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This technical note is composed of three parts:
e Reticolo code 1D for analyzing 1D gratings in classical mountings.
e Reticolo code 1D-conical for analyzing 1D gratings in classical and conical
mountings.
¢ Reticolo code 2D for analyzing 2D crossed grating.

They are free software that operate under Matlab. To install them, copy the companion
folder “reticolo_allege” and add the folder in the Matlab path. The software can be
downloaded here or there.

The version V9 launched in 01/2021 features a few novelties:

v' it includes a treatment of stacks of arbitrarily anisotropic multilayered thin-films.! Be
aware that the substrate and superstrate cannot be anisotropic. This part is documented
in Reticolo codes 1D-conical (or identically 2D).

v" It features an option to visualize the Bloch modes.

v Diagonal anisotropy (£, # &, # £,,) Can be incorporated in structured grating layers
and gratings with uniform layers having arbitrary anisotropy (&, # 0 ...) can also be
handled)

v" Itis fully compatible with earlier versions.
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! This is simply achieved by retaining a single Fourier harmonics coefficient in the expansion (nn=0). The
extension is not optimal from numerical-efficiency perspectives, but has been provided on demand of several users
who additionally complained of mistakes in available freeware packages on thin films.
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RETICOLO CODE 1D

for the diffraction by stacks of lamellar 1D gratings
(classical diffraction)

Authors: J.P. Hugonin and P. Lalanne
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Reticolo code 1D is a free software for analyzing 1D gratings in classical mountings. It
operates under Matlab. To install it, copy the companion folder “reticolo_allege” and add
the folder in the Matlab path.
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1. Generality

RETICOLO is a code written in the language MATLAB 9.0. It computes the diffraction efficiencies and the
diffracted amplitudes of gratings composed of stacks of lamellar structures. It incorporates routines for the
calculation and visualisation of the electromagnetic fields inside and outside the grating. With this version, 2D
periodic (crossed) gratings cannot be analysed.

As free alternative to MATLAB, RETICOLO can also be run in GNU Octave with minimal code changes. For
further information, please contact tina.mitteramskogler@profactor.at.

In brief, RETICOLO implements a frequency-domain modal method (known as the Rigorous Coupled wave
AnalysissRCWA). To get an overview of the RCWA, the interested readers may refer to the following articles:

1D-classical and conical diffraction

M.G. Moharam et al., JOSAA 12, 1068 (1995),

M.G. Moharam et al, JOSAA 12, 1077 (1995),

P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996),

G. Granet and B. Guizal, JOSAA 13, 1019 (1996),

L. Li, JOSAA 13, 1870 (1996), see also C. Sauvan et al., Opt. Quantum Electronics 36, 271-284 (2004) which
simply explains the raison of the convergence-rate improvement of the Fourier-Factorization rules without
requiring advanced mathematics on Fourier series and generalizes to other kinds of expansions.

2D-crossed gratings

L. Li, JOSAA 14, 2758-2767 (1997),

E. Popov and M. Neviere, JOSAA 17, 1773 (2000),

which describe the up-to-date formulation of the approach used in RETICOLO. Note that the formulation used in
the last article (which proposes an improvement for analysing metallic gratings with continuous profiles like
sinusoidal gratings) is not available in the RETICOLO version of the web. The RCWA relies on the computation
of the eigenmodes in all the layers of the grating structure in a Fourier basis (plane-wave basis) and on a scattering
matrix approach to recursively relate the mode amplitudes in the different layers.

Eigenmode solver: For conical diffraction analysis of 1D gratings, the Bloch eigenmode solver used in Reticolo
is based on the article "P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996)".

Scattering matrix approach: The code incorporates many refinements that we have not published and that we
do not plan to publish. For instance, although it is generally admitted that the S-matrix is inconditionnally stable,
itis not always the case. We have developed an in-house transfer matrix method which is more stable and accurate.
The new transfer matrix approach is also more general and can handle perfect metals. The essence of the method
has been rapidly published in "J.-P. Hugonin, M. Besbes and P. Lalanne, Op. Lett. 33, 1590 (2008)".

Field calculation: The calculation of the near-field electromagnetic fields everywhere in the grating is performed
according to the method described in "P. Lalanne, M.P. Jurek, JMO 45, 1357 (1998)" and to its generalization to
crossed gratings (unpublished). Basically, no Gibbs phenomenon will be visible in the plots of the discontinuous
electromagnetic quantities, but field singularities at corners will be correctly handled.

Acknowledging the use of RETICOLO: In publications and reports, acknowledgments have to be provided by
referencing to J.P. Hugonin and P. Lalanne, RETICOLO software for grating analysis, Institut d'Optique, Orsay,
France (2005), arXiv:2101:00901.

In addition, one may fairly quote the following references in journal publications:

-M.G. Moharam, E.B. Grann, D.A. Pommet and T.K. Gaylord, "Formulation for stable and efficient
implementation of the rigorous coupled-wave analysis of binary gratings", J. Opt. Soc. Am. A 12, 1068-1076
(1995), if TE-polarization efficiency calculations are provided

-P. Lalanne and G.M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization™,
J. Opt. Soc. Am. A 13, 779-789 (1996) and G. Granet and B. Guizal, "Efficient implementation of the coupled-
wave method for metallic lamellar gratings in TM polarization”, J. Opt. Soc. Am. A 13, 1019-1023 (1996), if TM-
polarization efficiency calculations are provided,

-P. Lalanne and M.P. Jurek, "Computation of the near-field pattern with the coupled-wave method for TM
polarization”, J. Mod. Opt.45, 1357-1374 (1998), if near-field electromagnetic-field distributions are shown.


https://arxiv.org/abs/2101.00901

RETICOLO 1D - classical diffraction

2. The diffraction problem considered

In general terms, the code solves the diffraction problem by a grating defined by a stack of layers (in the z-
direction) which have all identical periods in the x-direction and are invariant in the y direction, see Fig. 1. In the
following, the (x,y) plane and the z-direction will be referred to as the transverse plane and the longitudinal
direction, respectively. To define the grating structure, first we have to define a top and a bottom. This is rather
arbitrary since the top or the bottom can be the substrate or the cover of a real structure. It is up to the user. Once
the top and the bottom of the grating have been defined, the user can choose to illuminate the structure from the
top or from the bottom. The z-axis is oriented from bottom to top.

RETICOLO is written with the exp(iwt) convention for the complex notation of the fields. So, if the materials
are absorbant, one expects that all indices have a positive imaginary part. The Maxwell's equations are of the form

VXE=2H(g=po=c=1)

2im

VXH———SE

where ¢ = n? is the relative permittivity, a complex number, and A is the wavelength in a vacuum.
Two situations are considered in the following :

TE polarisation E is parallel to Oy,

TM polarisation H is parallel to Oy.

RETICOLO returns the diffraction efficiencies of the transmitted and reflected orders for a plane wave incident
from the top and from the bottom with the same calculation. Of course, these two incident plane waves must have
identical x-component of the parallel wave vector: k. This possibility which is not mentioned in the literature
to our knowledge is important in practice since the user may get, with the same computational loads, the diffraction
efficiencies of the grating component illuminated from the substrate or from the cover.

RETICOLO-1D calculates the electric and magnetic fields diffracted by the grating for the following incident
plane wave:

Es exp (i(kiPx + ki, (z — )
‘op exp ( (k‘"cx + ké'"tf,p (z - h))), if incident from the top layer,

where kLS, = \/(Znntop//l)z — (kinc)2
Z(lzcttom exp (-(kmcx + kmbcottom (Z h)))
Hire,  exp ('(k‘"cx + kN om(Z — h))), if incident from the bottom layer,

where kz bcottom = \/(Znnbottom/l)z - (k}icnc)z_

The z-component of the Poynting vector of the incident plane wave is +0.5.

The Rayleigh-expansion of the diffracted electric fields are shown in the following figure.

?;]; Yo E?ép exp[i((k + mK,)x + k[, (z — B)]

H{op = Som Hiyp expli((KE™ +mK)x + ko (z = )]

where k74, = J(Znnmp//l) — (kinc + mK, )2

di

Eb:;];tgm =Ym Ebottom exp[l((kmc + mK,)x + kz bottom?Z z]
o

Hb;];wm =Ym Hbottom exp[l((kalcnc + mK,)x + kz bottomZ z]

where k;nbottom = \/(Znnbottom/l)z - (k)lcnc + mK,)?

They are shown in the following figure.
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O_top

z=h Top layer

Bottom layer

z=0

O_bottom

Fig. 1. Rayleigh expansion for the diffracted fields. K,, = (27) /period. The m" order has a parallel
momentum equal to k&* + mK,.. We define two points Owp= (0,0,h) at the top of the grating, and
Obottom= (0,0,0) at the bottom of the grating.

The following is organized so that one can straightforwardly write a code using the software.

3. Preliminary input parameters

The name of the following parameters are given as examples. The user may define his own parameter vocabulary.

wavelength = 3; % wavelength (1) in a vacuum. It might be 3 nm or 3 um. You do not need to specify the unit
but all other dimensions are of course in the same unit as the wavelength.

period = in the x-direction.

nn = 20; % this define the set of Fourier harmonics retained for the computation. More specifically, 2xnn+1
represent the number of Fourier harmonics retained from —nn to nn. This is a very important parameter ; for large
n values, a high accuracy for the calculated data is achieved, but the computational time and memory is also large.
If all the textures are homogeneous (case of a thin-film stack), we may set nn=0 and the period may be arbitrarily
set to any value, 1 for example. NB: Because of our normalization (Poynting vector equal to 1), the computed
reflected and transmitted amplitude coefficients are not identical to those provided by the classical Fresnel
formulas found in textbooks.

parm = res0(1) for TE polarisation;
parm = res0(-1) for TM polarisation;
% res0.m is a function that set default values to all parameters used by the code and determine the polarisation.

k_parallel =ki*¢/(2m/2) is the normalised parallel momentum of the incident plane wave.

If the grating is illuminated from the top region (or from the bottom region) under an incident angle 8, one has:
k_parallel=n_inc*sin(0),

where n_inc is the refractive index of the top (or bottom) layer. One expects that it is a positive real number and
that the texture (see Section 4.1) associated to the top (or the bottom) layer has a background with a uniform
refractive index “n_inc”.

(Note that the “k_parallel” variable is defined without the factor 2:r/A.)
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Itis very important to keep in mind that wether one defines the incident plane wave in the top layer or in the bottom
layer, the calculation will be done for both an incident wave from the top and an incident wave from the bottom,
with an identical parallel momentum k_parallel.

These 5 parameters (“wavelength, nn, parm and k_parallel) are required by the code. Some other parameters can
additionally be defined. For example, the default parameters do not take the symmetry of the problem into account.
So if one wants to use symmetries, a new parameter has to be defined: “parm.sym.x”, (see section 7). If one wants
to calculate accurately the electromagnetics fields, one has to define: ” parm.resl.champ=1”, but this increases
the calculation time and memory loads (see section 8).

4. Structure definition (grating parameters)

The grating encompasses a uniform upperstrate, called the top in the following, a uniform substrate, called the
bottom in the following, and many layers which define the grating, which is defined by a stack of layers. Every
layer is defined by a “texture” and by its thickness. Two different layers may be identical (identical texture and
thickness), may have different thicknesses with identical texture, may have different thicknesses and textures. To
define the diffraction geometry, we need to define the different textures and then the different layers.

4.1. How to define a texture?

Every texture is defined by a cell-array composed of two line-vectors of identical length. The first vector, let us
say [X1 X2 ... Xp ...Xn], contains all the x-values of the discontinuities. One must have :

N>1,
Xp<Xp+1 fOr any p,

and xn - xa<period.

The second line-vector [n1 Nz ... Ny ... Nn] contains the refractive indices of the material between the discontinuities.
More explicitly, we have a refractive index n, for X,.1<x<x,. Because of periodicity, note that the refractive index
for xn<x<xp+period is equal to ns.

The specific case of a uniform texture with a refractive index n is easily defined by texture{1}={n}. In that specific
case, no need of a second vector since there is no discontinuity.

The textures have all to be to be packed together in a cell array textures={textures{1}, textures{2}, textures{3}}
prior calling subroutine resl.m.

Example :

period=17,;

textures =cell(1,2);

textures{1}={1.5}; %uniform texture

textures{2}={[-5,-3,1,6],[2,1.3,1.5,3]}; %texture composed of 4 different refractive indices

The following figure shows the refractive indices of the two textures.

texture 1 tewture 2
1.5 3
L1l 1 L1l 2
E 2 L

05 1 1

0 : : : 0 : : :

-5 0 5 -5 0 5

X E

Fig. 2. Textures{1} and {2}.
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Slits in perfectly-conducting metallic textures:

Mixing perfectly-conducting metallic textures and dielectric textures in the same grating structure is possible. We
have first to define a background by its refractive index “inf” (for infinity). In this uniform background, we can
incorporate strip inclusions with a complex or real refractive index “ninclusion” defined by the position ¢ of its
center and its x-width L. The inclusions cannot overlap.

For example:

textures {3}= {inf, [c1,L1,ninclusion1],[c2,L2, ninclusion2]}

Anisotropic layers:
Grating layers (not the substrate nor the superstrate) can be anisotropic with diagonal tensors (&,,, = &, ... = 0).
To implement diagonal anisotropy

parm.resl.change_index={[Npov!, N, NyY, NA1, [Nprov?, N2, N2, N1} % Nprov? # Nproy?

The refractive index nprot is then replaced in all textures by epsilon=diag([(n«)?, (ny!)?, (n)?]). Beware if the
superstate (or substrate) has a refractive index nprov!, it will also be replaced and this is not allowed. Thus we
recommend using an unusual value for nprev* (6.9. 89.99999 or rand(1)).

The user may also diagonal permeability tensors

parm.resl.change_index={ [Nprov?, N4, Ny%, N, m, myt mt T, [pre®, M3 02, 2 3

The refractive index Nprov: is then replaced in all textures by
epsilon=diag( [(n:'), (ny* ) (nz*)?] ), mu=diag( [(Mx})% (My*)? (mz*)?]).
For slits in perfectly-conducting metallic textures, anisotropy cannot be implemented.

In order to check if the set of textures is correctly set up, the user can set the variable parm.resl.trace equal to 1:
“parm.resl.trace = 1;”. Then a Matlab figure will show up the refractive-index distribution of all textures. Each
texture is represented with the coordinate x varying from —period/2 to period/2.

4.2. How to define the layers?

This is performed by defining the “profile” variable which contains, starting from the top layer and finishing by
the bottom layer, the successive information (thickness and texture-label) relative to every layer. Here is an
example that illustrates how to set up the “profile” variable:

profile = {[0,1,0.5,0.5,1,0.5,0.5,2,0],[1,3,2,4,3,2,4,6,2]}; 1)

It means that from the top to the bottom we have: the top layer is formed by a thickness 0 of texture 1, then we
have twice textures 3, 2 and 4 with depth 1, 0.5 and 0.5 respectively, texture 6 with depth 2, and finally the bottom
layer (formed by texture 2) with null thickness. Since textures 1 and 2 correspond to the top and bottom layers,
they must be uniform. In this example, the top and bottom layers have a null thickness. However, one may set an
arbitrary thickness. Especially, if one needs to plot the electromagnetic fields in the bottom and top layers, the
thicknesses hy and hy, (see Fig. 4) over which the fields have to be visualized has to be specified. For hp=hn=0, the
Rayleigh expansions of the fields in the top and bottom layers are not plotted.

In this particular profile, the structure formed by texture 3 with thickness 1, texture 2 with thickness 0.5 and texture

4 with thickness 0.5 is repeated twice. It is possible to simplify the instruction defining the “profile” variable in
order to take into account the repetitions:

profile = {{0,1},{[1,0.5,0.5], [3,2,4], 2}.{[2,01.[6,21}}; @)

If a structure is repeated many times, the above “factorized” instruction of Eq. 2 is better than the “expanded” one
of Eq. 1, in terms off computational speed, because the calculation will take into account the repetitions.

The profile is shown below.
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Z
i
h i
h-h texture 1
T texture 3
texture 2
texture 4
texture 6
hb"
texture 2
0+

Fig.3. Texture stacks. The example corresponds to a profile defined by
profile = {[h»1,0.5,0.5,1,0.5,0.5,2, hy],[1,3,2,4,3,2,4,6,2]}; . The top and bottom layers have
uniform textures.

5. Solving the eigenmode problem for every texture

The first computation with the RCWA consists in calculating the eigenmodes associated to all textures. This is
done by the subroutine “resl.m”, following the instruction:

aa = resl(wavelength,period,textures,nn,k_parallel,parm);

This subroutine has 6 input arguments: the wavelength “wavelength”, the period of the grating “period”, the
“textures” variable, the number of Fourier harmonics “nn”, the normalized parallel incident wave vector
“k_parallel, and the “parm” variable containing the values of all parameters used by the code and the selected
the polarisation. If one has to study the diffraction by different gratings composed of the same textures, one needs
to compute only once the eigenmodes. It is possible to save the “aa” variable in a “.mat” file and to reload it for
the computation of the diffracted waves, see an example in Annex 10.3.

