Conference paper Open Access

Investigating 3D-STDenseNet for Explainable Spatial Temporal Crime Forecasting

Maguire, Brian; Ghaffar, Faisal


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Crime Forecasting</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Spatial-temporal</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">DenseNet</subfield>
  </datafield>
  <controlfield tag="005">20210122122721.0</controlfield>
  <controlfield tag="001">4456670</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">2-4 October 2020</subfield>
    <subfield code="g">ESANN</subfield>
    <subfield code="a">European Symposium on Artificial Neural Networks</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Innovation Exchange - IBM Ireland</subfield>
    <subfield code="a">Ghaffar, Faisal</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">283960</subfield>
    <subfield code="z">md5:8fcd8cd592a8edd96e0611dce4fe0f7c</subfield>
    <subfield code="u">https://zenodo.org/record/4456670/files/ESANN2020 (3).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.esann.org</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4456670</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Innovation Exchange - IBM Ireland</subfield>
    <subfield code="a">Maguire, Brian</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Investigating 3D-STDenseNet for Explainable Spatial Temporal Crime Forecasting</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">786687</subfield>
    <subfield code="a">Technology, training and knowledge for Early-Warning / Early-Action led policing in fighting Organised Crime and Terrorism</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Crime is a well-known social problem faced worldwide. With the availability of large city datasets, the scientific community for predictive policing has switched its focus from people-centric to place-centric, focusing on heterogeneous data points related to a particular geographic region in predicting crimes. Such data-driven techniques identify micro-level regions known as hotspots with high crime intensity. In this paper, we adapt the state-of-the-art spatial-temporal prediction model STDenseNetFus to predict crime in geographic regions in the presence of external factors such as a region&amp;rsquo;s demographics, seasonal events and weather. We demonstrate that STDenseNet maintains prediction performance compared to previous results [1] on the same dataset despite significantly reduced parameter count. We further extend STDenseNetFus architecture from two-dimensional to three-dimensional convolutions and show that it further improves the prediction results. Finally we investigate the use of the DeepShap model explanation method to provide insights into the important input features effecting the model forecasts.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4456669</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4456670</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
26
18
views
downloads
All versions This version
Views 2626
Downloads 1818
Data volume 5.1 MB5.1 MB
Unique views 2424
Unique downloads 1717

Share

Cite as