each 
parameter was attempted. The correlation assessment was performed among all four 
parameters used in the proposed model (i.e., mv, θ, rms and l) and σ0 using different forms 
of regression equations, including linear, polynomial (second-order), geometrical, and 
logarithmic. Subsequently, the model that produced the highest correlation coefficient 
was selected for each term. For example, both sinusoidal and cosine functions were tested 
for θ ¼ 20�to64�. The data were correlated to σ0 in the two datasets using the sinθ 
function. However, σ0 was increased by increasing θ using sinusoidal function, which was 
not in agreement with the fact that σ0 from a rough surface decreases with increasingθ 
(Champion 1996; Sahebi, Bonn, and Gwyn 2003; Verhoest et al. 2008; Bousbih et al. 2017). 
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Furthermore, the cosine function provided more accurate results along with other terms 
in the model. Thus, more experiments over various datasets needs to be performed to 
confirm the use of sinusoidal function in empirical models. Therefore, cosine function was 
used in the proposed model (i.e., cosθð Þ

A2 : second term in Equation (6)). Moreover, it has 
been extensively discussed that linear functions are the best models to relate SM to σ0 

(Champion 1996; Sahebi, Bonn, and Bénié 2004; Zribi and Dechambre 2003; Zribi, Gorrab, 
and Baghdadi 2014; Petropoulos, Ireland, and Barrett 2015) and, thus, a linear model was 
used in the fourth term of the proposed model (A4mv). The relationship between surface 
roughness parameters (i.e., both rms and l) and σ0 was the critical point due to wide range 
of θ and roughness, which were used in this study. The low values of θ (e.g., near to 10�) 
decreases the influence of soil roughness. The decreasing rate of σ0 can be also observed 
after 30�(Oh, Sarabandi, and Ulaby 2004). Although surface roughness is a confounding 
factor on bare soil analysis, it has been reported that the backscattering from a rough 
surface increases with roughness (Toure et al. 1991; Oh, Sarabandi, and Ulaby 2004; 
Verhoest et al. 2008). Thus, finding a straightforward correlation between rmsð Þ=l and 
σ0 for the datasets were complicated. To find the most appropriate mathematical function 
for soil surface parameters, sinusoidal and cosine functions were initially tested, although 
this did not result in a high correlation with. However, logarithmic functions resulted in 
a high correlation coefficient. For instance, an exponential function resulted the best 
fitting for rms (see exp A3 rmsð Þð Þ in Equation (6)). It is also worth noting that the coefficient 
(A3) was used in the power of the exponential function to increase the correlation and, 
thus, to improve the prediction accuracy of the model.

3.3. Model development and accuracy assessment

All the in-situ data (see subsection In-situ datasets) were randomly divided into training 
(75%) and test (25%) datasets. The training data were used to develop the empirical 
models and, in fact, to calculate the coefficients of each model using least square method. 
In total, 39 and 29 samples of LWREW and CRPRW were, respectively, selected to train the 
models. The test data (13 and 10 samples of LWREW and CRPRW, respectively) were also 
employed for accuracy assessment through calculating the Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and unbiased RMSE (ubRMSE) metrics (or the error 
standard deviation). 

MAE ¼
1
N

XN

i¼1

σ0
est ið Þ � σ0

im ið Þ
�
�

�
� (7) 

ubRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

σ0
est ið Þ � σ0

est

� �
�
XN

i¼1

σ0
im ið Þ � σ0

im

� �
 !2

v
u
u
t (8) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

σ0
est ið Þ � σ0

im ið Þ
� �2

v
u
u
t (9) 
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RMSE2 ¼ ubRMSEð Þ
2
þ b2 (10) 

b ¼
1
N

XN

i¼1

σ0
est ið Þ � σ0

im ið Þ
� �

(11) 

where N is the number of points with both estimated backscattering coefficient from 
models (σ0

est) and that of extracted from and image (σ0
im). The overbar represents the 

average of the variables. The ubRMSE measures the RMSE excluding the bias (b). It is 
worth noting that RMSE is critically undermined if there are biases in either the average or 
the amplitude of fluctuations in the estimation (Taylor 2001; Entekhabi et al. 2010; Liu, 
Yang, and Yue 2018). Thus, the mean-bias can easily be removed by defining the unbiased 
RMSE, which implies RMSE � bj j and emphasizes on the deficiency of the RMSE in the 
presence of mean-bias.

The development of models and accuracy assessment included the following:

(1) The accuracies of the Champion, Sahebi, and Zribi/Dechambre models with the 
corresponding original coefficients were assessed using the test data.

