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Abstract—Telemedicine, or the ability granted
to doctors to remotely assist patients has been
greatly benefited by advances in IoT, network com-
munications, Machine Learning and Edge/Cloud
computing. With the impeding arrival of 5G, virtu-
alized infrastructures and cloud-native approaches
enable the execution of unprecedented procedures
during such patient/doctor interactions, allowing
medical professionals to e.g. request higher granu-
larity metrics from patients’ telemetry equipment,
or perform on-demand data mining/processing of
patient’s stored data in order to provide a more
educated diagnostic or prediction.

In this work we coalesce the virtues of virtual-
ized infrastructures and IoT into a solution able
to satisfy increasing data processing demands for
eHealth, e.g. for telemedicine applications, remote
assistance or patient pre-screening procedures. The
proposed platform, CURATE, leverages Network
Functions Virtualisation Management and Orches-
tration (NFV MANO) for the on-demand instan-
tiation of the required virtual resources on the
operator’s infrastructure, as well as the concept of
5G Network Slices to guarantee e�cient resource
allocation and tenant isolation. Results show the
proposed platform is able to e�ciently make use
of the available hardware resources via Network
Slices, as well as provide cost-e�ective service guar-
antees employing dynamic scaling operations.

Index Terms—NFV, IoT, eHealth, Slicing, 5G

I. Introduction
The 5G Public-Private Partnership Infrastructure

Association (5GPPP IA) has identified the growing
proportion of elderly population as a key factor of
the increase in expenditures on the healthcare sec-
tor [1]. It is then no surprise to realise that much
of the 5GPPP e�orts have shifted towards assessing
its root causes, such as lifestyle monitoring, active
ageing and wellness. One of the main trends focuses
on out of hospital medical assistance (i.e. telemedicine)
leveraging IoT for metrics collection and actuation, as
well as cloud-native approaches and Machine Learning
techniques for remote on-demand preventive/reactive
analysis or pre-screening procedures (e.g. while on
route to hospitals).

To circumvent the CAPital and OPErational ex-
penditures (CAPEX, OPEX, respectively) that would
be required in traditional network infrastructures, e.g.
to provide lifestyle monitoring applications over large
geographical areas, Network Functions Virtualization
(NFV) [2] has been proposed. In the NFV vision, most
of the network functions supporting the communi-
cation infrastructure are placed inside virtualization

containers, e.g. Virtual Machines (VM), which are
then instantiated on demand on top of fairly generic
pools of compute, network and storage resources, i.e.
data centers. Whilst adapting its infrastructure to ac-
commodate NFV and other 5G-enabling technologies
(e.g. SDN), Mobile Network Operators (MNO) are
finding value on sharing its infrastructure with third-
party applications developers, which in turn see in the
MNO platform’s unique services (i.e. ultra low latency
via MEC) a key business enabler.

This paper coalesces into an end-to-end 5G service
orchestration platform the virtues of constant health
metrics monitoring provided by IoT, the prediction
and alert capabilities enabled by Machine Learning
techniques, the infrastructure dynamism o�ered by
NFV, and the centralized control of resources re-
alized via the standardized NFV Management and
Orchestration (MANO) framework [3]. Said platform,
referred to as CURATE, leverages the resource hetero-
geneity characteristic of two-tiered edge/cloud archi-
tectures to e�ciently satisfy application requirements
in terms of computation and latency.

The following Section II provides an outlook of sim-
ilar proposals in the literature, as well briefly describes
Machine Learning techniques leveraged in eHealth
applications. The proposed end-to-end eHealth ser-
vices orchestration platform, CURATE, is presented
in Section III, alongside descriptions of the enabling
technologies, e.g. NFV. The evaluation platform and
scenarios are described in Section IV, while results
and conclusions are presented in Sections V and VI,
respectively.