6. Computing the diffracted waves

This is the second step of the computation. This is done by the subroutine “res2.m”, following the instruction:
result = res2(aa, profile);

This subroutine has 2 input arguments: the output “aa” of the subroutine “res1.m” and the “profile” variable. The
output argument “result” contains all the information on the diffracted fields. “result” is an object of class
‘reticolo’ that can be indexed as an usual structure with parentheses, or with the labels of the considered orders
between curly braces. Examples will be given in the following.

This information is divided into the following sub-structures fields :

- “result. inc_top”
- “result. inc_top_reflected”
- “result. inc_top_transmitted”

- “result. inc_bottom”
- “result.inc_bottom_reflected”
- “result. inc_bottom_transmitted”
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The sub-structure “result.inc_top_reflected” contains all the information concerning the propagative reflected
waves for an incident wave from the top layer of the grating. The incident wave is described in the sub-structure
“result.inc_top”.

result.i nc_top result.inc_bottom_transmitted

\ f result.inc_top_reflected K /
B B =

H @ @3 &
result.inc_top_transmitted result.inc_bottom_reflected

result.inc_bottom

Fig. 4. The two obtained solutions.

Each sub-structure of result is composed of the several fields. Each field is a Matlab column vector or matrix
having the same number N of lines. N is the number of propagative orders considered and can be 0.

Field name Signification size
order orders of the diffracted propagative plane waves N, 1
theta angle O of each diffracted order N, 1
K normalised wave vector N, 3
efficiency efficiency of each diffracted order N, 1
amplitude complexe amplitude in TE polarization of every order N, 1
E electric field (Ex,Ey,E;) of the diffracted orders at O_top or O_bottom when the | N, 3
amplitude of the incident plane wave is one.
H magnetic field (Hx,Hy,H) of the diffracted orders at O_top or O_bottom when the | N, 3
amplitude of the incident plane wave is one.
PlaneWave_E E-vector components of the PW' ’s (in the Oxyz basis) N, 3
PlaneWave_H H-vector components of the PW s (in the Oxyz basis) N, 3

(To use the same notations as in the conical code or in the crossed-grating code, set parm.resl.result=-1 before
calling resl.m).

6.1. Efficiencies
For a given diffraction order n, the diffraction efficiency is defined as the ratio between the flux of the diffracted
Poynting vector and the flux of the incident Poynting vector (flux through a period of the grating).

The efficiencies of all propagative reflected and transmitted waves for an incident wave from the top of the grating
are given by the two vectors “result.inc_top_reflected.efficiency” and “result.inc_top_transmitted.efficiency”.
If all refractive indices are real, the sum of all elements of these two vectors is equal to one because of the energy
conservation. The labels n of the corresponding orders are in “result.inc_top_reflected.order” (see below for a
description of the other fields of this sub_structure).

Some examples
1) The efficiency of the reflected order -2 (k,/:ki?C—ZKX) when the grating is illuminated from the top is equal to

result. inc_top_reflected.efficency{-2}. If this order is evanescent, the efficiency is 0.

It is important to have in mind the difference between :

result.inc_top_reflected.efficiency{-2} : efficiency of order 2
result.inc_top_reflected.efficiency(-2) : gives an error !
result.inc_top_reflected.efficiency{2} : efficiency of order 2
result.inc_top_reflected.efficiency(2) : efficiency in order result. inc_top_reflected.order(2);
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2) The orders of all the transmitted-propagative plane waves for an incident wave from the top of the grating are
given by the vector “result.inc_top_transmitted.order”.

3) The efficiencies of all propagative reflected waves for an incident wave from the bottom in TM polarization are
given by the vector “result.inc_bottom_reflected.efficiency”.

6.2. Rayleigh expansion for propagatives modes
The coefficients of the Rayleigh expansion of Fig. 1 can be obtained from the structure result. For instance, when
the grating is illuminated from the bottom with a TE polarised mode, we have :

Efbiom =result.inc_bottom_reflected.E{m} (3 components in Oxyz)
HEiiom =result inc_bottom_reflected.H{m} (3 components in Oxyz)
Effp =result.inc_bottom_transmitted.E{m} (3 components in Oxyz)

H{g, =result.inc_bottom_ transmitted. H{m} (3 components in Oxyz)

and the incident plane wave defined in page 4 is given by :

Eg‘gﬁom =result inc_bottom.E (3 components in Oxyz)

HING. . =result.inc_bottom.H (3 components in Oxyz).

6.3. Amplitude of diffracted propagative waves

6.3.1 Angle Om

Fig. 5 6m angles.

The angle Om related to order m is varying between —90 and 90. It is oriented in such a way that the k-parallel
momentum of the corresponding wave vector (incident or diffracted) is

KM+ mk,, = (270/A) n_top SiN(Om) or (27/A) N_bottom SiN(Orm).

6.3.2 Otop and Obottom pOintS

Otop and Opotrom are 2 important points (see Fig. 1). In the Cartesian coordinates system Oxyz , they are defined by:
O10p=(0,0,h) at the top of the grating, and Onottom=(0,0,0) at the bottom of the grating.

In addition, let us consider an arbitrary point M=(x,y,z) in the 3D space in Oxyz. Associated to this point, we
define the two vectors :

r[op: OtOpM y and

Ibottom="OpotiomM -

10
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6.3.3 Jones’ coefficient

Let us assume that the grating is illuminated from the top layer and let us consider a diffracted order m in the
bottom layer. Any other diffraction situation is straighforwardly deduced.

Let a be a given complex number. The incident electromagnetic field (6 components of E and H in every points
of the 3D space) can be written :

Winc—q PW ,

where PW s a plane wave defined in every point by PW=A exp(ikitgg rtop), A being the electromagnetic fields

(6 components) of the plane wave at M=Orp, and Kig§ is the incident wave vector. A and K=k{35/ \k{gg are

given by the structure “result* as will be defined later.

Similarly, the diffracted electromagnetic field in the m bottom order can be written :

wdf—y pwm

where y is a complex number, PW™ is a plane wave defined in every point by

pwm=AM exp(ikg‘ouom rbottom), A™ is the electromagnetic fields (6 components) of the plane wave at

M=Ovottom, and K[, is the wave vector of the mth transmitted order. A™ and, K™=k / ‘kg}mm‘ are given

by the structure “result* as will be defined later.

We define the Jones’coefficient J, associated to the order m by

y=Ja

A and A™ are normalized so that the |J]> is the diffraction efficiency. For instance, |JJ> = result.
inc_top_transmitted.efficency {m }.

We now define all these data from the “result” structure :
K = result. inc_top.K.
K™= result. inc_top_transmitted.K{m}.

In the Cartesian coordinate system OXxyz :
result.inc_top.PlaneWave E
A:
result.inc_top.PlaneWave_H

N result.inc_top_transmitted.PlaneWave_E{m}
A= :
result.inc_top_transmitted.PlaneWave_H{m}

The Jones’ coefficients is:
J=result.Jones.inc_top_transmitted {m} (=result.inc_top_transmitted.amplitude {m}).

7. Using symmetries to accelerate the computational speed

When the grating possesses some mirror symmetry for the plane x=xo, one may define “parm.sym.x= Xo. Then
when k_parallel =0, the code will use the symmetry property for speeding up the calculation.

Note that the code does not verify if the symmetries of the grating defined by the user are in agreement with the
“textures” parameters. It is up to the user to define carefully the parameters parm.sym.x. All textures used in the
calculation must possess the same symmetry.

8. Plotting the electromagnetic field and calculating the absorption loss

8.1. Computation of the electromagnetic fields

11
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Once the eigenmodes associated to all textures are known, the calculation of the electromagnetic fields everywhere
in the grating can be performed. This calculation is done by the function “res3.m”, following the instruction:

[e,z,index] = res3(x,aa,profile, inc,parm);

The function“res3.m” can be called without calling “res2.m”. This subroutine has 5 input arguments:

-the “X” variable is a vector containing the locations where the fields will be calculated in the x-direction [for
instance we may set x = linspace(-period_x/2, period_x/2, 51); for allocating 51 sampling points in the x-
direction],

the “aa” variable contains all the information on the eigenmodes of all textures and is computed by the subroutine
resl.m,

-the variable “profile” is defined in Section 4.2; note that it can be redefined,

-the variable “inc” defines the y component of the complex amplitude of the incident electric (in TE polarisation)
or magnetic field (in TM polarisation) field at O_top or O_bottom .

For illuminating the grating exactly by the TE-polarized incident PW  defined above, one should set:

einc= result.inc_top PlaneWave_E(2) for TE polarisation; einc= result.inc_top PlaneWave H(2) for TM
polarisation.

-the “parm?” variable, already mentioned is discussed in the following.

There are three possible output arguments for the subroutine “res3.m”. The variable “e” contains all the
electromagnetic field quantities:

Ey=e(:,:,1); Hx=e(:,:,2); Hz=e(:,:,3); in TE polarization.
Hy=e(:,:,1); Ex=e(:,:,2); Ez=e(:,:,3); in TM polarization.

The second variable “z” is the vector containing the z-coordinate of the sampling points. Note that in the matrix
Ex=e(:,:,1), the first index refer to the z coordinate, and the second to the x-coordinate. Thus Ex(i,j) is the Ex field
component at the location {z(i), x(j)}. The third variable “index” is the complex refractive index of the considered
grating. index(i,j) is the refractive index at the location {z(i), x(j)}. It can be useful to test the profile of the grating.

Some important comments on the parm” variable :

1. For calculating precisely the electromagnetics fields, one has to set : ”parm.resl.champ=1 before calling
resl.m. This increases the calculation time and memory load but it is hightly recommended. If not, the computation
of the field will be correct only in homogenous textures (for example in the top layer and in the bottom layer).

2. llluminating the grating from the top or the bottom layer : As mentioned earlier, the code compute the diffraction
efficiencies of the transmitted and reflected orders for an incident plane wave from the top and for an incident
plane wave from the bottom at the same time. When plotting the field, the user must specify the direction of the
incident plane wave. This is specified with variable parm.res3.sens. For parm.res3.sens=1, the grating is
illuminated from the top and for parm.res3.sens=-1, the grating is illuminated from the bottom (default is
parm.res3.sens=1).

3. Specifying the z locations of the computed fields: This is provided by the variable parm.res3.npts.
parm.res3.npts is a vector whose length is equal to the number of layers. For instance let us imagine, a grating
defined by profile = {[0.5,1,2,0.6],[1,2,3,4]}. Setting parm.res3.npts=[2,3,4,5] implies that the field will be
computed in two z=constant plans in the top layer, in three z=constant plans in the first layer (texture 2), in four
z=constant plans in the second layer (texture 3), and in five z=constant plans in the bottom layer. Default for
parm.res3.npts is 10 z=constant plans per layer.

VERY IMPORTANT : where is the z=0 plan and what are the z-coordinates of the z=constant plan? The z=0
plan is defined at the bottom of the bottom layer. Thus, the field calculation is performed only for z>0 values. For
the example profile = {[0.5,1,2,0.6],[1,2,3,4]}, and if we refer to texture 4 as the substrate, the z=0 plan is located
in the substrate at a distance 0.6 under the grating. The z=constant plans are located by an equidistant sampling in
every layer. Always referring to the previous example, it implies that the five z=constant plans in the substrate are
located at coordinate z=(p-0.5) 0.6/5, where p=1,2,...5. Note that the z coordinates for the z=constant plans are
always given by the second output variable of res3.m.

4. How can one specify a given z=constant plan? First, one has to redefine the variable profile. For the grating
example with the two layers discussed above, let us imagine that one wants to plot the field at z=z0+0.6+0.2 in
layer 2. Then one has to set: profile = {[0.5,1-20,0,z0,0.2,0.6],[1,2,2,2,3,4]} and set parm.res3.npts=[0,0,1,0,0,0].
Note that it is not necessary to redefine the variable profile at the beginning of the program. One just needs to
redefine this variable before calling subroutine res3.m.
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5. Automatic plots: an automatic plot (showing all the components of the electromagnetic fields and the grating
refractive index distribution) is provided by setting parm.res3.trace=1. If one wants to plot only some components
of the fields, one can set for instance in TE polarization: parm.res3.champs=[1,0] to plot Ey and the objet,
parm.res3.champs=[2] to plot only Hy.

8.2. Computation of the absorption loss
Loss computation is performed with the subroutine “res3.m”.

First approach based on integrals (not valid for homogeneous layers with non-diagonal anisotropy):
The absorption loss in a surface S is given by:

L= %fs Im (M) |Ey(M)|2 ds for TE polarization.
L= %fs Im (exx(M)|Ex(M)|? + £5,(M)|E,(M)|?) dS for TM polarization.
These integrals can be computed with the following instruction

[e, Z, index, wZ, loss_per_layer, loss_of Z, loss_of Z X, X, wX] = res3(x,aa,profile,einc,parm);

The important ouput arguments are:

loss_per_layer: the loss in every layer defined by profile, loss_per_layer(1) is the loss in the top layer,
loss_per_layer(2) is the loss in layer 2, ... and loss_per_layer(end) is the loss in the bottom layer

loss_of_Z: the absorption loss density (integrated over X) as a function of Z (like for X, the sampling points Z are
not equidistant. You may plot this loss density as follows: plot(Z, loss of Z), xlabel('Z"),
ylabel(‘absorption’)

loss_of Z_X(Z,X) = n/\ Im(index(Z,X).~2) |e(Z,X,1)? in TE polarization

loss_of Z_X(Z,X) = n/A Im(index(Z,X).~2) ( e(Z,X,2)[*+|e(Z,X,3)|?) in TM polarization

index: index(i,j) is the complex refractive index at the location {z(i), x(j)}.

Second approach based on Poynting theorem (always valid, even for homogeneous layers with non-diagonal
anisotropy):
An alternative approach to compute the losses in the layers consists in calculating the difference in the flux of the
incoming and outgoing Poynting vectors. This approach is faster, but in some cases, the computation of the integral
can be more accurate. In homogeneous layers with non-diagonal anisotropy, only this approach is possible.

To specify which approach used per layer, we define a vector

parm.res3.pertes_poynting = [0,0,0,1,0]; % for instance for a 5-layer grating

with “07”, the integral approach is used (default option) and with “1”, the Poynting approach is used. The length of
parm.res3.pertes_poynting is equal to the number of layers. We may set parm.res3.pertes_poynting =0 or 1;
the scalar is then repeated for all layers.

We may then compute the flux of the Poynting vector in the layer-boundary planes
[e, Z, index, wZ,loss_per_layer,loss_of Z,loss_of Z X ,X,wX,Flux_Poynting] = res3(x,aa,profile,einc,parm);
Flux_Poynting is a vector. Flux_Poynting(1) corresponds to the upper interface of the top layer. The flux is
computed for a normal vector equal to the Z vector. If Flux_Poynting(p) > 0, the energy flows toward the top and
if it it negative the enerfy flows toward the bottom.

For an illumination from the top and a lossy substrate, the substrate absorption is —Flux_Poynting
(end)/(0.5*period). For an illumination from the bottom and a lossy superstrate, the superstrate absorption is
Flux_Poynting (1)/(0.5*period).

Note on the computation accuracy of the integral approach:
To compute integrals like the loss or the electromagnetic energy, RETICOLO uses a Gauss-Legendre integration
method. This method, which is very powerful for 'regular' functions, becomes inaccurate for discontinuous
functions. Thus, the integration domain should be divided into subdomains where the electric field E is continuous.
For the integration in X, this difficult task is performed by the program, so that the user should only define the
limits of integration: the input “X” argument is now a vector of length 2, which represent the limits of the x interval
(to compute the loss over the entire period, we may take x(2)=x(1)+period. The integration domain is then divided
into subintervals where the permittivity is continuous, each subinterval having a length less than A/(2r). For every
subinterval, a Gauss-Legendre integration method of degree 10 is used. This default value can be changed by
setting parm.res3.gauss_x=.... The actual points of computation of the field are returned in the output argument
X.

For the z integration, the discontinuity points are more easily determined by the variable ‘profile’. The user
may choose the number of subintervals and the degree in every layer using the parameter parm.res3.npts, which
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is now an array with two lines (in subsection 8.1 this variable is a line vector): the first line defines the degree and
the second line the numbers of subintervals of every layer. For example: parm.res3.npts = [ [10,0,12] ; [3,1,5] ];
means that 3 subintervals with 10-degree points are used in the first layer, 1 subintervals with 0 point in the second
layer, 5 subintervals with 12degree points in the third layer.