(2) The coefficients of the Champion, Sahebi, and Zribi/Dechambre models were re- 
calculated using the training data and least square method and the accuracies of 
these refined models were then evaluated using the test data.

(3) The coefficients of the modified Zribi/Dechambre model (Equation (5)) were calcu
lated using the training data and least square method and, then, its accuracy was 
assessed using the test data.

(4) The new proposed model (Equation (6)) was developed by calculating its coefficients 
using the training datasets. Then, its accuracy was evaluated using the test data.

4. Results and discussion

The procedure described in subsection Empirical backscattering models was applied to 
develop each empirical model, discussed by followed, and to obtain the level of accuracy. 
Consequently, all empirical backscattering models, including their coefficients and accu
racy parameters, are provided in Tables 3–7. Additionally, the distribution of the estimated 
σ0 from each model versus the σ0 obtained from the AIRSAR and RADARSAT-1 datasets for 
the test data are illustrated in Figure 2.

As clear from Figure 2(a,b), the σ0 values obtained from the calibrated Champion 
model are closer to the 1:1 line compared to those obtained from the original model. In 
fact, the original Champion model significantly underestimated and overestimated σ0 

values over LWREW and CRPRW, respectively. This can be also observed in Table 3, in 
which the MAE, RMSE and ubRMSE errors for the calibrated Champion model is consider
ably lower than those of the original model. Additionally, considerable differences were 
observed for the values of C2 and D in the original and calibrated Champion model (see 
Table 3). This may be due to the local characteristics of each study area (Champion 1996). 
As explained in Champion (1996), the difference could be due to the influence of k �
rmsð Þ and k � l on C2 (k is the wavenumber), which expresses roughness values, and their 

values are about 0.7 and 3.0 in the original Champion model. It was reported that there is 
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a negative relationship between k � rmsð Þ and C2, wherein as the latter decreases as the 
former increases (Champion 1996).

Figure 2(c,d) illustrates the σ0 derived from the original and calibrated Sahebi model 
(see Table 4 for the coefficient and the accuracies for the model with original and 
calibrated coefficients). As is clear, the accuracy of the calibrated model was higher 
than that of the original model. For instance, the RMSE values were 1.80 dB and 2.48 dB 
in the LWREW study area for the calibrated and original Sahebi models, respectively. The 
most important reason is that the calibrated model was developed based on the datasets 
collected in this study. Another reason might be due to the large difference between θ in 
these two cases. The original coefficients were calculated using the data from the 
Chateauguay site acquired with 20° to 47° angles; however, θ was between 47° and 64° 

Table 3. The accuracy of the Champion model obtained from the original coefficients of the model 
and the calibrated coefficients using the in-situ data (training data) in this study.

Study area Datasets Coefficient C1 C2 C3 D MAE (dB) RMSE (dB) ubRMSE (dB)

LWREW AIRSAR Original −29.20 27.20 2.80 17.42 6.89 2.93 6.64
Calibrated −16.25 0.03 1.58 −0.54 1.81 1.40 1.14

CRPRW RADARSAT-1 Original −29.20 27.20 2.80 17.42 6.09 2.60 5.50
Calibrated −19.45 78.27 −2.48 43.05 1.80 1.64 2.44

Table 4. The accuracy of the Sahebi model obtained from the original coefficients of the model and 
the calibrated coefficients using the in-situ data (training data) in this study.

Study area Datasets Coefficient A1 A2 A3 A4 D MAE (dB) RMSE (dB) ubRMSE (dB)

LWREW AIRSAR Original −27.14 17.50 0.25 −0.31 1.85 3.48 2.48 2.97
Calibrated −8.38 42.50 52.09 −2.41 −0.15 2.95 1.80 1.60

CRPRW RADARSAT-1 Original −27.14 17.50 0.25 −0.31 1.85 3.02 1.83 2.41
Calibrated −14.22 26.72 1.00 −1.41 −0.70 2.38 1.62 1.74

Table 5. The accuracy of the Zribi/Dechambre model obtained from the original coefficients of the 
model and the calibrated coefficients using the in-situ data (training data) in this study.

Study area Datasets Coefficient A B D MAE (dB) RMSE (dB) ubRMSE (dB)

LWREW AIRSAR Original −13.30 1.56 0.22 1.98 1.46 1.34
Calibrated −14.70 0.21 2.36 1.42 1.24 0.69

CRPRW RADARSAT-1 Original −13.30 1.56 0.22 5.37 2.44 4.78
Calibrated −16.20 2.99 38.96 2.44 1.64 1.80

Table 6. The accuracy of the modified Zribi/Dechambre model proposed in this study.
Study area Datasets A B D MAE (dB) RMSE (dB) ubRMSE (dB)

LWREW AIRSAR −12.50 −3.82 2.63 1.33 1.20 0.58
CRPRW RADARSAT-1 −16.72 −4.22 42.93 2.30 1.59 1.65

Table 7. The accuracy of the new proposed empirical backscattering model with and without 
correlation length (A5).

