Project deliverable Open Access

D2.4 - Packed-bed reactor using amine-ionic liquid -immobilized CAs blends for optimal capture of CO2 from off gas

Antonopoulou, Io; Rova, Ulrika; Christakopoulos, Paul

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CO2 capture process</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">amine-ionic liquid-immobilized CAs</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">enzymatic absorption</subfield>
  <controlfield tag="005">20210106122709.0</controlfield>
  <controlfield tag="001">4420806</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Rova, Ulrika</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Christakopoulos, Paul</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">656544</subfield>
    <subfield code="z">md5:d856bde348f11b0877243170763f1065</subfield>
    <subfield code="u"> D2.4_v1.1.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-25</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-bioreco2ver-h2020</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Antonopoulou, Io</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">D2.4 - Packed-bed reactor using amine-ionic liquid -immobilized CAs blends for optimal capture of CO2 from off gas</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-bioreco2ver-h2020</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">760431</subfield>
    <subfield code="a">Biological routes for CO2 conversion into chemical building blocks</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The goal of BioRECO2VER is to develop and validate the technical feasibility of more energy efficient and sustainable non-photosynthetic biotechnological processes for the capture and conversion of CO&lt;sub&gt;2&lt;/sub&gt; from industrial point sources into valuable platform chemicals. One of the specific objectives of the project is the development and application of robust enzymes for CO&lt;sub&gt;2&lt;/sub&gt; capture from industrial point sources and the improvement of a novel concept combining enzymatic absorption with ionic liquid-amine blends. It is aimed to achieve energy and cost reduction compared to the monoethanolamine (MEA)-based state-of-the-art technologies, increased resistance to major impurities and yield a concentrated gas stream of at least 95% CO&lt;sub&gt;2&lt;/sub&gt;.&lt;br&gt;
The objective of D2.4 was to demonstrate the operation of a packed-bed reactor using amine-ionic liquid-immobilized CAs blends for optimal capture of CO&lt;sub&gt;2&lt;/sub&gt; from off gas. Scaling up of the CO&lt;sub&gt;2&lt;/sub&gt; capture process using a packed-bed reactor requires the exploitation of the research outcomes of the project regarding CA improvement and the solvent development. The combination of CA with an MDEA-ionic liquid mixture would result in a ternary solvent with exceptional absorption properties compared to standard MDEA solvents and reduced regeneration temperatures compared to MEA-based technologies. Integration of immobilized and/or improved CA proved not to be a viable option for scaling up the CO&lt;sub&gt;2&lt;/sub&gt; capture. Nevertheless, integration of CA in free form with an amine-ionic liquid mixture for the CO&lt;sub&gt;2&lt;/sub&gt; capture from off gas using a packed-bed reactor on an automated absorption and stripping pilot plant, resulted in several fold higher absorption rates and CO&lt;sub&gt;2&lt;/sub&gt; recovery compared to aqueous solution of MDEA. CA-assisted CO&lt;sub&gt;2&lt;/sub&gt; absorption resulted in higher initial absorption rates, reduced absorption times and overall 25% higher CO&lt;sub&gt;2&lt;/sub&gt; recovery compared to absorption using only the ionic liquid-amine blend. This would improve the economics of CO&lt;sub&gt;2&lt;/sub&gt; capture technologies by reducing operation times and energy consumption due to regeneration, yielding a pre-treated concentrated gas stream of at least 92% CO&lt;sub&gt;2&lt;/sub&gt;. The set-up is now ready to perform real off gas pre-treatment for validation testing during the project.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4420805</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4420806</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">deliverable</subfield>
All versions This version
Views 1717
Downloads 1616
Data volume 10.5 MB10.5 MB
Unique views 1414
Unique downloads 1414


Cite as