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Abstract — Two new algorithms (GFGF1 and GFGF2) for 

event finding in wireless sensor and robot networks based on 
the Greedy-Face-Greedy (GFG) routing are proposed in this 
paper. The purpose of finding the event (reported by sensors) is 
to allocate the task to the closest robot to act upon the event. 
Using two scenarios (event in or out of the network) and two 
topologies (random and random with hole) it is shown that 
GFGF1 always find the closest robot to the event but with more 
than twice higher communication cost compared to GFG, 
especially for the outside of the network scenario. GFGF2 
features more than 4 times communication cost reduction 
compared to GFG but with percentage of finding the closest 
robot up to 90%. 

Keywords — face routing, GFG routing, greedy routing, 
wireless sensor and robot networks 

I. INTRODUCTION 
IRELESS sensor and robot networks (WSRN) 
emerged from the wireless sensor networks when 

some of the network nodes gained additional features 
(e.g. mobility, actuation etc.). One of the main challenges 
is to find the optimal robot to do the task - task allocation 
problem (also known as task assignment problem) [1]. 
Since the communication aspects of task allocation are 
not negligible, centralized solutions have a lot of 
drawbacks (e.g. high communication overhead, low 
responsiveness etc.). Since in real world applications 
robots cannot be modeled by a complete graph (i.e. every 
robot is within communication range of every other 
robot), there are still ways to improve the task allocation 
problem in WSRN.  

In this paper we explore the WSRN scenario in which 
sensors get the information about the event (e.g. fire) and 
a robot is supposed to react upon event. The wireless 
robot network is depicted in Fig. 1. The question is which 
robot is the best to react. This problem is formulated as a 
Multi-robot task allocation problem and there are several 
instances of this problem and several solutions proposed 
so far [2]. 

We assume that the robot network is connected but not 
forming a complete graph (i.e. robots communicate using 
multi-hop messaging) and the location of the event is 
known and reported to the collecting robot (using e.g. 
LPWAN technology [3]). This is robot S in Fig. 1. 
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Applying the Greedy-Face-Greedy (GFG) [4] algorithm 
in robot network, the new idea is to find nearby robot(s) 
depending on the chosen scenario. This scenario is 
depicted in Fig. 1 by the curve surrounding the event. By 
this scheme, robots do not activate energy consuming 
motors to move until one of them is chosen.  

 
Fig. 1. Applying GFG in robot network 

 
In this paper we present two algorithms that we 

designate as GFGF1 and GFGF2 where GFGF stands for 
Greedy-Face-Greedy-Find. In GFGF1 the routing starts 
by applying the Greedy algorithm: The starting node S 
forwards the message to the neighboring nodes and 
selects as a relay node the one that is the closest to the 
event destination D. If all the neighbors of current node 
are examined and there is no closer one, then the next 
step of the search is called the “Face” step. The routing is 
continued by examining the nodes on the face that are 
closer to the destination. This greedy-face approach is 
repeated until the destination is reached. In our scenarios 
the destination of an event is not part of the network, so it 
will never be reached. But with this algorithm, the closest 
node will always be found, as well as the face where D is 
surrounded by closest robots (i.e. first neighbors). In 
GFGF2 the communication costs are lowered for cases 
where outer face is explored incurring high 
communication overhead. 

For the simulations random generated networks are 
used. Topologies with fully randomized, and networks 
with circle holes in the middle of the network are used. 
To work with planar graphs, all the networks are 
transformed to Gabriel graphs. 

The contribution of this paper is two new algorithms 
based on well-known GFG algorithm applied to the new 
challenge - finding nearby robot(s) to the event location 
and with lowered communication overhead. GFGF1 
algorithm guarantees that all nearby robots to the event 
can be found for all scenarios with additional 
communication overhead compared to GFG. GFGF2 
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features additional communication overhead reduction.  
In the following sections we will present the basic 

ideas of GFG routing (Section II), and proposed 
algorithms GFGF1 and GFGF2 (Section III). This will be 
followed by the results and discussion (Section IV).  

II. GFG ALGORITHM 
Greedy routing is the simplest form of routing first 

proposed in [5]. In greedy phase of GFG algorithm, each 
node is forwarding the message to the node which is the 
closest to the destination, among all its neighbors. Only 
the neighbors which are closer to the destination are 
considered.  