Study area Datasets A1 A2 A3 A4 A5 MAE (dB) RMSE (dB) ubRMSE (dB)

LWREW AIRSAR −11.94 26.23 0.26 2.08 −2.38 1.36 1.20 1.16
−14.96 42.57 0.61 0.17 0.00 3.03 1.82 1.80

CRPRW RADARSAT-1 −5.21 51.40 0.38 0.15 −2.83 3.04 1.83 1.69
−14.59 40.09 0.60 0.12 0.00 3.50 1.97 1.54
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Figure 2. Comparison of the backscattering coefficients (σ0) obtained from the SAR datasets and 
different empirical backscattering models. AIRSAR and RADARSAT-1 images were acquired from 13 
samples of the Little Washita Experimental Watershed (LWREW) and 10 samples of Chateauguay River 
and Pike River watersheds (CRPRW) study areas, respectively. The diagonals are 1:1.
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in this study. Overall, the accuracy increased in both datasets using the calibrated model 
(Table 4); however, better improvement was observed in the CRPRW study region, in 
which θ was smaller than that of the LWREW study area. Therefore, it was concluded that 
the Sahebi model more accurately estimates σ0 when θ < 47�. Finally, the Sahebi model 
did not underestimate to the same degree as the Champion model when σ0 was between 
−15 dB and −10 dB.

Figure 2(e–h) and Tables 5–6 provide the results of both the original and calibrated 
Zribi/Dechambre models, as well as the modified Zribi/Dechambre model proposed in 
this study. Comparing the accuracy parameters provided in Tables 5 and 6, it was 
observed that the modified Zribi/Dechambre model had the highest accuracy in estimat
ing σ0, followed by the calibrated and original Zribi/Dechambre models, respectively. 
Over LWREW, a slight overestimation of approximately 0.5 dB was observed when σ0 was 
between −18 dB and −15, while a slight underestimation was observed for greater σ0 

values except when σ0 = −10 dB. Furthermore, Figure 2(e–h) shows the sensitivity of the 
original Zribi/Dechambre model to small θ values, as the original model underestimated 
all σ0 values in RADARSAT-1 data acquired over CRPRW. It was also observed that the 
distribution of the estimated σ0 values obtained from the modified Zribi/Dechambre 
model was more accurate than those of the original and calibrated Zribi/Dechambre 
models.

Figure 2(i,j) and Table 7 provide the results of the backscattering model proposed in 
this study. As clearly illustrated in Figure 2, the estimated σ0 values from the proposed 
model were closer to the centreline compared to Champion, Sahebi, and Zribi/ 
Dechambre models, indicating the higher accuracy of the proposed model. This was 
also observed by comparing all the results provided in Table 3 to 5 and 7, where the 
proposed model had the lowest MAE, RMSE and ubRMSE values. For instance, the 
RMSE errors decreased by between 0.10 dB and 1.50 dB for the LWREW and between 
0.15 dB to 1.00 dB for the CRPRW study areas compared to the Champion, Sahebi, and 
Zribi/Dechambre empirical models. As another example, the high overestimation and 
underestimation of σ0 values when using the Champion and Sahebi models were 
improved by the new proposed model (compare Figure 2(a–d,i,j)). However, the new 
backscattering model slightly overestimated and underestimated σ0 by up to 1 dB in 
some cases.

The modified Zribi/Dechambre model provided the smallest metrics in Table 3 to 7, 
where estimated values were the closest results to the centreline in Figure 2. The MAE, 
RMSE, and ubRMSE of this model were, respectively, 1.33, 1.20, and 0.58 over the LWREW 
study area; and they were, respectively, 2.30, 1.59, and 1.65 over the CRPRW study area. 
According to the results in Tables 3–6, significant differences were observed for four 
models (the Champion, Sahebi, modified and original Zribi/Dechambre) in the two 
datasets. For instance, there were 40 and 36 values differences in D in the modified and 
Zribi/Dechambre models, respectively. Additionally, considerable differences were 
obtained in the Champion and Sahebi models. However, in the new proposed model, 
the model coefficients values, which were calibrated using field data, remained stable in 
the two datasets. The average variations of datasets coefficients were approximately 7, 
which was lower two, three, three, and five times compared to other models. Therefore, 

1940 S. M. MIRMAZLOUMI ET AL.



differences reflected the necessity of the calibration of the four models, which is not 
always practical.