II. Related Work
Even though our previous work proposed a platform

able to instantiate computation agents tailored to the
detection of anomalies on patient data [4], it did not
consider Machine Learning techniques nor the stan-
dards proposed by ETSI regarding Network Functions
Virtualization (NFV). Furthermore, it disregarded the
role MNO could play as providers of eHealth services.
This section discusses relevant learning techniques
used in eHealth applications, as well as how NFV
would enable them on top of a dynamic MNO infras-
tructure.

Deep learning (DL) is a subset of machine learning
(ML) methods. They represent a major advance to
uncover useful information from raw data [5], which
paves the way to build better models than classical ML
methods and thereby to improve data analytics tasks



such as classification, prediction or pattern recog-
nition. DL has been recently considered for several
healthcare applications, particularly, to analyze time
series of health data. For instance, in [6] authors con-
sider Long Short-Term Memory Networks (LSTM), a
type of recurrent neural network, to develop a pre-
dictive model for healthy Electrocardiogram (ECG)
signals. Such predictive model is then used to detect
anomalies in ECG signals as deviations. In this regard,
the advantage of LSTM, and DL in general, is that
they avoid elaborate preprocessing of the raw data.
Another example on the applicability of DL to time
series of health data is [7]. In that paper authors detect
arrhythmias in ECG signals by using LSTM meth-
ods. Also, they tackle the class imbalance problem of
anomalous ECG signals by using data augmentation
techniques. Namely, DL methods known as Generative
Adversarial Networks (GAN).

Several works have considered NFV, network slicing
and a hybrid IoT Edge/Cloud architecture to pave the
way for health data analytics. In [8] authors consider
a hybrid Edge/Cloud IoT architecture for the problem
of ECG classification. They consider IoT devices that
generate health data, then such raw data is sent to
edge servers that implement the ECG classification
based on a DL algorithm consisting of a Convolu-
tional Neural Network (CNN). They claim that their
solution o�ers lower data analytics delay compared to
having the algorithm located at the cloud and that
it preserves the user privacy as the data is kept at
the edge of the network. The cloud is considered as
an interface with doctors and for more accurate infer-
ence, though no further details are provided. In [9], a
media-centric eHealth use case is considered within the
context of 5G network slicing. The scenario is based
on a connected ambulance for pre-hospital care in e.g.
stroke prevention. The ambulance streams video to a
Multi-access Edge Computing (MEC) server. Then,
the applications at the MEC analyze the health data
and send the result to doctors at a remote location.
Their contribution relies on proposing end-to-end QoS
network slices to support this mission-critical media
service use case and other vertical industries with
diverse QoS requirements.

E�ort towards an infrastructure-and-specifications
agnostic platform as a service (PaaS) for Vertical Ser-
vice Providers (VSP), like [10], are getting attention
mainly due to the abstraction of the complexities
of infrastructure management, but also because the
services it provides follow a cloud-native approach
(e.g. deployment of micro services) which will play a
key role into enabling 5G and beyond [11]. Neverthe-
less, it proposes too big a disruption to the current
MNO environment, disregarding valuable specifica-
tions (e.g. [2], [3], [12]) that have promoted both
industry and community involvement (e.g. [13]).

Contributions

The contributions of this work can be summarized
as follows:

• Herein a hybrid Edge-Cloud IoT architecture is
considered as in [8]. However, unlike in [8] herein
NFV technology, an cloud-centric paradigms for
the development of applications is leveraged for
health data analytics. Thereby, our resulting ar-
chitecture is more flexible, programmable, and
e�cient in terms of computing and storage re-
sources. Moreover, the role of the cloud in health
data analytics is described more clearly, as we
highlight that it carries out the training of DL
algorithms using a large dataset of patients. Con-
sequently, the pre-trained DL methods can be
deployed at the edge, thereby still adhering to the
low latency and privacy requirements of such type
of applications.

• Show the benefits of designing any eHealth ap-
plication with dynamic scaling-out operations in
mind. Results show the number of simultaneous
processing request can doubled with the selection
of appropriate scaling-out triggers.