Greedy routing forwards until the packet reaches a 
node such that all its neighbors are further from the 
destination than the node itself. The face routing is then 
applied until the packet reaches another node that is 
strictly closer to the destination. The greedy algorithm is 
then resumed. The algorithm can switch between greedy 
and face modes several times, but guarantees progress 
and delivery because face routing is always successful, 
and loops cannot be created since the algorithm always 
advances in greedy mode, and is guaranteed to further 
advance while in the face mode, that is, it is guaranteed 
to recover. Review of the properties of various GFG 
variations is given in [7]. 

Fig 2. Algorithm GFG, right hand rule example 
 

When the greedy part of GFG cannot find the closest 
relay node, the face routing phase of GFG begins. This 
would correspond to the routing from node S to node 1 in 
Fig. 2. Face routing (first mentioned in [6]) advances 
based on the intersection between a face and a straight 
line which connects the last routed node (at the beginning 
it is S) and destination D. The last routed node is chosen 
before or after the intersection depending if the before-
crossing or after-crossing method is used. A packet is 
routed along the interiors of the faces until an edge on the 
route intersects XD between X and D. In Fig. 2, from 
node 1 is starting the face routing phase and with the 
right-hand rule the message is forwarded further to nodes 
2 and 3. The routing would continue to node 6, but since 
the intersection with the line 1D occurs, face is changed 
from F1 to F2 and the routing continues to node 4, and 
then along the face to 5 and 6. After the change of face, it 
continues until the D is reached. The boundary of any 
face can be traversed by applying the right-hand rule 
(counterclockwise traversal) or the left-hand rule 
(clockwise traversal). In the right-hand rule the packet is 

forwarded along the next edge counterclockwise from the 
edge where it arrived.  

III. NEW GFGF ALGORITHMS 
In this section, new proposed GFGF algorithms are 

described. GFG algorithm applied to the scenario where 
destination D (event location) is not part of the network 
We call this algorithm GFGF1.  

In the GFGF1 algorithm, the stop criterion is defined 
as the moment when routing is passing the same edge that 
has already been visited in the same face. The algorithm 
works as follows: 

 
GFGF1:  

1. Follow greedy until delivery or failure  
2. If (failure) then 

o Search next node on the face (by choosing one 
among the neighbors of the node, based on 
right-hand rule 

o While dist(nextNode, D) > dist(addr, D)  
§ Find next node  
§ If (same edge seen) then finish the search 

3. Repeat steps 1 and 2 until D or same edge visited 

Corollary 1. GFGF1 always finds the closest robot to 
respond in connected networks. 

Proof: 
There are two scenarios – when D is inside of a face in 

the network (D1) and when D is outside of the network 
(D2, see Fig. 3). Since GFG is a loop-free algorithm with 
guaranteed delivery [7] it will traverse the face 
surrounding D1 (dashed red line in Fig. 3) as well 
traversing outer face in case of D2 (dotted blue line in 
Fig. 3). Accordingly, all nodes that are close to D1 or D2 
will be traversed and thus the closest could always be 
found. 

Fig 3. Two scenarios: D1 in the network and D2 
outside of the network 

 
In more details, the first scenario from Fig. 3, where 

D1 is inside of a face, the GFGF1 algorithm will always 
find the closest node with the ‘greedy’ part and with the 
‘face’ part which traverses and encircles the D1. The 
routing will stop when an edge is traversed once again. It 
is called the stop criterion. In that way, a node on the 
routing path will always be the closest node to D1 and it 
will be surrounded by the nodes in the face where D1 is.  

The main drawback of GFGF1 is that it has additional 
messaging overhead compared to GFG, for the stop 



 

 

criterion (i.e. in order to determine if the edge has been 
already traversed). On the other hand, it guarantees 
finding the closest robot.  

 
In case of the second scenario, where D2 is outside of 

the network, routing will be done on the outer face thus 
always finding the closest node. However, 
communication overhead is significant in this case.  

In the case where D2 is outside of the network (Fig. 3), 
the main drawback is high communication overhead 
compared to the first scenario. It is due to the routing 
path that includes many nodes and therefore more 
messages are needed for the routing. Besides, most of the 
nodes are irrelevant. The question in such a case would 
be – how to determine which of routed nodes are really 
the most significant ones and which one should react?  

To lower the communication costs for this scenario the 
GFGF2 algorithm is designed. The proposed solution 
would be to define a radius R, and after the first node is 
found within the range R from D using GFG it is used as 
the stop criterion. This is depicted in Fig. 4. In order to 
examine the properties of this algorithm, range R is 
changed as R, 2R, 3R and 4R. 