Another experiment carried out in this study was investigating the importance of l in 
improving the accuracy of estimating σ0, and the results are demonstrated in Table 7 and 
Figure 3. Specifically,lwas removed from the proposed model and the accuracy of the model 
was recalculated and then compared with that of the original proposed model. According to 
Table 7, the accuracy of the proposed model decreased whenlwas removed. For instance, 
RMSE increased from 1.20 dB to 1.82 dB in the LWREW study area and it increased from 
1.83 dB to 1.97 dB in the CRPRW study region whenlwas removed. Most studies discussed in 
the Zribi and Dechambre model section, exploited surface responses using exponential corre
lation function, while the inverse function of exponential (logarithm) performed efficiently 
over the datasets of this study. This showed the importance of considering l as an indepen
dent parameter to highlight its effect. It could be concluded that since removing l decreased 
the estimation capability, the effects of l might be relatively limited by describing l as 
a function of other independent parameters, which have their own limitations. Therefore, 
l could affect the backscattering models by choosing a proper function and there are four 
important parameters that can affect σ0 values in a SAR images (i.e., SM, θ, rms and l), all of 
which should be considered in backscattering models to achieve the highest possible 
accuracies.

5. Conclusion

SAR systems acquire valuable datasets from which soil surface parameters may be derived 
using backscattering models. The objectives of this study were to (1) calibrate several 
empirical backscattering models, including the Champion, Sahebi and Zribi/Dechambre 
models, and (2) propose two new models, including the modified Zribi/Dechambre and 

Figure 3. Comparison between the backscattering coefficients (σ0) obtained from the SAR datasets 
and the new proposed empirical backscattering model when correlation length (l) was considered and 
removed. AIRSAR and RADARSAT-1 images were acquired from 13 samples of the Little Washita 
Experimental Watershed (LWREW) and 10 samples of Chateauguay River and Pike River watersheds 
(CRPRW) study areas, respectively. The diagonals are 1:1.
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a novel model proposed in this study, to accurately estimate σ0 values. Two SAR datasets, 
acquired by AIRSAR and RADARSAT-1, over two study areas with different soil character
istics were used to evaluate the accuracy of each model. Both the original and calibrated 
Champion, Sahebi and Zribi/Dechambre models were investigated in this study, and it 
was concluded that the calibrated models more accurately estimated σ0 over the study 
areas. Moreover, it was concluded that the modified Zribi/Dechambre model developed 
in this study had the highest accuracy in estimating σ0 values compared to all models 
evaluated in this study. However, the new proposed empirical model had higher stability 
in estimating the coefficients over two datasets, i.e. the least differences of the estimated 
coefficients for two datasets indicated that the new proposed model remained stable in 
the two datasets. Thus, the new proposed model can be potentially utilized over other 
datasets. Finally, it was concluded that all important soil surface parameters and SAR 
configuration parameters that can affect σ0, including l, should be considered in any 
empirical model developed to obtain the highest possible accuracy. This is why multiple 
previous studies have implemented the correlation length using exponential function 
relating to other parameters (e.g., rms, θ, polarization) based on IEM model modifications 
(Baghdadi et al. 2004; Baghdadi, Holah, and Zribi 2006; Baghdadi et al. 2012; Choker et al. 
2017; El Hajj et al. 2019; Mirsoleimani et al. 2019). Although the effect of vertical soil 
roughness has been examined exponentially, a logarithmic function was proposed in this 
study to exploit the horizontal impact. It was tried to produce an accurate empirical model 
by (1) calibrating the coefficients of the original models through fitting/investigating 
different forms of statistical models (e.g., exponential, linear, and logarithmic), and (2) 
considering the well-known relationships between soil surface parameters and σ0 (e.g. 
backscattering from a rough surface increases with roughness and backscattering from 
a rough surface decreases with increasing θ). However, considering both facts together 
was challenging and resulted in a limitation in improving the accuracy of the proposed 
model. Moreover, finding the most optimal coefficients for the proposed model was 
challenging considering the wide range of parameters of the datasets, which were used 
in this study. Finally, the unknown effects related to the nature of the study area and radar 
noise range might disturb empirical estimations in this study. Since all the experiments in 
this study were performed using SAR data with C-band and HH polarizations, it is 
suggested that future studies calibrate previous empirical models and evaluate the 
accuracy of the proposed models for SAR data with other bands and polarizations types 
(i.e., L-, P-, and X-band/VV (Vertical Vertical) and VH (Vertical Horizontal) polarizations).
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