• In this work, as in [9] NFV and network slicing are
considered for health data analytics. Nonetheless,
unlike in [9] a hybrid Edge/Cloud architecture is
proposed. Namely, Cloud is used for the training
of the DL prediction algorithm and for protecting
the privacy of the patients in the training dataset.
Then, the pre-trained DL method can be deployed
at the Edge, thus achieving low-latency and also
complying with privacy regulations applying to
patients being monitored. Moreover, unlike [9],
this work proposes an scenario where the ML
algorithm and frameworks used are thoroughly
described.

III. CURATE
This section covers the di�erent elements that com-

pose the CURATE platform. First, a high level de-
scription of ETSI Network Functions Virtualization
(NFV) is presented. Secondly, CURATE platform is
described alongside its three main layers: Field, Edge
and Cloud. Thirdly, common ETSI NFV and CU-
RATE interfaces which administrators employ to cus-
tomize running services or gather telemetry informa-
tion are overviewed. At the end of the section readers
should have a complete picture of the infrastructure
and be well aware of its capabilities.

A. NFV Overview

The 5G vision proposes a flexible infrastructure,
where a pool1 of white servers (i.e. data centers) pro-
vide virtual compute, network and storage resources
to be provisioned on demand in isolated partitions
referred to as Network Slices. Such slices host Network
Services in the form of Virtual Network Functions
(VNFs), which are connected together via Software
Defined Network (SDN) overlays.

The ETSI Network Functions Virtualization (NFV)
Architectural Framework [14] is illustrated in Fig-
ure 1. In it, the NFV Management and Orchestra-

1Or geographically distributed pools e.g., data centers in
di�erent locations, or the multi-tiered cloud model.
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tion (MANO) block is in charge of determining the
availability of virtual resources in the data centers -
referred to as NFV Infrastructure (NFVI) - for the
orchestration of a network slice, as well as taking care
of the lifecycle management of each VNF, provide
telemetry information on the state of the NFVI and
VNFs, the termination of slices and the release of the
virtual resources. NFV MANO is composed of the
NFV Orchestrator (NFVO), VNF Manager (VNFM)
and Virtualized Infrastructure Manager (VIM). A
brief description of their role in the NFV framework
is provided below.

1) Virtualized Infrastructure Manager (VIM): Is
the responsible for the control and management of
the interaction between VNFs and the NFVI hardware
resources, such as compute, storage, and network, as
well as their virtualization. It takes care of exposing a
pool of virtualized resources derived from the NFVI,
as well as the allocation of such resources to each VNF.

2) VNF Manager (VNFM): Takes care of VNF
lifecycle management. That implies the instantiation,
scaling, and termination of one or several VNFs.

3) NFV Orchestrator (NFVO): NFVO is able to
gather information about the NFVI from one or sev-
eral VIMs through standardized reference points or
APIs (see Figure 1), and then determine the suitable
place in the NFVI to instantiate a VNF. As services
are often provided via network slices, NFVO is in
charge of satisfying all the slice’s VNFs requirements
prior orchestration. All in all, NFVO works as an
automation tool for instantiating and terminating
network slices from a centralized control position.
Furthermore, it enables unprecedented infrastructure
reutilization by allowing scaling out VNFs at runtime
(e.g. for preserving KPIs), or freeing resources at low-
demand periods for energy savings.

Scaling out refers to the replication of an existing
VNF, conversely, scale in eliminates such replicas.
In CURATE, as shown in the proposed Scenario-B
in Section IV, any scaling operation is triggered by
the NFVO according to a set of user-defined poli-
cies. These policies in turn are based on telemetry
information (e.g. percentage of CPU usage, available
memory, etc.) of the VNFs. Reference VIMs, such as
OpenStack [15], provide such telemetry services via

projects like Gnocchi [16], which exposes APIs for the
NFVO.