The actual z-points of computation of the field are returned in the output variable Z, and the vector wZ
represents the weights and we have sum(loss_of Z.*wZ)=sum(loss_per_layer). Although the maximum degree
that can be handled by reticolo is 468, it is recommended to limit the degree values to modest numbers (10-30
maximum) and to increase the number of subintervals (the larger the degree, the denser the sampling points in the
vicinity of the subinterval boundaries).

Note that if einc= result. inc_top PlaneWave E(2), in TE ploarization, or einc= result. inc_top
PlaneWave_H(2), in TE ploarization , the energie conservation test for an incident plane wave from the top is
sum(result. inc_top_reflected.efficiency)+
sum(result. inc_top_transmitted.efficiency)+
sum(loss_per_layer) / (.5*period) = 1.
Usually, this equality is achieved with an absolute error of <1075,

For specialists:

-loss_of_Z_X =pi/ wavelength*imag(index.”2).* abs(e(:,:,1))."2; in TE polarization
-loss_of _Z X =pi/ wavelength*imag(index.”2).*sum(abs(e(:,:,2:3)).”2,3); in TM polarization
-loss_of Z =(loss_of Z_X*wX(:)).";

-by setting index(index ~= index_chosen)=0 in the previous formulas, one may calculate the absorption loss in
the medium of refractive index index_chosen.

9. Bloch-mode effective indices

RETICOLO gives access to another output: the Bloch mode associated to all textures. The Bloch mode k of the
texture | can be written

. i . 2r
|0!) = Do @ exp [i(k + mK,)x] exp (lTTlI:éZ),

where n’%is the effective index of the Bloch mode k of the texture .

Instruction:

[aa, n_eff] = resl(wavelength,period,textures,nn,kparallel, parm);

Note that the “n_eff” variable is a Matlab cell array: “n_eff{ii}” is a column vector containing all the Bloch-mode
effective indices associated to the texture “textures{ii}”. The element number 5 of this vector, for example, is
called by the instruction “n_eff{ii}(5);”. An attenuated Bloch-mode has a complex effective index.

Bloch mode profile visualization:

To plot the profile of Bloch mode Num_mode of the texture Num_texture:

resl(aa, neff, Num_texture, Num_mode);

To obtain the profile datas in the format given by res3:

[e,0,X] = res1(aa, neff, Num_texture, Num_mode); % by default, |x| < period/2

[e,0] = resl(aa, neff, Num_texture, Num_mode, x); % by specifying the x vector, x=linspace(0, 3*period(1),100)
for example.

10. Annex

10.1. Checking that the textures are correctly set up
Setting “parm.resl.trace = 1;” generates a Matlab figure which represents the refractive-index distribution of all
the textures.

10.2. The “retio” & “retefface” instructions

RETICOLO automatically creates temporary files in order to save memory. These temporary files are of the form
“abcd0.mat”, “abed].mat” ... with abcd are randomly chosen) . They are created in the current directory. In general
RETICOLO automatically erases these files when they are no longer needed, but it is recommended to finish all
programs by the instruction “retio;”, which erases all temporary files. Also, if a program anormally stopsone may
execute the instruction “retio” before restarting the program.
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The “retefface” instruction allows to know all the “abecd0.mat” files and to erase them if wanted.

If we are not limited by memory (this is often the case with modern computers), we can prevent the writing of
intermediate files on the hard disk by the setting

parm.not_io = 1;
before the call to res1. Then it is no longer necessary to use the retio instruction at the end of the programs to erase

the files.
IMPORTANT: to use parfor loops, it is imperative to take the option parm.not_io = 1.

10.3. How to save and to reload the “aa” variable

To save the “aa” variable in a “.mat” file, the user has to define a new parameter containing the name of the file
he or she wants to create : “parm.resl.fperm = 'file_name';”. field name is a char string with at least one letter.
The program will automatically save “aa” in the file “file_name.mat”. In a new utilisation it is sufficient to write
aa=="file_name";.

Example of a program which calculates and saves the “aa” variable

[...] % Definition of the input parameters, see Section 3

parm.resl.fperm = ‘toto’;

[...] % Definition of the textures, see Section 4.1

aa = resl(wavelength,period,textures,nn,k_parallel,parm);

Example of a program which uses the “aa” variable and then calculates the diffracted waves

[...] % Definition of the profile, see Section 4.2. Note that the textures used to define the profile argument have
to correspond to the textures defined in the program which has previously calculated the “aa” variable.
aa=’toto’;

result = res2(aa,profile);

retio;

10.4. Asymmetry of the Fourier harmonics retained in the computation

nn = [-15;20]; % this defines the set of non-symmetric Fourier harmonics retained for the computation. In this
case, the Fourier harmonics from —15 to +20 are retained.

The instructions “nn = 10;” and “nn = [-10;10];” are equivalent.

Take care that the use of symmetry imposes symmetric Fourier harmonics if not the computation will be done
without any symmetry consideration.

11. Summary

textures polarization
[ = = w5 | parm=res0(1) (TE)
I NN Em or
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|

aa=res1( wavelength, period, textures, nn, k_parallel, parm)
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Fig. 6 Summary.

parm = res0( 1) for TE polarisation;
parm = res0(-1) for TM polarisation;

aa = resl(wavelength,period,textures,nn,k_parallel,parm);
result = res2(aa,profile);

J = result.Jones.inc_top_transmitted {m}

[e,z,0] = res3(x,aa,profile, inc,parm);

12. Examples

The following example can be copied and executed in Matlab.

n_incident medium=1;% refractive index of the top layer
n_transmitted medium=1.5;% refractive index of the bottom layer

angle theta0=-10;k parallel=n incident medium*sin(angle thetaO*pi/180);

parm=res0(l);% TE polarization. For TM : parm=resO0(-1)
parm.resl.champ=1;% the electromagnetic field is calculated accurately

nn=40;% Fourier harmonics run from [-40,40]

% textures for all layers including the top and bottom layers
texture=cell (1, 3);
textures{l}= n incident medium; % uniform texture

textures{2}= n transmitted medium; > uniform texture
textures{3}={[-2.5,2.5], [n_incident medium,n transmitted medium] };

aa=resl (wavelength, period, textures,nn, k parallel,parm);
profile={[4.1,5.2,4.11,1[1,3,2]};

one D TE=res2(aa,profile)

eff=one D TE.inc top reflected.efficiency{-1}

J=one D TE.Jones.inc top reflected{-1};% Jones’coefficients

abs (J) "2 % first order efficiency for an illumination from the top layer

% field calculation

x=linspace (-period/2,period/2,51);% x coordinates (z-coordinates are determined by
res3.m)

einc=1;

parm.res3.trace=1; % plotting automatically

parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,aa,profile,einc,parm);
figure;pcolor (x,z,real (squeeze(e(:,:,1)))); % user plotting

shading flat;xlabel('x');ylabel('y');axis equal;title('Real(Ey)");

% Loss calculation

textures{3}={[-2.5,2.5], [n_incident medium, .l1+51i] };

aa loss=resl (wavelength, period, textures,nn, k parallel,parm);

one D loss=res2(aa loss,profile)

parm.res3.npts=[[0,10,01;[1,3,111;

einc=one D loss.inc top.PlaneWave E(2);
[e,z,index,wZ,loss per layer,loss of Z,loss of 7Z X,X,wX]=res3([-
period/2,period/2],aa_loss,profile,einc,parm);

Energie conservation=sum(one D loss.inc_top reflected.efficiency)+sum(one D loss.in
c_top_transmitted.efficiency)+sum(loss_per_layer)/(.5* period) -1

o

retio % erase temporary files
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RETICOLO CODE 1D

for the analysis of the diffraction by stacks of lamellar 1D
gratings (conical diffraction)

Authors: J.P. Hugonin and P. Lalanne
arXiv:2101:00901

Reticolo code 1D-conical is a free software for analyzing 1D gratings in classical and
conical mountings. It operates under Matlab. To install it, copy the companion folder
“reticolo_allege” and add the folder in the Matlab path. The code may also be used to
analyze thin-film stacks with homogeneous and anisotropic materials, see the end of
Section 3.1.
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Generality

RETICOLO is a code written in the language MATLAB 9.0. It computes the diffraction efficiencies and the
diffracted amplitudes of gratings composed of stacks of lamellar structures. It incorporates routines for the
calculation and visualisation of the electromagnetic fields inside and outside the grating. With this version, 2D
periodic (crossed) gratings cannot be analysed.

As free alternative to MATLAB, RETICOLO can also be run in GNU Octave with minimal code changes. For
further information, please contact tina.mitteramskogler@profactor.at.

In brief, RETICOLO implements a frequency-domain modal method (known as the Rigorous Coupled wave
AnalysissfRCWA). To get an overview of the RCWA, the interested readers may refer to the following articles:

1D-classical and conical diffraction

M.G. Moharam et al., JOSAA 12, 1068 (1995),

M.G. Moharam et al, JOSAA 12, 1077 (1995),

P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996),

G. Granet and B. Guizal, JOSAA 13, 1019 (1996),

L. Li, JOSAA 13, 1870 (1996), see also C. Sauvan et al., Opt. Quantum Electronics 36, 271-284 (2004) which
simply explains the raison of the convergence-rate improvement of the Fourier-Factorization rules without
requiring advanced mathematics on Fourier series and generalizes to other kinds of expansions.

2D-crossed gratings

L. Li, JOSAA 14, 2758-2767 (1997),

E. Popov and M. Neviere, JOSAA 17, 1773 (2000),

which describe the up-to-date formulation of the approach used in RETICOLO. Note that the formulation used in
the last article (which proposes an improvement for analysing metallic gratings with continuous profiles like
sinusoidal gratings) is not available in the RETICOLO version of the web. The RCWA relies on the computation
of the eigenmodes in all the layers of the grating structure in a Fourier basis (plane-wave basis) and on a scattering
matrix approach to recursively relate the mode amplitudes in the different layers.

Eigenmode solver: For conical diffraction analysis of 1D gratings, the Bloch eigenmode solver used in Reticolo
is based on the article "P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996)".

Scattering matrix approach: The code incorporates many refinements that we have not published and that we
do not plan to publish. For instance, although it is generally admitted that the S-matrix is inconditionnally stable,
itis not always the case. We have developed an in-house transfer matrix method which is more stable and accurate.
The new transfer matrix approach is also more general and can handle perfect metals. The essence of the method
has been rapidly published in "J.-P. Hugonin, M. Besbes and P. Lalanne, Op. Lett. 33, 1590 (2008)".

Field calculation: The calculation of the near-field electromagnetic fields everywhere in the grating is performed
according to the method described in "P. Lalanne, M.P. Jurek, JMO 45, 1357 (1998)" and to its generalization to
crossed gratings (unpublished). Basically, no Gibbs phenomenon will be visible in the plots of the discontinuous
electromagnetic quantities, but field singularities at corners will be correctly handled.

Acknowledging the use of RETICOLO: In publications and reports, acknowledgments have to be provided by
referencing to J.P. Hugonin and P. Lalanne, RETICOLO software for grating analysis, Institut d'Optique, Orsay,
France (2005), arXiv:2101:00901.

In journal publications and in addition, one may fairly quote the following references:

-P. Lalanne and G.M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization",
J. Opt. Soc. Am. A 13, 779-789 (1996).

-P. Lalanne and M.P. Jurek, "Computation of the near-field pattern with the coupled-wave method for TM
polarization”, J. Mod. Opt.45, 1357-1374 (1998), if near-field electromagnetic-field distributions are shown.

1. The diffraction problem considered

In general terms, the code solves the diffraction problem by a grating defined by a stack of layers which have all
identical periods in the x- directions and are invariant in the y direction see the following figure. In the following,
the (x,y) plane and the z-direction will be referred to as the transverse plane and the longitudinal direction,
respectively. To define the grating structure, first we have to define a top and a bottom. This is rather arbitrary
since the top or the bottom can be the substrate or the cover of a real structure. It is up to the user. Once the top
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and the bottom of the grating have been defined, the user can choose to illuminate the structure from the top or
from the bottom. The z-axis is oriented from bottom to top.

RETICOLO is written with the exp(iwt) convention for the complex notation of the fields. So, if the materials
are absorbant, one expects that all indices have a positive imaginary part. The Maxwell's equations are of the form

VXE=2TH(ep=po=c=1)

2im

VXH———sE

where £ = n? is the relative permittivity, a complex number, and 2 is the wavelength in a vacuum.

RETICOLO-1D returns the diffraction efficiencies of the transmitted and reflected orders for an incident plane
wave from the top and for an incident plane wave from the bottom, both for TM and TE polarizations. The four
results are obtained by the same calculation (incident TE wave from the top, incident TM wave from the top,
incident TE wave from the bottom and incident TM wave from the bottom). Of course, the two incident plane

waves must have identical parallel wave vector in the transverse plane [kInC ki;‘c ]. This possibility which is not

mentioned in the literature to our knowledge is important in practice since the user may get, for the same
computational loads, the grating diffraction efficiencies for an illumination from the substrate or from the cover.

RETICOLO-1D calculates the electric and magnetic fields diffracted by the grating for the following incident
plane wave:

E2S exp (i(k,icncx + kiCy + kS (z — h)))
HIE exp (i(k,‘;”cx + kiy + kIS, (z — h))), if incident from the top layer,

where k75, = _\[(Z”ntop/)‘)z — (k)2 — (kgi/nc)z-
g‘l’itom exp ('(kﬂifncx + k)ilncy + kinbcottom (Z - h)))
HyY, om €xp ('(kincx + kiCy + ki om(z — h))), if incident from the bottom layer,

where ;nbcottom = \/(Znnbottom//l)z - (k)icnc)z - (k)i]nc)zl
The z-component of the Poynting vector of the incident plane wave is +0.5.

The Rayleigh-expansion of the diffracted electric fields are

?;]; Yo ET, expli((kC + mK,)x + ky + kI, (z — B)]

?;{, Yo HE, expli((k + mK,)x + ky + kI, (z — B)]

where kztop \/(27mtop/,1) — (kir¢ + mK,)? — (kgw)z

di

Ebtlzfttom Zm Ebottam exp[l((kmc + me)x + kmcy + kz bottomZ ]
di

Hb:)fttom Zm Hbottom exp[l((kmc + me)x + kmcy + kz bottomZ. ]

where k;nbottom = \/(Zﬂnbottom//l)z - (k)icnc + me)z - (k)i/nc)z

They are shown in the following figure.
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O_top

z=h Top layer

Bottom layer

z=0

O_bottom

Fig. 1. Rayleigh expansion for the diffracted fields. KX=(2n)/period . The m™" order has a parallel

momentum equal to (ki{‘°+mKX);< +ki)§‘°_);. We define two points Owp= (0,0,h) at the top of the
grating, and Opottom= (0,0,0) at the bottom of the grating.

The following is organized so that one can straightforwardly write a code using the software.

2. Preliminary input parameters

The name of the following parameters are given as examples. The user may define his own parameter vocabulary.

wavelength = 3; Wavelength () in a vacuum. The unit might be 3 nm or 3 um. You do not need to specify the
unit but all other dimensions are of course in the same unit as the wavelength.

period = 1.5 % in the x-direction. Same unit as wavelength.

nn = 20; This defines the set of Fourier harmonics retained for the computation. More specifically, 2xnn+1
represent the number of Fourier harmonics retained from —nn to nn. This is a very important parameter ; for large
nn values, a high accuracy for the calculated data is achieved, but the computational time and memory is also large.
If all the textures are homogeneous (case of a thin-film stack), we may set nn=0 and the period may be arbitrarily
set to any value, 1 for example. NB: Because of our normalization (Poynting vector equal to 1), the computed
reflected and transmitted amplitude coefficients are not identical to those provided by the Fresnel formulas.

angle_delta = 30; In degrees, see the following figure for a definition of “angle delta” for the incident plane
wave. This angle is varying between 0° and 360°. This angle has to be defined in the incident medium.

k_parallel = n_incident_medium*sin(angle_theta*pi/180);

The parameters “angle_delta” and “angle_theta” which are used to specify the plane of incidence and the angle
of incidence are denoted by & and 0inc in Fig. 2. The angle & defines the plane of incidence. This plane allows to
define the polarization of the incident plane wave : if the electric field of the incident plane wave is perpendicular
to this plane, the incident wave is TE polarized, and if it is parallel to this plane, the incident wave is TM polarized.
The incident wave vector is :

kinc=(27t/7u) Ninc Kinc
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with Kinc = [sin(0)cos(d), sin(0)sin(d), -cos(0) ].

Ninc iS the refractive index of the top (or bottom) layer. One expects that it is a positive real number and that the
texture (see Section 4.1) associated to the top (or the bottom) layer has a background with a uniform refractive
index “ninc”.