 
Fig 4. Illustration of GFGF2 algorithm 

 
GFGF2:  

1. Follow greedy until delivery or failure  
2. If (failure) then 

o Search next node on the face (by choosing one 
among the neighbors of the node, based on 
right-hand rule 

o While dist (nextNode, D) > dist(addr, D)  
§ Find next node  
§ If (node in range R to destination) then 

finish the search 
3. Search all the neighbors of that node in range R 

and add them to the routing path 
4. Repeat steps 1 and 2 until D or node in range R  

IV. RESULTS AND DISCUSSION 
In this section the simulation results and discussion are 

presented. Simulations are performed for the random 
network topology and random network topology with 
hole. Network parameters are set as follows: monitored 
area is a unit square, with node coordinates between 0 
and 1, 100 nodes, parameter r (i.e. communication radius) 

is changed in range from 0.05 to 1, and 1000 simulations 
were performed for each setup. Disconnected networks 
were not taken into consideration. 

The simulations showed that for r<0.15, networks are 
almost never connected, so those cases were not taken 
into consideration. Besides, for r>0.5 there were no 
significant change in the results when compared with 
r=0.5. Accordingly, the results for r<0.15 and r>0.5 are 
not presented. 

In the simulations, we assume that collecting robot has 
information about the event (D) location and whether it is 
located inside or outside of the network. This information 
was calculated based on the point-in-polygon algorithm 
presented in [8].  

The measured values are average communication costs 
(i.e. average number of messages used in the routing). 
The obtained results were compared with the 
communication cost of the GFG. Average costs for 
GFGF1 compared with GFG, as well as average number 
of messages in the face which is surrounding D until the 
stop criterion is reached, for random topology and 
random topology with hole are given in the Fig. 5 and 6, 
respectively.  

Results show that GFGF1 has more than twice higher 
costs compared to GFG which is expected since event D 
is not part of the nodes in the network. For the random 
topology GFGF1 costs until the face around D is found, is 
very similar to the GFG communication costs. In 
topology with hole it is higher due to network topology 
(i.e. there are longer routes around the hole). 

 

 
Fig 5. Average communication costs of GFGF1 

(random topology) 
 

 
Fig 6: Average communication costs of GFGF1 

(random topology with hole) 
 

For both topologies, simulations showed that it is 
guaranteed to find the closest node to D for connected 
networks. It is another proof of the Corollary 1 made by 
simulations. 

The main drawback of GFG1 algorithm is in cases 
when D is placed outside of the network. In that case, the 
overhead compared to GFG is really significant since the 



 

 

loop around D consists of outer face nodes. It is depicted 
in Fig. 7.  

Fig. 7. Average communication costs of GFGF1 (D is 
outside of the network) 

  
In order to lower the communication costs of GFGF1, 

GFGF2 is designed. GFGF2 algorithm is simulated with 
the same set of parameters as for GFGF1 but only for D 
placed outside of the network. Only difference is the stop 
criterion based on the parameter R (range in which are 
neighbor nodes of the node closest to D) which is 
changed from R to 4R. The results are shown in Fig. 8. It 
can be seen that there is a significant improvement (up to 
800%) in overhead needed for routing using GFGF2 in 
case when D is outside of the network, compared to 
GFGF1.  

 
Fig. 8. Average communication costs of GFGF2 (R = 

0.1, random topology) 

Fig9. Percentage of finding the closest node (R = 0.1, 
random topology)  

 
In Fig. 9 is shown the percentage of finding the closest 

node to D, for various R. It is observed that this 
percentage varies from 55-90% for different parameters. 
The percentage is the highest for the 2R radius. Although 

GFGF2 does not find the closest robot, it has the 
communication costs that are more than 4 times lower 
featuring the main benefit of GFGF2 – communication 
overhead reduction.  

Fig. 9. Percentage of finding the closest node (R = 0.1, 
random topology) 

Similar results are obtained for the topology with hole.  

CONCLUSION 
In this paper two new algorithms for finding the event is 
proposed for two scenarios (event is within or out of the 
network). Both GFGF1 and GFGF2 algorithms are 
described and simulation results are presented. It can be 
observed that GFGF1 features guaranteed finding of the 
closest robot to the event but with communication 
overhead compared to GFG. This overhead is significant 
in scenarios where the event is outside of the network. To 
lower it GFGF2 is designed. It features more than 4 times 
communication cost reduction compared with GFGF1. 
However, percentage of finding the closest was up to 
90%. 
Further work on the subject will be based on a more 
thorough simulations performed using additional 
topologies (e.g. toroidal with crescent holes etc.). As one 
of the further research direction will be exploration of the 
influence and behavior of disconnected networks. 
Another possible research direction is possible 
application of these results to the behavioral anomaly 
detection in WSRN in the context of industrial IoT.  
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