B. CURATE description

The proposed CURATE platform is rooted in the
aforementioned NFV architecture. It is segmented in
three layers, namely: Field, Edge, and Cloud. As
names suggest, Field is where data is generated,
whereas Edge and Cloud refer to two di�erent Point
of Presence (PoP) of the network operator, usually
considered part of a NFVI. The former is closest to the
Field, while the latter refers to powerful data centers
far removed from the users. This so-called two-tiered
cloud architecture allows for delay sensitive applica-
tions to be orchestrated in VNFs at the Edge, while
computational-heavy operations can be orchestrated
in the Cloud.

In CURATE, the characteristics of the Cloud and
Edge layers are exploited in two main ways. First,
as mentioned above computational heavy operations
(i.e. model training) are performed with large training
sets in the Cloud, while a pre-trained model within
a Network Slice is orchestrated at the Edge in order
to provide faster reaction times. Second, to enforce
data privacy, testing data sets (i.e. data from the Field
layer) are not stored in the Cloud but directly tested
against the pre-trained model at the Edge.

An overview of the CURATE platform is presented
in Figure 2. What follows details the components of
each layer.

1) Field layer: In CURATE, the Field layer refers
to the user domain. Here, data from sensors are gath-
ered and transmitted to the CURATE platform via
LTE. As shown in Figure 2, CURATE is not limited to
patients, but is envisioned to satisfy many m/e-Health
use cases’ computational needs, such as patient’s pre-
screening while still in the ambulance, or serve as
support infrastructure for processing data from homes
or hospitals.

2) Edge layer: This layer holds the required virtual
compute, network and storage resources to:

• Receive and temporarily store patients’ metrics
from the Field layer.

• Instantiate the services as network slices required
to process patients’ data.

• Provides NFV telemetry information to the Cloud
layer for management purposes.

More relevantly, the Edge layer supports the net-
work slices containing pre-trained services that guar-
antee faster anomaly detection in the data received
from the Field layer.

3) Cloud: Is composed of powerful compute nodes
and large training sets, better suited for faster model
training than the Edge. It also holds the controllers
of the whole infrastructure, that is: NFV MANO,
and Radio Access Network (RAN) Slice Manager (i.e.
FlexRAN [17]); which makes it the entry point for
Operations/Business Support Systems (OSS and BSS,
respectively) to the infrastructure. That is, Network
Slices (i.e. services) are requested and orchestrated
from the Cloud.
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C. Domains

With such a high collection of elements, this section
attempts to assign ownership or lack thereof to the
di�erent layers of the CURATE topology, and also
its administrative domains. As shown in Figure 2,
CURATE infrastructure has three layers, each one
corresponding to an infrastructure domain of the same
name. Without loss of generality, it can be safely
assumed that Edge and Cloud layer are typically
owned by a MNO, while the Field can be composed
of Commercial O�-The-Shelf (COTS) hardware2. This
does not restrict the event of MNO outsourcing Cloud
functions (e.g. AWS, Azure), but indeed stresses the
relevance of the Edge and the competitive advantage
it o�ers MNO, e.g. to develop cloud services o�ering
low latency or edge computation [12], [18].

As MNO may lease portions of their NFVI (i.e.
as Network Slices), a description of di�erent admin-
istrative domains is required. The common scenario
assumes a MNO owns the NFVI, but a Vertical Service
Provider (VSP) owns the application, i.e. eHealth
provider. That is, the eHealth provider is responsible
for the correct operation of the application, while
MNO should ensure Lifecycle Management (LCM)
of the slices and elements therein (e.g. VNFs, vir-
tual links). CURATE, via the scenarios proposed in
Section IV demonstrates the deployment of eHealth
services assuming complete control of infrastructure
and administrative domains. Therefore the procedures
detailed in Section IV cover both perspectives, i.e.
MNO and VSP.

D. CURATE Interfaces

CURATE allows authorized third-parties (e.g. OSS)
to request the instantiation of a predefined Network
Slice to the NFV Orchestrator. Furthermore, these

2With the exception of the SIM card.

same authorized entities may query the VIM in order
to gather relevant performance metrics from the Cloud
or Edge layers3. In the evaluations that follow, medical
professionals will trigger the instantiation of services in
Network Slices from the position of OSS/BSS in Fig-
ure 1, that is, through NFVO Application Program-
ming Interfaces (APIs) provided via the Os-Ma-Nfvo

reference point.