(Note that the “k_parallel” variable is defined without the factor 2n/).)

N A
n_inc*K_inc VA
—— [ n_inc
0 iing
> 4

.

— 1

\
\
\
/:Q‘~<

¥

L

K.
n_inc*K_inc k_parallel=n_inc*sin(0_inc)

Fig. 2. Definition of 6_inc, 8, k_parallel.

In general, the user has in mind to illuminate the grating from the substrate or from the upperstrate (air in general).
“n_incident medium” (denoted also ninc) iS the refractive index of the incident medium. One expects that it is a
positive real number and that the texture (see Section 4.1) associated to the top or the bottom layer has a
background with a refractive index “n_incident medium”.

It is very important to keep in mind that wether the user defines the incident plane wave in the top layer or in the
bottom layer, the calculation will be done for both an incident wave from the top and an incident wave from the
bottom, with an identical parallel wave vector, i.e. for a specified [k';c, k';‘c] which is the same in the bottom and

top layers.

3. Structure definition (grating parameters)

The grating encompasses a uniform upperstrate, called the top in the following, a uniform substrate, called the
bottom in the following, and many layers which define the grating, which is defined by a stack of layers. Every
layer is defined by a “texture” and by its thickness. Two different layers may be identical (identical texture and
thickness), may have different thicknesses with identical texture, may have different thicknesses and textures. To
define the diffraction geometry, one needs to define the different textures and then the different layers.

3.1. How to define a texture?

Every texture is defined by a cell-array composed of two line-vectors of identical length. The first vector, let us
say [X1 X2 ... Xp ...Xn], contains all the x-values of the discontinuities. One must have :

N>1,
Xp<Xp+1 foOr any p,

and xn - xa<period.
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The second line-vector [n1 ny ... Ny ... Nn] contains the refractive indices of the material between the discontinuities.
More explicitly, we have a refractive index n, for xp.1<x<x,. Because of periodicity, note that the refractive index
for xn<x<xp+period is equal to n;.

The specific case of a uniform texture with a refractive index n is easily defined by texture{1}={n}. In that specific
case, no need of a second vector since there is no discontinuity.

The textures have all to be to be packed together in a cell array textures={textures{1}, textures{2}, textures{3}}
prior calling subroutine resl.m.

Example

period=17;

textures =cell(1,2);

textures{1}={ 1.5}; %uniform texture

textures{2}={[-5,-3,1,6],[2,1.3,1.5,3]}; %texture composed of 4 different refractive indices

The following figure shows the refractive indices of the two textures.

B texture 1 _ 25 - texture 2 _ 5
5 : 3 2.5
—_ |:| 14 - D
2
5 ‘ 5
1.5
| — 05 — —
-10 0 1k = -10 1 3
i

Fig. 3. Textures{1} and {2}.

Slits in perfectly-conducting metallic textures:

We have first to define a background by its refractive index “inf”. In this uniform background, we can incorporate
strip inclusions with a complex or real refractive index “ninclusion” defined by the position c of its center and its
x-width L. The inclusions cannot overlap.

For example:

textures {3}= {inf, [c1,L1,ninclusion1],[c2,L2, ninclusion2]}

Anisotropic layers:
Grating layers (not the substrate nor the superstrate) can be anisotropic with diagonal tensors (&, = &, ... = 0).
To implement diagonal anisotropy
parm.resl.change_index={[Nprov’, N}, Ny, N1, [Mprov?, N, N2, 021} % Nprov® # Nprov?
The refractive index nprovt is then replaced in all textures by epsilon=diag([(n«})?, (ny!)?, (nz*)?]). Beware if the
superstate (or substrate) has a refractive index nprov!, it will also be replaced and this is not allowed. Thus we
recommend using an unusual value for ny* (.9. 89.99999 or rand(1)).
The user may also diagonal permeability tensors
parm.resl.change_index={ [Nprav’, N4, Ny, Nt , M, myl, mt 1, [pro® M3 0% N2 3
The refractive index Nprov® is then replaced in all textures by
epsilon=diag( [(nY)?, (ny*)2, (nz1)?] ), mu=diag( [(Mx})2, (my!)?, (mz2)7]).

For slits in perfectly-conducting metallic textures, anisotropy cannot be implemented.

Fully-anisotropic homogeneous layers and thin-film-stack modeling:
Homogeneous layers (with permittivity and permeability independent of x and z) can be simulated for arbitrary
anisotropies (not necessarily diagonal)

textures {4} = {epsilon};
with epsilon an arbitrary 3x3 matrix. The user may also implement magnetic anisotropy
textures {4} = {epsilon, mu};
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with epsilon and mu arbitrary 3x3 matrices.

Note that the substrate and superstrates should be uniform and isotropic materials. If all layers are uniform, a
thin-film stack can be computed for arbitrary epsilon and mu 3x3 matrices by retaining a single Fourier component,
nn=0.

In order to check if the set of textures is correctly set up, the user can set the variable parm.resl.trace equal
to 1: “parm.resl.trace = 1;”. Then a Matlab figure will show up the refractive-index distribution of all textures.
Each texture is represented with the coordinate x varying from —period/2 to period/2.

3.2. How to define the layers?

This is performed by defining the “profile” variable which contains, starting from the top layer and finishing by
the bottom layer, the successive information (thickness and texture-label) relative to every layer. Here is an
example that illustrates how to set up the “profile” variable:

profile = {[0,1,0.5,0.5,1,0.5,0.5,2,0],[1,3,2,4,3,2,4,6,2]}; @

It means that from the top to the bottom we have: the top layer is formed by a thickness 0 of texture 1, then we
have twice textures 3, 2 and 4 with depth 1, 0.5 and 0.5 respectively, texture 6 with depth 2, and finally the bottom
layer (formed by texture 2) with null thickness. Since textures 1 and 2 correspond to the top and bottom layers,
they must be uniform. In this example, the top and bottom layers have a null thickness. However, one may set an
arbitrary thickness. Especially, if one needs to plot the electromagnetic fields in the bottom and top layers, the
thicknesses hp and hy, (see Fig. 4) over which the fields have to be visualized has to be specified. For hy=hy,=0, the
Rayleigh expansions of the fields in the top and bottom layers are not plotted.

In this particular profile, the structure formed by texture 3 with thickness 1, texture 2 with thickness 0.5 and texture
4 with thickness 0.5 is repeated twice. It is possible to simplify the instruction defining the “profile” variable in
order to take into account the repetitions:

profile = {{0,1},{[1,0.5,0.5], [3,2,4], 2}.{[2.0].[6,2]}}; )

If a structure is repeated many times, the above “factorized” instruction of Eq. 2 is better than the “expanded” one
of Eq. 1, in terms of computational speed, because the calculation will take into account the repetitions.

The profile is shown below.

texture 1

texture 3
texture 2
texture 4

texture 6
hb"
o+

texture 2

Fig. 4. Texture stacks. The example corresponds to a profile defined by
profile = {[hy,1,0.5,0.5,1,0.5,0.5,2, hy],[1,3,2,4,3,2,4,6,2]};. The top and bottom layers have
uniform isotropic textures.

4. Solving the eigenmode problem for every texture

The first computation with the RCWA consists in calculating the eigenmodes associated to all textures. This is
done by the subroutine “res1.m”, following the instruction:
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aa = resl(wavelength,period,textures,nn,k_parallel,angle_delta,parm);

The first-six input parameters are absolutely required by the code : the wavelength “wavelength”, the period of
the grating “period”, the “textures” variable, the number of Fourier harmonics “nn”, the norm of the parallel
incident wave vector “k_parallel”, the angle that defines the plane of incidence “angle_delta.

Some other additional parameters can be defined. For example, the default parameters do not take the symmetry
of the problem into account. So if the user wants to use symmetries, new parameters have to be defined :
“parm.sym.x”, “parm.sym.y”, and “parm.sym.pol”. These parameters are defined in Section 7.

parm = res0;
res0.m is a function that changes the default values. This instruction has to be executed before res1.m, if one wants
to modify the default values (for instance to use symmetry).

Itis very important to note that if one has to study the diffraction by many different gratings composed of the same
textures, one needs to compute only once the eigenmodes. It is possible to save the “aa” variable in a “.mat” file
and to reload it for the computation of the diffracted waves, see an example in Annex 9.3.

5. Computing the diffracted waves

This is the second step of the computation. This is done by the subroutine “res2.m”, following the instruction:
result = res2(aa,profile);

This subroutine has 2 input arguments: the output “aa” of the subroutine “res1.m” and the “profile” variable. The
output argument “result” contains all the information on the diffracted fields. “result” is an object of class
‘reticolo’ that can be indexed as an usual structure with parentheses, or with the labels of the considered orders
between curly braces. Examples will be given in the following.

This information is divided into the following sub-structures fields :

- “result. TEinc_top”
- “result. TEinc_top_reflected”
- “result. TEinc_top_transmitted”

- “result. TEinc_bottom”
- “result. TEinc_bottom_reflected”
- “result. TEinc_bottom_transmitted”

- “result. TMinc_top”
- “result. TMinc_top_reflected”
- “result. TMinc_top_transmitted”

- “result. TMinc_bottom”
- “result. TMinc_bottom_reflected”
- “result. TMinc_bottom_transmitted”

The sub-structure “result. TEinc_top_reflected” contains all the information concerning the propagative reflected
waves for the incident wave from the top of the grating in TE polarization which is described in the sub-structure
“result. TEinc_top”

The sub-structure “result. TMinc_bottom_transmitted” contains all the information concerning the propagative
transmitted waves for the incident wave from the bottom of the grating in TM polarization which is described in
the sub-structure “result. TMinc_ bottom”. And so on.
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result. TEinc_top_transmitted

result. TMinc_top_reflected

result. TMinc_top

result. TMinc_top_transmitted

result. TEinc_bottom_transmitted

result. TEinc_bottom

result. TEinc_bottom_reflected

result. TMinc_bottom_transmitted

»,
.
result. TMinc_bottomy,  nafe= K
etad
4t.TM inc_bottom_reflected

Fig. 5. The 4 solutions obtained.

Each sub-structure of result is composed of the following fields. Each field is a Matlab column vector.or matrix

having the same number N of lines. N is the number of propagative orders considered and can be 0.

Field name signification size

order orders of the diffracted propagative plane waves N, 1
theta angle O of every diffracted order N, 1
delta angle 5m of every diffracted order N, 1
K normalized wave vector N, 3
efficiency efficiency in each order N, 1
efficiency TE efficiency in TE polarization in every order N, 1
efficiency TM efficiency in TM polarization in every order N, 1
amplitude TE complexe amplitude in TE polarization in every order N, 1
amplitude_ TM complexe amplitude in TM polarization in every order N, 1
E electric field (ExEy,E;) of the diffracted orders at O_top or O_bottom when the | N, 3

amplitude of the incident plane wave is one.
H magnetic field (Hy,Hy,H;) of the diffracted orders at O_top or O_bottom when the | N, 3
amplitude of the incident plane wave is one.

PlaneWave_TE_E | £_yector components of the TE-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TE_H | 1_yector components of the TE-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TE_EU | E_yector components of the TE-polarized PW s (in the urw Ure basis) N, 2
PlaneWave_TE_HU | t_yector components of the TE-polarized PW s (in the Uru Ure basis) N, 2
PlaneWave_TM_E | E_yector components of the TM-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TM_H | ty_yector components of the TM-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TM_EU | £_yector components of the TM-polarized PW s (in the Utw Ure basis) N, 2
PlaneWave_TM_HU | H_yector components of the TM-polarized PW s (in the Uy Ure basis) N, 2
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5.1. Efficiency
For a given diffraction order n, the diffraction efficiency is defined as the ratio between the flux of the diffracted
Poynting vector and the flux of the incident Poynting vector (flux through a period of the grating).

The efficiencies of all propagative reflected and transmitted plane waves (for a TE-polarized plane wave incident
from the top of the grating) are given by the two vectors “result. TEinc_top_reflected.efficiency” and
“result. TEinc_top_transmitted.efficiency”. If all refractive indices are real, the sum of all elements of these two
vectors is equal to one because of the energy conservation. The label "m" of the corresponding orders are found in
“result. TEinc_top_reflected.order” (see below for a description of the other fields of this sub-structure).

Some examples
1) The TE-efficiency of the reflected order -2 (ki)?C—ZKX) of the grating illuminated from the top by a TM-
polarized plane wave is equal to result. TMinc_top_reflected.efficency TE{-2}. If this order is evanescent the

efficiency is equal to zero.
The total efficiency (TE+TM) in this order is result. TMinc_top_reflected.efficency{-2}.

It is important to have in mind the difference between :

result. TMinc_top_reflected.efficiency{-2} : efficiency of order 2

result. TMinc_top_reflected.efficiency(-2) : gives an error !

result. TMinc_top_reflected.efficiency{2} : efficiency of order 2

result. TMinc_top_reflected.efficiency(2) : efficiency in order result. inc_top_reflected.order(2);

2) The orders of the transmitted waves for an incident wave from the top of the grating in TE polarization are given
by the vector “result. TEinc_top_transmitted.order”.

3) The efficiencies of all propagative reflected waves for an incident wave from the bottom in TM polarization are
given by the vector “result. TMinc_bottom_reflected.efficiency”.

5.2. Rayleigh expansion for propagatives modes
The coefficients of the Rayleigh expansion of Fig. 1 can be obtained from the structure result. For instance, when
the grating is illuminated from the bottom with a TE polarised mode, we have :

Efbitom =result. TEinc_bottom_reflected. E{m} (3 components in Oxyz)
HPtom =result. TEinc_bottom_reflected. H{m} (3 components in Oxyz)
E{gp =result. TEinc_bottom_transmitted.E{m} (3 components in Oxyz)

Hibp =result. TEinc_bottom_ transmitted.H{m} (3 components in Oxyz)

and the incident plane wave defined in page 4 is given by :

Egngnom =result. TEinc_bottom.E (3 components in Oxyz)

Hine m =result. TEinc_bottom.H (3 components in Oxyz).

5.3. Diffracted amplitudes of propagative waves
5.3.1 Utg, Umm, 6, 0 and K

Figure 6 defines the geometry of the diffracted order m, for a diffracted wave in the top layer and for a diffracted

wave in the bottom layer. The wave vector km =(2m/A) Nop Km (or (27/M)nporomKm) Of the mth diffracted order is
defined by the two angles 6m and dm. As for the incident wave, the angle 6 defines the plane of diffraction. The
angle O, is varying between 0° and 90°, and the angle &r is varying between 0° and 360°. The relations linking
the Cartesian components of the unitary vector Km and the angles 6, and 8y, are the same as the relations defined
previously for the incident plane wave (Section 3) :

Km = [sin(8m)cos(8m), sin(Bm)sin(dm), -cos(0m)]

The unitary vector CITE is perpendicular to the plane of diffraction and is oriented so that (K, GTE ,2) is direct.
The unitary vector Uy, is defined by the relation Uy, =Ug A Km. So the base Uy, Urg, Km is direct. If the
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diffracted electric field is parallel to Utg , then the order m is TE polarized, and if the diffracted electric field is

parallel to Uy, , then the order m is TM polarized. In general, the diffracted electric field of the order m has a
non-zero component along both directions.

Y

Utm

Fig. 6. Definition of the 6, and & for a specific diffracted order m.

5.3.2 Otop and Obottom poOINts

Orop and Oyqp are 2 important points (see Fig. 1). In the Cartesian coordinates system Oxyz , they are defined by :
O1op=(0,0,h) at the top of the grating, and Onottom=(0,0,0) at the bottom of the grating.

In addition, let us consider an arbitrary point M=(x,y,z) in the 3D space in Oxyz. Associated to this point, we
define the two vectors :

rtop: OIOpM y and

I'bottom= ObottoriV] .

5.3.3 Jones’ matrix

Let us assume that the grating is illuminated from the top layer and let us consider a diffracted order m in the
bottom layer. Any other diffraction situation is straightforwardly deduced.

a and P being two given complex numbers, the incident electromagnetic field (6 components of E and H in every
points of the 3D space) can be written :

WINC= o PWeg +B PWry,

where PWq is a TE-polarized plane wave defined in every pointby PWre=A1z exp ( ikitgg rtop), and PWp,
a TM polarized plane wave defined in the same way by PWmi=Aqy exp(ikitggrmp), Aqzand Aqy being the
electromagnetic fields (6 components) of the plane wave at M=Oy,. KI3§ is the incident wave vector. Aqg and

Aqy and K=kigs/ |kit8%| are given by the structure “result* as will be defined later.

Similarly, the diffracted electromagnetic field in the mth bottom order can be written :
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WA =y PWIL +pPWAR,

where y and p are complex numbers, PW{L is a TE-polarized plane wave defined in every point by

PWrrnEZA% exp(ik[ﬂmom rbottom), and PW{“,\,I a TM-polarized plane wave defined in the same way by

PWI,=AT\ exp(ikggnom rbottom). ATrand AT, are the electromagnetic fields (6 components) of the
plane wave at M=Onottom, and k[ is the wave vector of the m transmitted order. Afgand ATy, and

K™=k iiom/ ‘kbmottom‘ are given by the structure “result“ as will be defined later.

We define the (4x4) Jones‘ matrix J, associated to the order m by :

B Wemdmm ) \B

Jee, Jem,Ive, Jum and J are all given by the structure “result”.
The A ATe Aqy AT\ Vectors are normalized so that the [Jeef?, [Jeml [Imel? and [Jmmf? represent diffraction
efficiencies. For instance, |Jvel* =result. TMinc_top_transmitted.efficency TE{m}.

We now define all these data from the “result” structure :
K = result. TEinc_top.K or K=result. TMinc_top.K.

™= result. TEinc_top_transmitted.K{m} = result. TMinc_top_transmitted.K{m}. Note that if some symmetries
are used for the calculation, “result.TEinc top transmitted.K{m}” or “result.TMinc top transmitted.K{m}” can
be an empty vector.

The A[PE ’s coefticients can be obtained either in the Cartesian coordinate system or in the (Upy, , Upg ) basis.
In the Cartesian coordinate system Oxyz :
result. TEinc_top.PlaneWave _TE_E
A=
result. TEinc_top.PlaneWave_TE_H
[result.T Minc_top.PlaneWave T M_EJ
A s =

result.TMinc_top.PlaneWave_ TM_H
- [ result. TEinc_top_transmitted.PlaneWave TE_ E{m}]
A =]

result. TEinc_top_transmitted.PlaneWave_TE_H{m}
[result.T Minc_top_transmitted.PlaneWave_TE_E{m}

. (same remark as for K™)
result. TMinc_top_transmitted.PlaneWave_TE_H{m}

_(result.TEinc_top_transmitted.PlaneWave_T E_E{m}
AM
result. TEinc_top_transmitted.PlaneWave_TE_H{m}

result. TMinc_top_transmitted.PlaneWave_TE_E{m}
= . (same remark as for K™)
result. TMinc_top_transmitted.PlaneWave_TE_H{m}

In the (U , U ) basis (with only 2 components for each fields E and H) :
result. TEinc_top.PlaneWave_TE_Eu
Ate=
result. TEinc_top.PlaneWave_TE_Hu

result.TMinc_top.PlaneWave_TM_Eu
A =]
result. T Minc_top.PlaneWave_TM_Hu
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N [ result. TEinc_top_transmitted.PlaneWave TE_ Eu{m}}
ATE=

result. TEinc_top_transmitted.PlaneWave_TE_Hu{m}

result. TMinc_top_transmitted.PlaneWave_TE_Eu{m
= . (same remark as for K™)

result. TMinc_top_transmitted.PlaneWave_TE_Hu{m}

Al result. TEinc_top_transmitted.PlaneWave TE_Euym
TM™ result. TEinc_top_transmitted.PlaneWave TE_Huym

{result.TMinc_top_transmitted.PIaneWave_T E_Eu{m

. (same remark as for K™)
result. TMinc_top_transmitted.PlaneWave_TE_Hu{m}

The Jones’ coefficients are :

Jee =result. TEinc_top_transmitted.amplitude_TE{m}
Jem=result. TEinc_top_transmitted.amplitude_ TM{m}
Jve =result. TMinc_top_transmitted.amplitude_ TE{m}
Jum =result. TMinc_top_transmitted.amplitude_ TM{m}

And the Jones’ matrix is :

Jeed
J=| “EETME :result..]ones.inc_top_transmitted{m}.

‘JEM‘]MM

6. Using symmetries to accelerate the computational speed

When the grating possesses some mirror symmetry for the plane x=xo, the user may define “parm.sym.x= Xo” For
delta=90 or 270, the x-symmetry will be used.

When angle_delta and parameter k_parallel are compatible with the symmetry, the structure "result” contains only
information upon the polarisation selected by parameter parm.sym.pol.

Note that the code does not check if the grating symmetry defined by the user is in agreement with the “textures”.
It is up to the user to define carefully the parameters parm.sym.x.

7. Plotting the electromagnetic field and calculating the absorption loss

7.1. Computation of the electromagnetic fields
Once the eigenmodes associated to all textures are known, the calculation of the electromagnetic fields everywhere
in the grating can be performed. This calculation is done by the subroutine “res3.m”, following the instruction

[e,z,index] = res3(x,aa,profile,einc,parm);

The function“res3.m” can be called without calling “res2.m”. This subroutine has 5 input arguments:

-the “X” variable is a vector containing the locations where the fields will be calculated in the x-direction. For
instance, we may set x = linspace(-period/2, period/2, 51); for allocating 51 sampling points in the x-direction,
-the “aa” variable contains all the information on the eigenmodes of all textures and is computed by the subroutine
resl.m,

-the variable “profile” is defined in Section 4.2. Note that it can be redefined,

-the variable “einc” defines the complex amplitude of the incident electric field at O_top or O_bottom in the basis
{urm, ute}. For instance, setting einc=[1,0] means that one is looking for TM polarization, and setting
einc=[1,1]/sqrt(2) means that one is looking for a 45° polarization.

If one wants to illumine the grating exactly by the TE-polarized incident PW;g defined above, one

should set: einc= result. TEinc_top PlaneWave_TE_Eu.

If symmetry arguments have been used previously, note that the calculation with resl.m is provided only
for some specific polarization; it would be a nonsense to specify another polarization for the field plots (in this
case the corresponding component of einc is taken as 0).

-the “parm” variable, already mentioned is discussed in the following.
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There are three possible output arguments for the subroutine “res3.m”.
-The argument “e” contains all the electromagnetic field quantities:

Ex=e(:,:,1); Ey=e(:,:,2); Ex=e(:,:,3); Hx=e(:,:,4); Hy=e(:,:,5); Hz=e(:,:,6).

-The second argument “z” is the vector containing the z-coordinate of the sampling points. Note that in the matrix
Ex=e(:,:,1), the first index refer to the z coordinate, and the second to the x-coordinate. Thus Ex(i,j) is the Ex field
component at the location {z(i), x(j)}.

-The third argument index(i,j) is the complex refractive index at the location {z(i), x(j)}. It can be useful to check
the profile of the grating.

Some important comments on the parm” argument:

1. For calculating precisely the electromagnetics fields, one has to set: ”parm.resl.champ=1” before calling
resl.m. This increases the calculation time and memory load but it is hightly recommended. If not, the computation
of the field will be correct only in homogenous textures (for example in the top layer and in the bottom layer).

2. llluminating the grating from the top or the bottom layer : As mentioned earlier, the code compute the diffraction
efficiencies of the transmitted and reflected orders for an incident plane wave from the top and for an incident
plane wave from the bottom at the same time. When plotting the field, the user must specify the direction of the
incident plane wave. This is specified with variable parm.res3.sens. For parm.res3.sens=1, the grating is
illuminated form the top and parm.res3.sens=-1, the grating is illuminated form the bottom (default is
parm.res3.sens=1).

3. Specifying the z locations of the computed fields: This is provided by the variable parm.res3.npts.
parm.res3.npts is a vector whose length is equal to the length of the variable profile{1}. For instance let us
imagine, a two-layer grating defined by profile = {[0.5,1,2,0.6],[1,2,3,4]}. Setting parm.res3.npts=[2,3,4,5]
implies that the field will be computed in two z=constant plans in the top layer, in three z=constant plans in the
first layer (texture 2), in four z=constant plans in the second layer (texture 3), and in five z=constant plans in the
bottom layer. Default for parm.res3.npts is 10 z=constant plan per layer.

VERY IMPORTANT : where is the z=0 plan and what are the z-coordinates of the z=constant plan? The z=0
plan is defined at the bottom of the bottom layer. Thus, the field calculation is performed only for z>0 values. For
the example profile = {[0.5,1,2,0.6],[1,2,3,4]}, and if we refer to texture 4 as the substrate, the z=0 plan is located
in the substrate at a distance 0.6 under the grating. The z=constant plans are located by an equidistant sampling in
every layer. Always referring to the previous example, it implies that the five z=constant plans in the substrate are
located at coordinate z=(p-0.5) 0.6/5, where p=1,2, ...5. Note that the z coordinate for z=constant plan are always
given by the second output variable of res3.m.

4. How can one specify a given z=constant plan? First, one has to redefine the variable profile. For the grating
example with the two layers discussed above, let us imagine that one wants to plot the field at z=z0+0.6+0.2 in
layer 2. Then one has to set: profile = {[0.5,1-20,0,20,0.2,0.6],[1,2,2,2,3,4]} and set parm.res3.npts=[0,0,1,0,0,0].
Note that it is not necessary to redefine the variable profile at the beginning of the program. One just needs to
redefine this variable before calling subroutine res3.m.

5. Automatic plots: an automatic plot (showing all the components of the electromagnetic fields and the grating
refractive index distribution) is provided by setting parm.res3.trace=1. If one wants to plot only some components
of the fields, one can set for instance: parm.res3.champs=[2,3,6,0], to plot Ey, E;, H, and the object,
parm.res3.champs=[1] to plot only Ex.

7.2. Computation of the absorption loss
Loss computation is performed with the subroutine “res3.m”.

First approach based on integrals (not valid for homogeneous layers with non-diagonal anisotropy):
The absorption loss in a surface S is given by:

L =2 [oIm (exx(M|Ex(MI* + eyy (M| Ey (M)|* + £22(M)|E,(M)|?) dS.
The integral can be computed with the following instruction

[e, Z, index, wZ, loss_per_layer, loss_of Z, loss_of Z X, X, wX] = res3(x,aa,profile,einc,parm);

The important ouput arguments are:

loss_per_layer: the loss in every layer defined by profile, loss _per_layer(l) is the loss in the top layer,
loss_per_layer(2) the loss in layer 2, ... and loss_per_layer(end) the loss in the bottom layer

loss_of Z: the absorption loss density (integrated over X) as a function of Z (like for X, the sampling points Z are
not equidistant. You may plot this loss density as follows : plot(Z, loss_of Z), xlabel('Z),
ylabel(‘absorption’)
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loss_of Z X(Z,X) = n/A Im(index(Z,X).*2) (|e(Z,X,1)>+|e(Z.X,2)|+e(Z,X,3)])
index: index(i,j) is the complex refractive index at the location {z(i), x(j)}.

Second approach based on Poynting theorem (always valid even for homogeneous layers with non-diagonal

anisotropy):

An alternative approach to compute the losses in the layers consists in calculating the difference in the flux of the
incoming and outgoing Poynting vectors. This approach is faster, but in some cases, the computation of the integral
can be more accurate. In homogeneous layers with non-diagonal anisotropy, only this approach is possible.

To specify which approach used per layer, we define a vector
parm.res3.pertes_poynting = [0,0,0,1,0]; % for instance for a 5-layer grating

with “0”, the integral approach is used (default option) and with “1”, the Poynting approach is used. The length of
parm.res3.pertes_poynting is equal to the number of layers. We may set parm.res3.pertes_poynting = 0 or 1;
the scalar is then repeated for all layers.

We may then compute the flux of the Poynting vector in the layer-boundary planes
[e, Z, index, wZ,loss_per_layer,loss_of Z,loss of Z X, XwX,Flux_Poynting] = res3(x,aa,profile,einc,parm);

Flux_Poynting is a vector. Flux_Poynting(1) corresponds to the upper interface of the top layer. The flux is
computed for a normal vector equal to the Z vector. If Flux_Poynting(p) > 0, the energy flows toward the top and
if it it negative the enerfy flows toward the bottom.

For an illumination from the top and a lossy substrate, the substrate absorption is —Flux_Poynting
(end)/(0.5*period). For an illumination from the bottom and a lossy superstrate, the superstrate absorption is
Flux_Poynting (1)/(0.5*period).

Note on the computation accuracy of the integral approach:

To compute integrals like the loss or the electromagnetic energy, we use a Gauss-Legendre integration method.
This method, which is very powerful for 'regular’ functions, becomes inaccurate for discontinuous functions. Thus,
the integration domain should be divided into subdomains where the electric field E is continuous. For the
integration in X, this difficult task is performed by the program, so that the user should only define the limits of
integration: the input “X” argument is now a vector of length 2, which represent the limits of the x interval (to
compute the loss over the entire period, we may take x(2)=x(1)+period. The integration domain is then divided
into subintervals where the permittivity is continuous, each subinterval having a length less than A/(2r). For every
subinterval, a Gauss-Legendre integration method of degree 10 is used. This default value can be changed by
setting parm.res3.gauss_x=.... The actual points of computation of the field are returned in the output argument
X.

For the z integration, the discontinuity points are more easily determined by the variable 'profile’. The user
may choose the number of subintervals and the degree in every layer using the parameter parm.res3.npts, which
is now an array with two lines (in subsection 8.1 this variable is a line vector): the first line defines the degree and
the second line the numbers of subintervals of every layer. For example: parm.res3.npts =[[10,0,12];[3, 1
, 511; means that 3 subintervals with 10-degree points are used in the first layer, 1 subintervals with 0 point in
the second layer, 5 subintervals with 12degree points in the third layer.

The actual z-points of computation of the field are returned in the output variable Z, and the vector wZ
represents the weights and we have sum(loss_of Z.*wZ)=sum(loss_per_layer). Although the maximum degree
that can be handled by reticolo is 468, it is recommended to limit the degree values to modest numbers (10-30
maximum) and to increase the number of subintervals (the larger the degree, the denser the sampling points in the
vicinity of the subinterval boundaries).

Note that if einc= result. TEinc_top PlaneWave_TE_Eu, the energie conservation test for a TE incident plane
wave from the top is

sum(result. TEinc_top_reflected.efficiency)+
sum(result. TEinc_top_transmitted.efficiency)+
sum(loss_per_layer) / (.5*period) = 1.
Usually, this equality is achieved with an absolute error <1075

For specialists:
-loss_of_Z_X =pi/ wavelength*imag(index.”2).*sum(abs(e(:,:,1:3))."2,3);
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-loss_of Z =(loss_of Z X*wX(:)).";
-by setting index(index ~= index_chosen)=0 in the previous formulas, one may calculate the absorption loss in
the medium of refractive index index_chosen.

8. Bloch-mode effective indices

RETICOLO gives access to another output: the Bloch mode associated to all textures. The Bloch mode k of the
texture | can be written

|0') = S a! expli(ki? + mK,)x] exp(iki™y) exp (i %nfff,z),

where n’:flfis the effective index of the Bloch mode k of the texture 1.

Instruction:

[aa,n_eff] = resl(wavelength,period,textures,nn,kparallel,delta0,parm);

Note that the “n_eff” variable is a Matlab cell array: “n_eff{ii}” is a column vector containing all the Bloch-mode
effective indices associated to the texture “textures{ii}”. The element number 5 of this vector, for example, is
called by the instruction “n_eff{ii}(5);”. An attenuated Bloch-mode has a complex effective index.

Bloch mode profile visualization:
To plot the profile of Bloch mode Num_mode of the texture Num_texture:

resl(aa, neff, Num_texture, Num_mode);

To obtain the profile datas in the format given by res3:
[e,0,x,y] = resl(aa, neff, Num_texture, Num_mode); % by default, for |x| < period/2 and |y| < period/2

[e,0] = resl(aa, neff, Num_texture, Num_mode, X,y); % by specifying the x and 'y vectors,
x=linspace(0,3*period(1),100) and y=0 for example, but y can be a vector too. The y-dependence is simply a phase
factor exp(iki™y).

9. Annex

9.1. Checking that the textures are correctly set up
Setting “parm.resl.trace = 1;” generates a Matlab figure which represents the refractive-index distribution of all
the textures.

9.2. The “retio” instruction

RETICOLO automatically creates temporary files in order to save memory. These temporary files are of the form
“abcd0.mat”, “abcdl.mat” ... with abcd randomly chosen) .They are created in the current directory. In general
RETICOLO automatically erases these files when they are no longer needed, but it is recommended to finish all
programs by the instruction “retio;”, which erases all temporary files. Also, if a program anormally stopsone may
execute the instruction “retio” before restarting the program.

The “retefface” instruction allows to know all the “abcd0.mat” files and to erase them if wanted.

If we are not limited by memory (this is often the case with modern computers), we can prevent the writing of
intermediate files on the hard disk by the setting

parm.not_io = 1;
before the call to res1. Then it is no longer necessary to use the retio instruction at the end of the programs to erase

the files.
IMPORTANT: to use parfor loops, it is imperative to take the option parm.not_io = 1.