IV. System Evaluation
This section evaluates the capabilities of the CU-

RATE platform through two di�erent but complimen-
tary scenarios.

In these evaluations, patients or data generators
are emulated via software. Specifically, patients’ data
generators run on top of Raspberry Pi 3 Model B
devices. Metrics from such generators are transmitted
via LTE towards the virtual Evolved Packet Core
(vEPC), which are then routed towards the corre-
sponding receiver within a network slice. The afore-
mentioned LTE link is composed of three elements:
1) the User Equipment (UE), 2) the Remote Radio
Head (RRH) and Baseband Unit (BBU), and the 3)
vEPC. The first element is a commercial USB stick
connected to the data generators, such as the Huawei
E3372. The second is an USRP software-defined radio,
specifically National Instruments B210 as RRH, and
as BBU OpenAirInterface (OAI) [19] in run on top
of an Intel NUC i7 3.5GHz. The vEPC is OpenAir
Core Network (OAI CN), instantiated as a VNF at
the Edge.

The Edge and Cloud layers of CURATE are consid-
ered a single NFVI. Edge is composed of 3 Intel NUC
i7 3.5GHz, while Cloud holds 2 Intel Xeon Skylake
Gold servers, each one with 12 cores at 2.3 GHz. As

3Both Cloud and Edge are considered part of the NFV Infras-
tructure (NFVI), and are managed by a single VIM located at
the Cloud layer.
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shown in Figure 2, ETSI OSM release SIX [20] is used
as NFVO, while OpenStack Queens [15] fills the VIM
and VNFM role.

Scenarios description

Across all scenarios, patients, P are assumed to be
equipped with telemetry devices, i.e. sensors. Each
sensor gathers a collection of metrics, m, every pre-
defined reporting interval d (in seconds). Metrics
include: heart rate (hr), breathing rate (br), blood
oxygen (sato), temperature (t), diastolic and systolic
blood pressure (bpd and bps, respectively). Therefore,
md(P ), refers to the batch upload of metrics m, from
patient P which is programmed with a reporting
interval d.

1) Scenario A - Emergency notification: This base
scenario attempts to showcase an example eHealth
application. It assumes that a day-worth of data from
a patient P is available, and therefore a Multivariate
Statistical Process Control (MSPC) could be com-
puted at the Cloud. Such model is then orchestrated
in a so-called MSPC slice per patient at the Edge.
Subsequent metric receptions from patient P will
then be compared to such model in the correspond-
ing slice in search for breaks in the correlation of
metrics (according to a pre-defined threshold). If an
anomaly is detected, the health professional is notified
immediately. This scenario is used to exemplify all
the elements and procedures commonly expected of
an eHealth application on top of CURATE. Figure 3
provides a message sequence diagram for this generic
scenario.

2) Scenario B - Metrics’ trend prediction: This sce-
nario envision the on demand creation of a Prediction

Slice, PS, at the Edge. PS holds the required predictor

VNFs to predict the trend of all metrics for a patient.
The medical professional may then evaluate the result
and take appropriate action. More specifically, in this
scenario we consider the prediction of time series of
health data, e.g. ECG, in a future time horizon that
is defined by the medical professional.

In this scenario, a given time series excerpt is as-
sociated to a given patient. It is also assumed that
such time series are sent to the PS located at the Edge
layer. Namely, we assume that N forecast requests are
sent to the PS, and that in order to comply with such
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(e.g. predictor replica resulting from a scaling-out operation) in
the server pool for load balancing.

requests the so-called predictor VNF is designed to
scale-out.