9.3. How to save and to reload the “aa” variable

To save the “aa” variable in a “.mat” file, the user has to define a new parameter containing the name of the file
he or she wants to create : “parm.resl.fperm = 'file_name';”. field name is a char string with at least one letter.
The program will automatically save “aa” in the file “file_name.mat”. In a new utilisation it is sufficient to write
aa = ‘file_name";.

Example of a program which calculates and saves the “aa” variable
[...] % Definition of the input parameters, see Section 3
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parm.resl.fperm = "toto";

[...] % Definition of the textures, see Section 4.1

aa = resl(wavelength,period,textures,nn,k_parallel,angle_delta,parm);

Example of a program which uses the “aa” variable and then calculates the diffracted waves

[..] % Definition of the profile, see Section 4.2. Note that the textures used to define the profile argument have
to correspond to the textures defined in the program which has previously calculated the “aa” variable.

aa="toto’;

result = res2(aa,profile);

retio;

9.4. Asymmetry of the Fourier harmonics retained in the computation

nn =[-15;20]; % this defines the set of non-symmetric Fourier harmonics retained for the computation. In this
case, the Fourier harmonics from —15 to +20 are retained.

The instructions “nn = 10;” and “nn = [-10;10];” are equivalent.

Take care that the use of symmetry imposes symmetric Fourier harmonics, if not the computation will be done
without any symmetry consideration.

10. Summary
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Fig. 7 Summary.

11. Examples

The following examples can be copied and executed in Matlab.

CRCCICRCRC] 0000000000000 0000

% SIMPLE EXAMPLE 1D CONICAL %
©0000000000000000000000000000
6000000000000 00000000000000O00
wavelength=8;

period=10;% same unit as wavelength
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n_incident medium=1;%refractive index of the top layer

n transmitted medium=1.5;% refractive index of the bottom layer

angle theta0=10;k parallel=n incident medium*sin(angle thetaO*pi/180);
angle delta=-20;

parm=res0; % default parameters for "parm"
parm.resl.champ=1; % the electromagnetic field is calculated accurately
nn=5; % Fourier harmonics run from [-5,5]

% textures for all layers including the top and bottom layers
texture=cell (1,3);

textures{l}= n_incident medium; % uniform texture
textures{2}= n transmitted medium; % uniform texture

textures{3}={[-2.5,2.5], [n_incident medium,n transmitted medium] };
aa=resl (wavelength, period, textures,nn, k parallel,angle delta,parm);
profile={[4.1,5.2,4.11,[1,3,2]1};

conical=res2 (aa,profile)

eff TETM=conical.TEinc top reflected.efficiency{-1}
% -1 order efficiency (TE+TM) for a TE-illumination from the top layer
eff TE=conical.TEinc bottom transmitted.efficiency TE{-1}

o)

% -1 order TE efficiency for a TE-illumination from the top layer
J=conical.Jones.inc_bottom transmitted{-1};% Jones’'matrix

abs (J) .72 $ -1 order efficiencies for an illumination from the top layer
% field calculation

x=linspace (-period/2,period/2,51);% x coordinates (z-coordinates are determined by
res3.m)

einc=[0,1]; % E-field components in the (u, v) basis (default is illumination from
the top layer)

parm.res3.trace=1l; % plotting automatically

parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,aa,profile, einc,parm) ;
figure;pcolor (x,z,real (squeeze(e(:,:,3)))); % user plotting

shading flat;xlabel ('x');ylabel('y') ;axis equal;title('Real(Ez)");

o)

% Loss calculation

textures{3}={[-2.5,2.5], [n_incident medium, .1+51i] };

aa loss=resl (wavelength, period, textures,nn, k parallel,angle delta,parm);
conical loss=res2(aa loss,profile)

parm.res3.npts=[[0,10,0];[1,3,111;
einc=conical loss.TEinc_ top.PlaneWave TE Eu;

[e,z,index,wZ,loss per layer,loss of 7Z,loss of 7 X,X,wX]=res3([-
period/2,period/2],aa_loss,profile,einc,parm);

Energie conservation=sum(conical loss.TEinc_top reflected.efficiency)+sum(conical 1
oss.TEinc top_ transmitted.efficiency)+sum(loss_per layer)/(.5* period)-1

wavelength=8;

period=10;% same unit as wavelength

n_incident medium=1;% refractive index of the top layer
n_transmitted medium=1.5;% refractive index of the bottom layer

angle theta0=-10;k parallel=n incident medium*sin(angle thetaO*pi/180);

parm=res0(1l);% TE polarization. For TM : parm=res0(-1)
parm.resl.champ=1;% the electromagnetic field is calculated accurately
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nn=40;% Fourier harmonics run from [-40,40]

% textures for all layers including the top and bottom layers
texture=cell (1, 3);

textures{l}= n incident medium; % uniform texture
textures{2}= n transmitted medium; % uniform texture

textures{3}={[-2.5,2.5], [n_incident medium,n transmitted medium]

aa=resl (wavelength, period, textures,nn, k parallel, parm);
profile={[4.1,5.2,4.1]1,1[1,3,21};

one D TE=res2(aa,profile)

eff=one D TE.inc top reflected.efficiency{-1}
J=one D TE.Jones.inc top reflected{-1};% Jones’coefficients
abs (J) "2 %

o)

% field calculation

o)

x=linspace (-period/2,period/2,51);% x coordinates (z-coordinates are determined by

res3.m)

einc=1;

parm.res3.trace=1l; % plotting automatically
parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,aa,profile,einc,parm) ;
figure;pcolor (x,z,real (squeeze(e(:,:,1)))); % user plotting

shading flat;xlabel('x');ylabel('y');axis equal;title('Real(Ey)");

% Loss calculation
textures{3}={[-2.5,2.5], [n_incident medium,.l1+5i] };

aa loss=resl (wavelength,period, textures,nn, k parallel,parm);
one D loss=res2(aa_ loss,profile)
parm.res3.npts=[[0,10,01,;[1,3,111;

einc=one D loss.inc_ top.PlaneWave E(2);

[e,z,indgx,wz,loss_per_layer,loss_of_Z,loss_of_Z_X,X,wX}=res3([—

period/2,period/2],aa_loss,profile,einc,parm);

first order efficiency for an illumination from the top layer

Energie conservation=sum(one D loss.inc top reflected.efficiency)+sum(one D loss.in

c_top_transmitted.efficiency7+sum(loss_per_layer)/(.5* period) -1

o)

retio $ erase temporary files

]
M STACK VITH FULL ANISOTROPY %

wavelength=8;

period=10;
n_incident medium=1; Srefractive index of the top layer

n_transmitted medium=1.5; % refractive index of the bottom layer
angle theta0=10;k parallel=n incident medium*sin(angle thetaO*pi/180);

angle delta=-20;
parm=res(O;parm.not io=1; % default parameters for "parm"

o)

parm.resl.champ=1; % the electromagnetic field is calculated accurately

nn=0; % Fourier harmonics only 0

% textures for all layers including the top and bottom layers
textures=cell (1, 3);

textures{l}= n_incident medium; % uniform textures
textures{2}= n_transmitted medium; % uniform textures
epsilon=[[2.1160 0 0.7165];[0 1.3995 0]; [0.7165 0 2.11601];
textures{3}={epsilon} ;

[aa,neff]=resl (wavelength,period, textures,nn, k parallel,angle delta,parm);

profile={[4.1,5.2,4.11,1[1,3,2]};
conical=res?2 (aa,profile);

% field calculation
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x=linspace (-period/2,period/2,51); % x coordinates (z-coordinates are determined by
res3.m)

einc=[0,1]; % E-field components in the (u, v) basis (default is illumination from
the top layer)

parm.res3.trace=1l; % plotting automatically

parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,aa,profile,einc,parm);
figure;pcolor (x,z,real (squeeze(e(:,:,3)))); % user plotting

shading flat;xlabel('x');ylabel('y');axis equal;title('Real (Ez)");

% Loss calculation

epsilon=randn(3)+li*randn(3) ;epsilon=epsilon+epsilon';H=randn(3,1)+li*randn(3,1) ;ep
silon=1i*H*H'+epsilon’';

% integral method: general non-diagonal anisotropy without amplification
textures{3}={epsilon};

aa loss=resl (wavelength, period, textures,nn, k parallel,angle delta,parm);

conical loss=res2(aa loss,profile);

einc=conical loss.TEinc_ top.PlaneWave TE Eu;

parm.res3.npts=[[5,10,5]1;[4,10,411;

% Poynting method: diagonal anisotropy only

parm.res3.trace=0;

parm.res3.pertes poynting=1;

le,z,index,wZ,loss_per layer]=res3([-period/2,period/2],aa loss,profile,einc,parm);
Energie conservation Poynting=sum(conical loss.TEinc top reflected.efficiency) +sum(
conical loss.TEinc top transmitted.efficiency)+sum(loss per layer)/(.5* period)-1
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RETICOLO CODE 2D

for the analysis of the diffraction by stacks of lamellar 2D
crossed gratings

Authors: J.P. Hugonin and P. Lalanne
arXiv:2101:00901

Reticolo code 2D is a free software for analyzing 2D crossed grating. It operates under
Matlab. To install it, copy the companion folder “reticolo_allege” and add the folder in
the Matlab path. The code may also be used to analyze thin-film stacks with homogeneous
and anisotropic materials, see the end of Section 4.1.
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RETICOLO Code for the diffraction by stacks of lamellar gratings

Generality

RETICOLO is a code written in the language MATLAB 9.0. It computes the diffraction efficiencies and the
diffracted amplitudes of gratings composed of stacks of lamellar structures. It incorporates routines for the
calculation and visualisation of the electromagnetic fields inside and outside the grating. With this version, 2D
periodic (crossed) gratings cannot be analysed.

As free alternative to MATLAB, RETICOLO can also be run in GNU Octave with minimal code changes. For
further information, please contact tina.mitteramskogler@profactor.at.

In brief, RETICOLO implements a frequency-domain modal method (known as the Rigorous Coupled wave
AnalysissfRCWA). To get an overview of the RCWA, the interested readers may refer to the following articles:

1D-classical and conical diffraction

M.G. Moharam et al., JOSAA 12, 1068 (1995),

M.G. Moharam et al, JOSAA 12, 1077 (1995),

P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996),

G. Granet and B. Guizal, JOSAA 13, 1019 (1996),

L. Li, JOSAA 13, 1870 (1996), see also C. Sauvan et al., Opt. Quantum Electronics 36, 271-284 (2004) which
simply explains the raison of the convergence-rate improvement of the Fourier-Factorization rules without
requiring advanced mathematics on Fourier series and generalizes to other kinds of expansions.

2D-crossed gratings

L. Li, JOSAA 14, 2758-2767 (1997),

E. Popov and M. Neviere, JOSAA 17, 1773 (2000),

which describe the up-to-date formulation of the approach used in RETICOLO. Note that the formulation used in
the last article (which proposes an improvement for analysing metallic gratings with continuous profiles like
sinusoidal gratings) is not available in the RETICOLO version of the web. The RCWA relies on the computation
of the eigenmodes in all the layers of the grating structure in a Fourier basis (plane-wave basis) and on a scattering
matrix approach to recursively relate the mode amplitudes in the different layers.

Eigenmode solver: For conical diffraction analysis of 1D gratings, the Bloch eigenmode solver used in Reticolo
is based on the article "P. Lalanne and G.M. Morris, JOSAA 13, 779 (1996)".

Scattering matrix approach: The code incorporates many refinements that we have not published and that we
do not plan to publish. For instance, although it is generally admitted that the S-matrix is inconditionnally stable,
itis not always the case. We have developed an in-house transfer matrix method which is more stable and accurate.
The new transfer matrix approach is also more general and can handle perfect metals. The essence of the method
has been rapidly published in "J.-P. Hugonin, M. Besbes and P. Lalanne, Op. Lett. 33, 1590 (2008)".

Field calculation: The calculation of the near-field electromagnetic fields everywhere in the grating is performed
according to the method described in "P. Lalanne, M.P. Jurek, JMO 45, 1357 (1998)" and to its generalization to
crossed gratings (unpublished). Basically, no Gibbs phenomenon will be visible in the plots of the discontinuous
electromagnetic quantities, but field singularities at corners will be correctly handled.

Acknowledging the use of RETICOLO: In publications and reports, acknowledgments have to be provided by
referencing to J.P. Hugonin and P. Lalanne, RETICOLO software for grating analysis, Institut d'Optique, Orsay,
France (2005), arXiv:2101:00901.

In journal publications and in addition, one may fairly quote the following references:

-L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings"”, J. Opt. Soc. Am. A 14,
2758-2767 (1997),

-P. Lalanne and M.P. Jurek, "Computation of the near-field pattern with the coupled-wave method for TM
polarization”, J. Mod. Opt. 45, 1357-1374 (1998), if near-field electromagnetic-field distributions are shown.

1. The diffraction problem considered

In general terms, RETICOLO-2D solves the diffraction problem by a grating defined by a stack of layers which
have all identical periods in the x- and y-directions. In the following, the (x,y) plane and the z-direction will be
referred to as the transverse plane and the longitudinal direction, respectively. To define the grating structure, first
we must define a top layer and a bottom layer. This is rather arbitrary since the top or the bottom layers can be the
substrate or the cover of a real structure. It is up to the user. Once the top and the bottom layers have been defined,
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the user can choose to illuminate the structure from the top or from the bottom. The z-axis is oriented from bottom
to top.

RETICOLO-2D is written with the exp (iwt) convention for the complex notation of the fields. So, if the materials
are absorbant, one expects that all indices have a positive imaginary part. The Maxwell‘s equations are of the form

VXE=2CH(gp=po=c=1)

2im

VXH———sE

where £ = n? is the relative permittivity, a complex number, and 2 is the wavelength in a vacuum.

RETICOLO-2D returns the diffraction efficiencies of the transmitted and reflected orders for an incident plane
wave from the top and for an incident plane wave from the bottom, both for TM and TE polarizations. The four
results are obtained by the same calculation (incident TE wave from the top, incident TM wave from the top,
incident TE wave from the bottom and incident TM wave from the bottom). Of course, the two incident plane

waves must have identical parallel wave-vector in the transverse plane [ki)[‘c , ki;‘c ]. This possibility which is not

mentioned in the literature to our knowledge is important in practice since the user may get, for the same
computational loads, the grating diffraction efficiencies for an illumination from the substrate or from the cover.

RETICOLO-2D calculates the electric and magnetic fields diffracted by the grating for the following incident
plane wave :

Eins exp (i(kPx + kify + ki, (2 — )
HIE exp ( (kirex + kitcy + ki, (z — h))), if incident from the top layer,

where k75, = _\[(Z”ntop/)‘)z — (k) — (kgi/nc)z-
Z{l)cttom exp ('(k)icncx + k]i/ncy + k;nbcottom (Z - h)))
Hib:om €xp (i(k;icncx + Ky + ki om(z — h))), if incident from the bottom layer,

5 . 2
where kz bcottom \/(znnbottom//l)z - (kalcnc)z - (kjllnc) .
The z-component of the Poynting vector of the incident plane wave is +0.5.

The Rayleigh-expansion of the diffracted electric fields are shown in the following figure.

ES = 3, B expli((k€ + mK)x + (kP +nK, )y + K, (z — B)]
Higy = T Hiby exp[i((k" + mK)x + (K] + K, )y + Koy (z = )]

where k), = \[ (2nn40p /,1) — (kirc + nK,)? — (kirc + nKy) )

d
b(lthtom = Zmn bottom exp [l((kmc + mK: )x + (kmc + Tley) + kz bottomz]
d in

Hb;{tom = Zmn bottom exp [l((kmc +mK. )x + (k ‘+ me}’) + kz bottomz]

where k;nbnottom = _\/(Znnbottom/l)z - (k)lcnc + me)Z - (k;m + Tle)
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O_top

z=h Top layer

Bottom layer

z=0

O_bottom

Fig. 1. Rayleigh expansion for the diffracted fields. K, = (2m) /period_x, K,, = (2m)/period_y.

The (m,n)" order has a parallel momentum equal to (ki* + mK,) X+ (k§”€ + me) ? We
define two points Owp= (0,0,h) at the top of the grating, and Opotom= (0,0,0) at the bottom of the
grating.

The following is organized so that one can straightforwardly write a code using the software.

2. Preliminary input parameters

The name of the following parameters are given as examples. The user may define his own parameter vocabulary.

wavelength = 3; % wavelength () in a vacuum. It might be 3 nm or 3 um. You do not need to specify the unit
but all other dimensions are of course in the same unit as the wavelength.

period = [period_x , period_y]; % the first variable is always related to the x-direction.

nn = [3,2]; This defines the set of Fourier harmonics retained for the computation. More specifically, 2xnn(1)+1
represent the number of Fourier harmonics retained in the x-direction from -nn(1) to nn(1), and 2xnn(2)+1
represent the number of Fourier harmonics retained in the y-direction from -nn(2) to nn(2). Note that the x-
direction is always set up first.

If all the textures are homogeneous (case of a thin-film stack), we may set nn=0 and the period may be
arbitrarily set to any value, [1,1] for example. NB: Because of our normalization choice (Poynting vector equal to
1), the computed reflected and transmitted amplitude coefficients are not identical to those provided by the Fresnel
formulas.

angle_delta = 30; % in degrees, see the following figure for a definition of “angle delta” for the incident plane
wave. This angle is varying between 0° and 360°. This angle has to be defined in the incident medium.

k_parallel = n_incident_medium*sin(angle_theta*pi/180);

The parameters “angle_delta” and “angle_theta” which are used to specify the plane of incidence and the angle
of incidence are denoted by & and 0inc in Fig. 2. The angle & defines the plane of incidence. This plane allows to
define the polarization of the incident plane wave: if the electric field of the incident plane wave is perpendicular
to this plane, the incident wave is TE polarized, and if it is parallel to this plane, the incident wave is TM polarized.
The incident wave vector is

kinc=(27t/7n) Ninc Kinc
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with Kinc = [sin(0)cos(d), sin(8)sin(3), -cos(0)].

Ninc iS the refractive index of the top (or bottom) layer. One expects that it is a positive real number and that the
texture (see Section 4.1) associated to the top (or the bottom) layer has a background with a uniform refractive
index “ninc”.

(Note that the “k_parallel” variable is defined without the factor 2rt/A.)

. Z
n_inc*K_inc

‘/? k_parallel=n_inc*sin(0_inc)

N o |
n_inc*K_inc ;

Fig. 2. Definition of 6 _inc, 8, k_parallel.

In general, the user has in mind to illuminate the grating from the substrate or from the upperstrate (air in general).
“n_incident medium” (denoted also ninc) is the refractive index of the incident medium. One expects that it is a
positive real number and that the texture (see Section 4.1) associated to the top or the bottom layer has a
background with a refractive index “n_incident_medium”.

It is very important to keep in mind that whether the user defines the incident plane wave in the top layer or in the
bottom layer, the calculation will be done for both an incident wave from the top and an incident wave from the
bottom, with an identical parallel wave vector, i.e. for a specified [ki?c, kiyc] which is the same in the bottom and

top layers.

3. Structure definition (grating parameters)

The grating encompasses a uniform upperstrate, called the top in the following, a uniform substrate, called the
bottom in the following, and many layers which define the grating, which is defined by a stack of layers. Every
layer is defined by a “texture” and by its thickness. Two different layers may be identical (identical texture and
thickness), may have different thicknesses with identical texture, may have different thicknesses and textures. To
define the diffraction geometry, one needs to define the different textures and then the different layers.

3.1. How to define a texture?
We have first to define a background by its refractive index “nbackground”. Then in this uniform background, we
successively incorporate inclusions with a refractive index “ninclusion”. The geometry of this inclusion can be an

ellipse or a rectangle, defined by the position (c_x,c_y) of its center and its dimensions Lx and Ly along the x and
the y direction respectively. Note that the ellipse axes are parallel to the x and y directions
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Defining the background

textures{3}={[-2:1:5],[2:1.3:1.5] }:

]

textures{1}= 1§ 0 9., 5% 2 S5 0 5.
textu.res{2} ([- 2 1,5],[2,1.3, 1. 513;
Defining inclusions
textures{1}={ 1 , [0,1,8,4,1.5,1]}

o

¥
=

Lt 2

textures{2}={ 2.9 , [0,1, &,4, 1, 5]}:
Selection rule for the overlap problem

textures{1}= 1, [u,u,s,4 2, 5] . [0,1,3,9,3,11 ¥:

1-H-%

textures{2}={ 1 . [013,9,3,1] . [0,0,8,4,2,5] }:

Fig. 3. Principle of textures definition.

Some examples
Definition of a uniform texture 1 with a refractive index “nbackground” :

textures{1} = { nbackground };

Definition of a texture 2 composed of a rectangle of refractive index “ninclusion” in an uniform background with
a refractive index “nbackground”:

textures{2} = { nbackground,[cx,cy,Lx,Ly,ninclusion,1]};

Note that the last number “1” indicates that the inclusion is a rectangle. Of course, if Lx = Ly, we define a square.

Definition of a texture 3 composed of an ellipse of refractive index “ninclusion” in a uniform background with a
refractive index “nbackground”:

textures{3} = { nbackground,[cx,cy,Lx,Ly,ninclusion,N]};

Note that the last number “N” indicates that the inclusion is an ellipse. If Lx = Ly, we define a circle. The ellipse
is in fact coded by a staircase approximation, and 4xN represents the number of edges of the staircase pattern used
to represent the continuous smooth profile. As N increases, the staircase approximation becomes more and more
accurate. We recommend to use N > 5.

Definition of an intricate texture 4 (selection rule for the overlap problem):

In the following example, we have two rectangular pillars in the period.

textures{4} = {1, [0,0,5,2, 2, 1], [0,0,1,10, 3, 1]};

There is an overlap between the two rectangles, and the refractive index of the overlap region is fixed by the last
inclusion, “3” in the example.

The following figure shows the refractive indices of the 4 generated textures.
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texture 1 texture 2
* . 12
& B
4 4 1.8
2 2 "
> 0 >0
2 2 1.4
-4 -4 1.2
5 -6
5 0 5 -5 0 5 s
X X
texture 3 texture 4

Y

S ko Eoo
Y

S ko Eoo

-5 0 5 o2
X

Fig. 4. Different textures, see the text for their generation.

Dielectric rectangles in a perfectly-conducting metallic background:

The background can be an infinitly conducting metal. In this uniform background, inclusions with a complex or
real refractive index “ninclusion” can be incorporated. In this case, the geometry of this inclusion can be only
rectangular, defined by the position (c_x, ¢_y) of its center and its dimensions Lx and Ly along the x and the y
direction respectively. The inclusions cannot overlap

For example:

textures {5}= { inf, [c_x1,c_y1,Lx1,Lyl,ninclusionl],[c_x2,c_y2,Lx2,Ly2, ninclusion2]}

Anisotropic layers:
Grating layers (not the substrate nor the superstrate) can be anisotropic with diagonal tensors (&y,, = &, ... = 0).
To implement diagonal anisotropy

parm.resl.change_index={[Nprov!, N}, Nyt, N1, [Nprov?, NZ, My2, 2]} % NB: Nprov? # Nproy?
The refractive index nprovt is then replaced in all textures by epsilon=diag([(n«})?, (ny!)?, (nz*)?]). Beware if the
superstate (or substrate) has a refractive index nprov?, it will also be replaced and this is not allowed. Thus we
recommend using an unusual value for nyrey* (e.g. 89.99999 or rand(1)).
The user may also diagonal permeability tensors
parm.resl.change_index={ [Npov}, N, Ny}, Nt medt, myt, mt ], Mo, NZ, N2, 02 )
The refractive index Nprov® is then replaced in all textures by
epsilon=diag( [(n.'), (ny*)?, (nz*)’] ), mu=diag( [(M:})?, (my*)?, (mz*)?] ).

For slits in perfectly-conducting metallic textures, anisotropy cannot be implemented.

Fully-anisotropic homogeneous layers and thin-film-stack modeling:
Homogeneous layers (with permittivity and permeability independent of x and z) can be simulated for arbitrary
anisotropies (not necessarily diagonal)

textures {4} = {epsilon};

with epsilon an arbitrary 3x3 matrix. The user may also implement magnetic anisotropy
textures {4} = {epsilon, mu};

with epsilon and mu arbitrary 3x3 matrices.

Note that the substrate and superstrates should be uniform and isotropic materials. If all layers are uniform, a
thin-film stack can be computed for arbitrary epsilon and mu 3x3 matrices by retaining a single Fourier component,
nn=0.

To check if the set of textures is correctly set up, the user can set the variable parm.resl.trace equal to 1:
“parm.resl.trace = 1;”. Then a MatLab figure will show the refractive-index distributions of all textures. Every
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texture is represented with the coordinate x varying from - period(1)/2 to +period(1)/2 and with the coordinate y
varying from - period(2)/2 to +period(2)/2.

3.2. How to define the layers?

This is performed by defining the “profile” variable which contains, starting from the top layer and finishing by
the bottom layer, the successive information (thickness and texture-label) relative to every layer. Here is an
example that illustrates how to set up the “profile” variable:

profile = {[0,1,0.5,0.5,1,0.5,0.5,2,0],[1,3,2,4,3,2,4,6,2]}; @

It means that from the top to the bottom we have: the top layer is formed by a thickness 0 of texture 1, then we
have twice textures 3, 2 and 4 with depth 1, 0.5 and 0.5 respectively, texture 6 with depth 2, and finally the bottom
layer (formed by texture 2) with null thickness. Since textures 1 and 2 correspond to the top and bottom layers,
they must be uniform. In this example, the top and bottom layers have a null thickness. However, one may set an
arbitrary thickness. Especially, if one needs to plot the electromagnetic fields in the bottom and top layers, the
thicknesses h, and hy, (see Fig. 4) over which the fields have to be visualized has to be specified. For hp=h,=0, the
Rayleigh expansions of the fields in the top and bottom layers are not plotted.

In this particular profile, the structure formed by texture 3 with thickness 1, texture 2 with thickness 0.5 and texture
4 with thickness 0.5 is repeated twice. It is possible to simplify the instruction defining the “profile” variable in
order to take into account the repetitions:

profile = {{0,1},{[1,0.5,0.5], [3,2,4], 2}.{[2,0].[6,2]}}; )

If a structure is repeated many times, the above “factorized” instruction of Eq. 2 is better than the “expanded” one
of Eq. 1, in terms of computational speed, because the calculation will take into account the repetitions.

The profile is shown below.

texture 1

texture 3
texture 2
texture 4

texture 6
hb"
0+

texture 2

Fig. 5. Texture stacks. The example corresponds to a profile defined by
profile = {[h,,1,0.5,0.5,1,0.5,0.5,2, hy],[1,3,2,4,3,2,4,6,2]}; . The top and bottom layers have
uniform and isotropic textures.

4. Solving the eigenmode problem for every texture

The first computation with the RCWA consists in calculating the eigenmodes associated to all textures. This is
done by the subroutine “res1.m”, following the instruction:

aa = resl(wavelength,period,textures,nn,k_parallel,angle_delta,parm);
The first-six input parameters are absolutely required by the code : the wavelength “wavelength”, the period of

the grating “period”, the “textures” variable, the number of Fourier harmonics “nn”, the norm of the parallel
incident wave vector “k_parallel”, the angle that defines the plane of incidence “angle_delta.
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Some other additional parameters can be defined. For example, the default parameters do not take the symmetry
of the problem into account. So if the user wants to use symmetries, new parameters have to be defined :
“parm.sym.x”, “parm.sym.y”, and “parm.sym.pol”. These parameters are defined in Section 7.

parm = res0;
res0.m is a function that changes the default values. This instruction has to be executed before res1.m, if one wants
to modify the default values (for instance to use symmetry).

Itis very important to note that if one has to study the diffraction by many different gratings composed of the same
textures, one needs to compute only once the eigenmodes. It is possible to save the “aa” variable in a “.mat” file
and to reload it for the computation of the diffracted waves, see an example in Annex 9.3.

5. Computing the diffracted waves

This is the second step of the computation. This is done by the subroutine “res2.m”, following the instruction:

result = res2(aa,profile);

This subroutine has 2 input arguments: the output “aa” of the subroutine “res1.m” and the “profile” variable. The
output argument “result” contains all the information on the diffracted fields. “result” is an object of class
‘reticolo’ that can be indexed as an usual structure with parentheses, or with the labels of the considered orders
between curly braces. Examples will be given in the following.

This information is divided into the following sub-structures fields :

- “result. TEinc_top”
- “result. TEinc_top_reflected”
- “result. TEinc_top_transmitted”

- “result. TEinc_bottom”
- “result. TEinc_bottom_reflected”
- “result. TEinc_bottom_transmitted”

- “result. TMinc_top”
- “result. TMinc_top_reflected”
- “result. TMinc_top_transmitted”

- “result. TMinc_bottom”
- “result. TMinc_bottom_reflected”
- “result. TMinc_bottom_transmitted”

The sub-structure “result. TEinc_top_reflected” contains all the information concerning the propagative reflected
waves for the incident wave from the top of the grating in TE polarization which is described in the sub-structure
“result. TEinc_top”

The sub-structure “result. TMinc_bottom_transmitted” contains all the information concerning the propagative
transmitted waves for the incident wave from the bottom of the grating in TM polarization, which is described in
the sub-structure “result. TMinc_bottom”. And so on.
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result. TEinc_top

result. TEinc_top_reflected

result. TEinc_top_transmitted

result. TMinc_top_reflected

result. TMinc_top

result. TMinc_top_transmitted

result. TEinc_bottom_transmitted

result. TEinc_bottom {

result. TEinc_bottom_reflected

result. TMinc_bottom_transmitted

result. TMinc_bottom
4t.TM inc_bottom_reflected

Fig. 6. The 4 solutions obtained.

Each sub-structure of result is composed of the following fields. Each field is a Matlab column vector or matrix

having the same number N of lines. N is the number of propagative orders considered and can be 0.

Field name signification size

order orders of the diffracted propagative plane waves N, 1
theta angle Om, of every diffracted order N, 1
delta angle m,n of every diffracted order N, 1
K normalized wave vector N, 3
efficiency efficiency in each order N, 1
efficiency TE efficiency in TE polarization in every order N, 1
efficiency TM efficiency in TM polarization in every order N, 1
amplitude TE complexe amplitude in TE polarization in every order N, 1
amplitude TM complexe amplitude in TM polarization in every order N, 1
E electric field (Ex,Ey,E;) of the diffracted orders at O_top or O_bottom when the | N, 3

amplitude of the incident plane wave is one.
H magnetic field (Hx,Hy,H) of the diffracted orders at O_top or O_bottom when the | N, 3
amplitude of the incident plane wave is one.

PlaneWave_TE_E E-vector components of the TE-polarized PW ’s (in the Oxyz basis) N, 3
PlaneWave_TE_H | t_yector components of the TE-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TE_EU | E_yector components of the TE-polarized PW ’s (in the Urw ure basis) N, 2
PlaneWave_TE_HU | ty_yector components of the TE-polarized PW s (in the Uty ure basis) N, 2
PlaneWave_TM_E | E_yector components of the TM-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TM_H | 1_yector components of the TM-polarized PW s (in the Oxyz basis) N, 3
PlaneWave_TM_EU | E_vector components of the TM-polarized PW s (in the uru Ure basis) N, 2
PlaneWave_TM_HU | 1_yector components of the TM-polarized PW s (in the Urw ure basis) N, 2
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5.1. Efficiency

For a given diffraction order (m,n), the diffraction efficiency is defined as the ratio between the flux of the
diffracted Poynting vector and the flux of the incident Poynting vector (flux through a period of the grating). The
total diffraction efficiency is equal to efficiency = efficiency_TE + efficiency_TM.

The efficiencies of all propagative reflected and transmitted plane waves (for a TE-polarized plane wave incident
from the top of the grating) are given by the two vectors “result. TEinc_top_reflected.efficiency” and
“result. TEinc_top_transmitted.efficiency”. If all refractive indices are real, the sum of all elements of these two
vectors is equal to one because of the energy conservation. The label "(m,n)" of the corresponding orders are found
in “result. TEinc_top_reflected.order” (see below for a description of the other fields of this sub-structure).

For example, if the desired diffracted order is evanescent for the wavelength or the incidence angle considered,
the result returned is 0.

Some examples
1) The TE-efficiency of the reflected order (m=-3, n=4) for an illumination from the top under TM polarisation is

equal to efficiency TE=result. TMinc_top_reflected.efficency TE{-3,4}. If this order is evanescent, the
efficiency is equal to zero.
The total efficiency (TE+TM) in this order is result. TMinc_top_reflected.efficiency{-3,4},

2) The N propagative orders of the transmitted plane waves for an incident wave from the top of the grating in TE
polarization are given by the vector of size (N,2) “result. TEinc_top_transmitted.order”.

3) The efficiencies of all propagative reflected waves for an incident wave from the bottom in TM polarization are
given by the vector of size (N,2) “result. TMinc_bottom_reflected.efficiency”.

3) The efficiencies of all propagative reflected and transmitted waves for an incident wave from the top of the
grating in TE polarization are given by the two vectors “result. TEinc_top_reflected.efficiency” and
“result. TEinc_top_transmitted.efficiency”. If all refractive indices are real, the sum of all the elements of these
two vectors is equal to one because of energy conservation.