A service that e�ectively scales should be state-
less and be provided with networking services. The
former means that it should be able to perform its
function without persistent storage, much like a black

box function. The latter relates to the enabling of load
balancing among active instances of the service. The
predictor VNF for the eHealth service in CURATE
is stateless, that is, it processes incoming time se-
ries according to an already-defined model4 without
relying on persistent storage. Furthermore, to allow
load balancing among active replicas of the predictor
VNF, DHCP and DNS services were configured within
PS leveraging ISC [21] and Bind9 [22], respectively.
The composition of a given PS as well as an example
message sequence diagram for the registration of a
newly created VNF are shown in Figure 4. In the
aforementioned figure, the algorithm selecting the ap-
propriate reply (i.e. predictor VNF address to return)
is not reflected. In Scenario-B, the DNS server in a PS
performs a round-robin of the available addresses in
the domain group, e.g. pred.curate.io in Figure 4.

Regarding the scaling-out of the predictor VNF, it
is setup based on percentage of CPU usage (%CPU).
Precisely, the predictor VNF will be replicated if
%CPU > – during t > 10 s; where – = 60% is a
CPU usage threshold, and t is referred to a threshold
time. This ensures a relatively fast trigger of scaling
operations given sudden surges in CPU usage resulting
from the prediction process. Scaling in is also subject
to similar parameters. NFVO will trigger the termi-
nation of replicas when %CPU < — during tc > 60 s;
where — = 20% and tc is referred to as cooldown time.

The selection of these parameters is heuristic, nev-
ertheless it does not fall far from default values used
by Container Orchestration Engines (COE) such as
Kubernetes (– = 50%, t > 30) [23]. To provide the
NFVO with performance metrics of su�cient resolu-
tion, the default polling intervals at VIM telemetry
services where modified. Di�erent research directions
may be derived attempting to find optimal telemetry

4The one previously trained at the Cloud.



and scaling out parameters for particular tra�c loads,
or to reduce the application footprint on the infras-
tructure.

The main benefit of locating the prediction algo-
rithm at the Edge layer, compared to the traditional
approach of locating it at the Cloud, is that lower
latency can be provided. Moreover, we address the
privacy concerns of locating patient’s health data at a
remote backend cloud, as the data is analyzed closer
to its generation source and network slicing guarantees
isolation among users (i.e. among PS).

Regarding the prediction algorithm, herein we con-
sider LSTM, a type of recurrent neural network
(RNN). The rationale is that LSTM are among the
most e�ective and widely applied DL methods to
analyze time series, see e.g. [5, Ch. 10] and references
therein. In fact, compared to classical RNN, LSTM are
able to learn long-term dependencies of the sequential
data more easily. Also, they avoid convergence prob-
lems of classical RNN, which arise during the training
of the algorithm due to the vanishing gradient issue.

Finally, we assume that the LSTM is trained at the
backend cloud. This permits the use of a larger number
of time series excerpts for training purposes. Further,
as Cloud holds more computational resources than the
Edge, more exhaustive training can be done, which
leads to a more accurate LSTM model. Afterwards,
the pre-trained LSTM algorithm is deployed to the
PS located at the Edge. Note that the PS is ready for
predicting the time series of health data and no further
training is required at the Edge, this allows for a
reduction on the footprint scaling out operation would
leave on the NFVI, as replicas of predictor VNFs are
relatively lightweight5. This two-tiered Edge/Cloud
approach guarantees low latency, preserves the privacy
of the health data of the patients, and lowers the
footprint on NFVI resources.

V. Results
This section discusses the outputs from the pre-

viously defined scenarios. Specifically, an example of
the output from Scenario-A is provided, while the
aggregated number of processed requests employing
scaling-out strategies on top of CURATE are shown
for Scenario-B.

A. Output from MSPC workers

As shown in Figure 3, the anomaly detection trig-
gers the push of metadata to a Cloud service. An
example of such output is shown in Figure 5. The
figure highlights the fact that the observed value
of the patient’s temperature (t) deviated too much
from past trends. With such information the medical
professional may decide to contact the patient in order
to check her status.

Scenario-A attempts to highlight the elements and
the procedure followed by applications running on
top of CURATE. Namely, the training of a model in
the Cloud, and then the orchestration of pre-trained

51 vCPU, 1 GB RAM, no persistent storage.

Fig. 5. Sample of a temperature (t) anomaly sent to the
Cloud service from Scenario-A. X-axis show the name of other
monitored metrics, while Y-axis shows a normalized measure
of error between the observed and the expected correlations
between metrics.

processing VNFs within a slice at the Edge. The ben-
efits of this approach include: greater computational
capacity at the Cloud, which may handle larger data
sets and therefore yield a more precise model; and
a faster anomaly detection given pre-trained VNFs
in each MSPC slice. Notice that for exemplification
purposes, Scenario-A can be considered agnostic of
the type of model being generated in the Cloud, i.e.
sequence diagram in Figure 3 holds regardless of the
type of processing done in Step 1.

B. Leveraging Edge and dynamic scaling

In Scenario-B a LSTM neural network is trained at
the Cloud for the task of predicting a time-series of
health data, namely ECG time series.

For the experiment purposes we use the MIT-
BIH database, which contains ECG time series [24].
More specifically, it contains two-channel ECG record-
ings for 48 patients. Moreover, we have considered a
stacked LSTM neural network with an input layer, fol-
lowed by two LSTM layers and then a fully connected
layer as the output layer. This architecture is shown in
Figure 6. Note that the proposed LSTM architecture
belongs to the family of DL algorithms.

The dimensionality of the input layer is defined by
the history length of the time series considered for
training purposes and the number of features. We
consider 120 past points of the time series and 2
features, which correspond to the two possible ECG
channels associated to each patient in the MIT-BIH
database. The first LSTM layer has a dimensionality
of 32 hidden units and a hyperbolic tangent activa-
tion function. The second layer, has 16 hidden units
and we consider a ReLU activation function. The
dimensionality of the output layer is defined by the
number of time-series data points that we forecast. For
Scenario-B, a future horizon prediction of 72 points
is considered. A RMSprop optimizer was used for the
training of the stacked LSTM method. This is a widely
used variant of the stochastic gradient method and in
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general provides excellent adaptation of the learning
rate in the training process. Also, it permits to work
with mini-batches of training data to ensure a good
tradeo� between convergence speed and stability. The
loss function considered for the training is the mean
absolute error between the LSTM output and the
target.

A training set of 3 · 105 points and 2 features is
used for the stacked LSTM network described above.
The data set used for validation has 1 · 105 points and
2 features. This corresponds to the ECG time series
length and the two ECG channels, respectively. Also,
10 epochs and 200 steps per epoch are used during
the training phase. Furthermore, mini-batches of 256
training examples are used. In the validation, 50 steps
were considered. Also, it is worth mentioning that
Keras, Tensorflow release 2.0 [25] and Python are used
for the implementation of the LSTM and for the data
preparation of the MIT-BIH database.

The training at the Cloud paves the way to deploy
a pre-trained LSTM algorithm at the Edge. That is to
say, the LSTM is already trained and it is devoted to
predict the time series sent from the Field. This allows
low latency and circumvents any privacy concerns as
data is not stored. Note that our approach leverages
the benefits of a hybrid Edge/Cloud architecture more
properly than the related work [8]. As they do both
training and deployment at the Edge and do not
consider the Cloud for training purposes.

In Scenario-B the proposed evaluation attempted to
measure the number of concurrent forecast requests.
Taking advantage of the Edge layer, the PS was setup
so the predictor VNFs could scale-out if the %CPU
usage exceeded a predefined threshold. This e�ectively
makes the PS grow on demand and then shrink to its
original components when no longer stressed. Figure 7
shows the accumulated number of forecast requests
handled by the PS with di�erent scale-out configura-
tions, namely: none, single and up to two additional
predictor VNFs per PS.

Figure 7 shows that by taking advantage of the Edge
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Fig. 7. Accumulated number of forecast requests using di�erent
dynamic scaling strategies. a) No dynamic scaling, b) Scaling-
out a single predictor VNF, c) Scaling-out two predictor VNFs.

layer and dynamic scaling-out operations for predictor
VNFs within the PS, a positive impact can be obtained
on the number of forecast requests served. Namely,
for a given processing time, more requests can be
served by scaling the virtual computing resources, i.e.
instantiating more of the same VNF instances. Note
that this is more flexible than a traditional approach
where no virtualization of the infrastructure resources
is used, as in [8]. That is, we can adapt to the number
of requests by scaling-out the virtual resources and
consequently maintain the quality of service, i.e. the
processing time. Furthermore, were a sudden surge
on prediction request occur, these would be handled
automatically: requests will be handled by available
predictor VNFs6, or new replicas will be created as
part of a scale out operation orchestrated by the
NFVO.

Conventional approaches, such as [8], are not able
to adapt to an increasing number of requests while
maintaining the processing time. Thereby, CURATE’s
approach is able to reduce CAPEX/OPEX compared
to traditional non-virtualized approaches. Another in-
terpretation of Figure 7 is that for a given number
of requests, the scaling-out of resources allows the
reduction of the requests’ processing time, leading to
better quality of service than [8].

C. General comments

In the process of comparing CURATE’s NFV ap-
proach versus a traditional deployment of physical
network functions, focus should be put at the alleged
virtues of virtualization. CURATE would impose less
operational expenses if solely due to the reduced
amount of hardware components, but also thanks
to the ability to centralize control. As applications
and network functions are realized in software, a
joint Management and Orchestration (MANO) of the
infrastructure is possible. This fact greatly simpli-
fies traditionally complicated tasks, such as updating

6Load balanced by the DHCP and DNS services at each PS,
see Figure 4.



applications and/or communications infrastructure’s
services on demand.

CURATE emulates a business trend being explored
by MNO and enabled by 5G, which consist on o�ering
Platform as a Service (PaaS) instances to application
developers who seek to reap the benefits of multi-
tiered architectures (e.g. MEC for lower latency),
such MNO’s. This poses new challenges when MNO
attempt to share their infrastructure, but standard-
ization groups like ETSI NFV ISG are providing
guidelines to enable this kind of PaaS for cloud-native
applications [26], [10]. All in all, multi-tiered clouds
o�er enough resources for massive data processing as
well as su�cient flexibility for faster processing and
response. Such benefits are valuable in selected emer-
gency management scenarios, e.g. ambulances [27];
but may also become the default paradigm for more
common medical services [28].

VI. Conclusions
In the face of increased expenditures in the central-

ized healthcare system and an increasing proportion
of elderly population, 5GPPP IA proposes the de-
centralization of medical assistance (e.g., telemedicine
or at-home healthcare) in order to target lifestyle
monitoring, active ageing and wellness leveraging per-
vasive monitoring from IoT, state of the art prediction
techniques provided by Machine Learning or Artificial
Intelligences techniques, and a flexible virtual commu-
nications infrastructure under the NFV umbrella of
specifications.

In this work we present CURATE, an NFV-
rooted two-tiered Edge/Cloud platform able to sup-
port eHealth applications leveraging the aforemen-
tioned technologies. CURATE emulates a MNO’s in-
frastructure as a Edge/Cloud NFVI, where compu-
tational heavy operations (e.g. ML model training)
are delegated to VNFs at the more powerful Cloud
layer, while pre-trained models are orchestrated as
separate network slices at the Edge for resource iso-
lation, and faster prediction or anomaly detection.
CURATE is implemented with Commercial O� The-
Shelve (COTS) hardware and open source tools.

Results from the evaluation highlight the virtues of a
dynamic NFVI, specifically, coupled with a paradigm
shift towards cloud-native applications, CURATE is
able to support automatic scaling-out operations that
guarantee a response to an increasing number of simul-
taneous prediction request at the Edge. Furthermore,
e�ciency is enforced by automatically releasing the
NFVI resources during scaling-in operations.
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