5.2. Rayleigh expansion for propagatives modes
The coefficients of the Rayleigh expansion of Fig. 1 can be obtained from the structure result. For instance, when
the grating is illuminated from the bottom with a TE polarised mode, we have :

Efbitom =result. TEinc_bottom_reflected. E{m} (3 components in Oxyz)
HEiiom =result. TEinc_bottom_reflected.H{m} (3 components in Oxyz)
Ef, =result. TEinc_bottom_transmitted.E{m} (3 components in Oxyz)

H{g, =result. TEinc_bottom_ transmitted.H{m} (3 components in Oxyz)

and the incident plane wave defined in page 4 is given by :

EinS om =result. TEinc_bottom.E (3 components in Oxyz)

Hg‘gttom =result. TEinc_bottom.H (3 components in Oxyz).

5.3. Diffracted amplitudes of propagative waves

5.3.1 Utg, Umm, 0, d and K

Figure 7 defines the geometry of the diffracted order m, for a diffracted wave in the top layer and for a diffracted
wave in the bottom layer. The wave vector Kmn =(21t/A) Niop Kmn (or (27/A) Nipottom Kmn) Of the (m,n)th diffracted
order is defined by the two angles Omn and mn. As for the incident wave, the angle &mn defines the plane of
diffraction. The angle 6m, varies between 0° and 90°, and the angle &m, varies between 0° and 360°. The relations
linking the Cartesian components of the unitary vector Kmn and the angles 8mn and dm, are the same as the
relations defined previously for the incident plane wave (Section 3) :

Kmn = [sin(0mn)cos(dmn), sin(Om.n)sin(dmn), -cos(0m)]

The unitary vector Uqg is perpendicular to the plane of diffraction and is oriented such that (Kmn, Utg , 2) is
direct. The unitary vector Uy, is defined by Ury; =Urg A Kmn. So the base (Ugp, , Urg, Kmpn) is direct. If the
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diffracted electric field is parallel to Uqg , then the order (m,n) is TE polarized, and if the diffracted electric field

is parallel to Upp, , then it is TM polarized. In general, the diffracted electric field of order (m,n) has a non-zero
component along both directions.

Fig. 7. Definition of the Ute,Utm,Kmn,0mn and 6mn for a specific diffracted order (m,n).

5.3.2 Otop and Obottom poOINts

Orop and Oyp are 2 important points (see Fig. 1). In the Cartesian coordinates system Oxyz , they are defined by :
Orp=(0,0,h) at the top of the grating, and Oneom=(0,0,0) at the bottom of the grating.

In addition, let us consider an arbitrary point M=(X,y,z) in the 3D space in Oxyz. Associated to this point, we
define the two vectors :

rop= OtopM , and

I'botom= ObottomM .

5.3.3 Jones’ matrix

Let us assume that the grating is illuminated from the top layer and let us consider a diffracted order m in the
bottom layer. Any other diffraction situation is straightforwardly deduced.

o and B being two given complex numbers, the incident electromagnetic field (6 components of E and H in every
points of the 3D space) can be written :

W= o PWeg +B PWry

where PW,¢ is a TE-polarized plane wave defined in every pointby PWre=A{z exp ( ikitg% rtop), and PWpy,
a TM polarized plane wave defined in the same way by PWmi=Aq, exp(ik{ggrtop), Az and Aqy being the
electromagnetic fields (6 components) of the plane wave at M=Oygp. k%gg, is the incident wave vector. Aqg and

Aqy and K:kitg%/ ‘k'tg%‘ are given by the structure “result* as will be defined later.
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Similarly, the diffracted electromagnetic field in the mth bottom order can be written :

Wit = PWES L PWAT

where y and p are complex numbers, PW{“E*n is a TE-polarized plane wave defined in every point by

PWIE"=ATY" exp(ikgggom rbottom), and PWfy, a TM-polarized plane wave defined in the same way by

PWI =AT}] exp ( iKpotom rbottom). AT and AT}, are the electromagnetic fields (6 components) of the

plane wave at M=Ootom, and K[, is the wave vector of the m transmitted order. AT{"and ATy} and
KM=k o/ ‘kgggom are given by the structure “result* as will be defined later.

We define the (4x4) Jones® matrix J, associated to the order m by :

[VJ Jee IvE [O‘J

W Uemdmm ) \B

Jee, Jem,Ive, Jum and J are all given by the structure “result”.

The Arg AT Aqy ATY) vectors are normalized so that the [Jeef?, [Jeml? [Imel? and [Juml? represent diffraction
efficiencies. For instance, |Jvel? =result. TMinc_top_transmitted.efficency TE{m,n}.

We now define all these data from the “result” structure :

K = result. TEinc_top.K or K=result. TMinc_top.K.

K™n = result. TEinc_top_transmitted.K{m,n} = result. TMinc_top_transmitted.K{m,n}. Note that if some

symmetries are used for the calculation, “result. TEinc_top_transmitted. K {m,n}” or
“result. TMinc_top_transmitted. K {m,n}” can be an empty vector.

The A-lml'zn ’s coefficients can be obtained either in the Cartesian coordinate system or in the (Upp, , Ug ) basis.

In the Cartesian coordinate system OXxyz :
(result.TEinc_top.PIaneWave_TE_EJ
A =]

result. TEinc_top.PlaneWave_TE_H
(result.T Minc_top.PlaneWave T M_EJ
A —]

result. T Minc_top.PlaneWave_ TM_H

. [result.T Einc_top_transmitted.PlaneWave_TE_E] n}}
ATE 5

[result.T Minc_top_transmitted.PlaneWave_TE_E{m,n

result. TMinc_top_transmitted.PlaneWave T E_H{m,n

- [result.T Einc_top_transmitted.PlaneWave T E_E{
AT

[result.T Minc_top_transmitted.PlaneWave_TE_E{m,n

result. TMinc_top_transmitted.PlaneWave T E_H{m,n

In the (Uqp, , Ug ) basis (with only 2 components for each fields E and H) :
[result.T Einc_top.PlaneWave T E_Eu}
A =]

result. TEinc_top.PlaneWave TE_Hu
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( result. TMinc_top.PlaneWave T M_EUJ
A =]

result. T Minc_top.PlaneWave_ TM_Hu
. [resuItTEmc top_transmitted.PlaneWave_TE Eu{m,n}]
A —

result. TEinc_top_transmitted.PlaneWave TE Hu{ ,n

resuItTMlnc > _top_transmitted.PlaneWave TE_ Eu m,n
. (same remark as for K™")
resuItTMmc _top_transmitted.PlaneWave_TE_Hu{m,n}

result. TEinc_top_transmitted.PlaneWave TE_Eu m,nJ

AT {
result. TEinc_top_transmitted.PlaneWave_TE_Hul

m
mn}
[resuItTMmc top_transmitted.PlaneWave_TE_Eu{m,n J

(same remark as for K™")
result. TMinc_top_transmitted.PlaneWave TE_ Hu mn

The Jones’ coefficients are :

Jee =result. TEinc_top_transmitted.amplitude_ TE{m,n}
Jem =result. TEinc_top_transmitted.amplitude_ TM{m,n}
Jve =result. TMinc_top_transmitted.amplitude_ TE{m,n}
Jvm =result. TMinc_top_transmitted.amplitude_ TM{m,n}

And the Jones’ matrix is :

Jegd
J=| “EE"ME —result.Jones.inc_top_transmitted{m,n}.

‘JEM‘JMM

6. Using symmetries to accelerate the computational speed

This is very important for 2D gratings : one has to use symmetry as much as possible. Typical acceleration rate
improvements by use of symmetry can be found in the beginning of Section 4 in “Ph. Lalanne, J. Opt. Soc. Am.
A 14, 1592-1598 (1997)”. 1t has to be understood that symmetries can be used only when the illumination and the
grating structure possess some mirror symmetries for the plane x = xo and/or y = yo.

To use the symmetry, the user needs to define three new parameters: “parm.sym.x”, “parm.sym.y” and
“parm.sym.pol”.

“parm.sym.x” defines the position of the mirror symmetry plane in the x-direction (if exist)

“parm.sym.y” defines the position of the mirror symmetry plane in the y-direction (if exist)

If the illumination possesses the same symmetry as the grating (for details see the table below),. RETICOLO-2D
will perform the calculation for a single polarisation, according to :

parm.sym.pol =1; % TE polarization

parm.sym.pol =-1; % TM polarization

In this case, the fields or structure "result" corresponding to the other polarization will be empty. If one wants to
obtain the result for both polarizations, two independent calculations have to be executed. This is preferable to
performing the calculation for both polarizations at the same time without using symmetries.

If the illumination does not possess the same symmetry as the grating, RETICOLO-2D will perform the calculation
for both polarisations without using the symmetry.

Note that the code does not verify if the grating symmetries defined by the user are in agreement with all the
texture symmetries. It is up to the user to define carefully the parameters parm.sym.x and parm.sym.y.

Using symmetries is not difficult but, in order to check, it is recommended to first execute the code with a small

number of retained Fourier harmonics without using symmetry, then to re-execute the code with the same number
of retained harmonics using symmetries. The calculated efficiencies must be identical.
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Depending on the values of the angles 6 and &, the computation will be done using full symmetry (two mirror
plans), one symmetry (one mirror plane) or no symmetry. In particular, it is important to remember that the angle
& can take only 4 values if one wants to use symmetry : & =0° 90°, 180° and 270°. The following table
recapitulates the conditions on the angles 6 and & for using symmetries, and the associated values of “parm.sym.x”
and “parm.sym.y”.

parm.sym.x parm.sym.y S 0 symmetries used by RETICOLO
0°
90° o full symmetr
Xo Yo 180° 0 (plane x = xo);nd plan{* Y = Vo)
270°
0° one symmetry (plane y = yo)
90° o one symmetry (plane X = Xo)
Xo yo 180° #0 one symmetry (plane y = yo)
270° one symmetry (plane X = Xo)
0° no symmetry
Xo 0 90° any one symmetry (plane X = Xo)
180° value no symmetry
270° one symmetry (plane X = Xo)
0° one symmetry (plane y = yo)
90° any no symmetry
1 yo 180° value one symmetry (plane y = o)
270° no symmetry
0 0 walie | value no symmetry

Remember that the direction of the incident electric field is defined by the polarization and the angle 8. The next
table recapitulates the directions of the incident electric field depending on the polarization and the angle 3.

) 0° 90° 180° 270°
TE
(parm.sym pol = 1) E parallel toy E parallel to x E parallel toy E parallel to x

™
(parm.sym.pol = -1)

E parallel to the
(x,2) plane

E parallel to the
(y,2) plane

E parallel to the
(x,2) plane

E parallel to the
(y,2) plane

7. Plotting the electromagnetic field and calculating the absorption loss

7.1. Computation of the electromagnetic fields
Once the eigenmodes associated to all textures are known, the calculation of the electromagnetic fields everywhere
in the grating can be performed. This calculation is done by the subroutine “res3.m”, following the instruction

[e,z,index] = res3(x,y,aa,profile,einc,parm);

The function“res3.m” can be called without calling “res2.m”. This subroutine has 6 input arguments:

-the “X” variable is a vector containing the locations where the fields will be calculated in the x-direction. For
instance, we may set x = linspace(-period_x/2, period_x/2, 51); for allocating 51 sampling points in the x-
direction,

-the “y” variable is a vector containing the locations where the fields will be calculated in the y-direction. For
instance, we may set y = linspace(-period_y/2, period_y/2, 51); for allocating 51 sampling points in the y-
direction,

-the “aa” variable contains all the information on the eigenmodes of all textures and is computed by the subroutine
resl.m,

-the variable “profile” is defined in Section 4.2. Note that it can be redefined, note also that the “repetition” trick
of Eq. (2) cannot be used,

-the variable “einc” defines the complex amplitude of the incident electric field at O_top or O_bottom in the basis
{urm, ute}. For instance, setting einc=[1,0] means that one is looking for TM polarization, and setting
einc=[1,1]/sqrt(2) means that one is looking for a 45° polarization.
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For illuminating the grating exactly by the TE-polarized incident PW;g defined above, one should set: einc=

result. TEinc_top.PlaneWave TE_Eu.

If symmetry arguments have been used previously, note that the calculation with resl.m is provided only for
some specific polarization ; it would be a nonsense to specify another polarization for the field plots (in this case
the corresponding component of einc is taken as 0).

-the “parm?” variable, already mentioned is discussed hereafter.

There are three possible output arguments for the subroutine “res3.m” :
-The “e” argument contains all the electromagnetic field quantities:

Ex=e(:,:,1),Ey=e(:,:,2),E.=e(:,:,3),Hx=¢(:,:,4),Hy=¢(:,:,5),H.=e(:,:,6).

-The second argument “z” is the vector containing the z-coordinate of the sampling points. Note that in the matrix
Ex=e(:,:,;,1), the first index refer to the z-coordinate, the second to the x-coordinate and the third to the y-
coordinate. Thus Ex(i,j,k) is the Ex field-component at the location {z(i), x(j), y(k)}.

-The third argument index(i,j,k) is the complex refractive index at the location {z(i), X(j), y(k)}. It can be useful
to check the profile of the grating.

Some important comments on the parm” argument:

1. For calculating precisely the electromagnetics fields, one has to set: ”parm.resl.champ=1" before calling
resl.m. This increases the calculation time and memory load but it is highly recommended. If not, the computation
of the field will be correct only in homogenous textures (for example in the top layer and in the bottom layer).

2. llluminating the grating from the top or the bottom layer : As mentioned earlier, the code compute the diffraction
efficiencies of the transmitted and reflected orders for an incident plane wave from the top and for an incident
plane wave from the bottom at the same time. When plotting the field, the user must specify the direction of the
incident plane wave. This is specified with variable parm.res3.sens. For parm.res3.sens=1, the grating is
illuminated form the top and parm.res3.sens=-1, the grating is illuminated form the bottom (default is
parm.res3.sens=1).

3. Specifying the z locations of the computed fields: This is provided by the variable parm.res3.npts.
parm.res3.npts is a vector whose length is equal to the length of the variable profile{1}. For instance let us
imagine, a two-layer grating defined by profile = {][0.5,1,2,0.6],[1,2,3,4]}. Setting parm.res3.npts=[2,3,4,5]
implies that the field will be computed in two z=constant plans in the top layer, in three z=constant plans in the
first layer (texture 2), in four z=constant plans in the second layer (texture 3), and in five z=constant plans in the
bottom layer. Default for parm.res3.npts is 10 z=constant plan per layer.

VERY IMPORTANT: where is the z=0 plan and what are the z-coordinates of the z=constant plan? The z=0 plan
is defined at the bottom of the bottom layer. Thus, the field calculation is performed only for z>0 values. For the
example profile = {[0.5,1,2,0.6],[1,2,3,4]}, and if we refer to texture 4 as the substrate, the z=0 plan is located in
the substrate at a distance 0.6 under the grating. The z=constant plans are located by an equidistant sampling in
every layer. Always referring to the previous example, it implies that the five z=constant plans in the substrate are
located at coordinate z=(p—0.5) 0.6/5, where p=1,2, ...5. Note that the z coordinate for z=constant plan are always
given by the second output variable of res3.m.

4. How can one specify a given z=constant plan? First, one has to redefine the variable profile. For the grating
example with the two layers discussed above, let us imagine that one wants to plot the field at z=z0+0.6+0.2 in
layer 2. Then one has to set: profile = {[0.5,1-20,0,z0,0.2,0.6],[1,2,2,2,3,4]} and set parm.res3.npts=[0,0,1,0,0,0].
Note that it is not necessary to redefine the variable profile at the beginning of the program. One just needs to
redefine this variable before calling subroutine res3.m.

5. Automatic plots: an automatic plot (showing all the components of the electromagnetic fields and the grating
refractive index distribution) is provided by setting parm.res3.trace=1. If one wants to plot only some components
of the fields, one can set for instance: parm.res3.champs=[2,3,6,0], to plot Ey, E;, H, and the object,
parm.res3.champs=[1] to plot only Ex. Take care that automatic plots are only available when one of the variables
X, y or z is of length 1 (field-distribution plots are available in a plane, not in a volume).

7.2. Computation of the absorption loss
The loss calculation is done with the subroutine “res3.m”.

First approach based on integrals (not valid for homogeneous layers with non-diagonal anisotropy):
The absorption loss in a surface S is given by:
L= %fslm (exx (M) |Ex (M) |* + £y (M) |Ey (M) |? + €7, (M)|E,(M)]?) dV.
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The integral can be computed with the following instruction
[e, Z, index, wZ, loss_per_layer, loss_of Z, loss_of Z X, X, wX] = res3(x,aa,profile,einc,parm);

The important ouput arguments are:

loss_per_layer: the loss in every layer defined by profile, loss_per_layer(l) is the loss in the top layer,
loss_per_layer(2) the loss in layer 2, ... and loss_per_layer(end) the loss in the bottom layer

loss_of Z: the absorption loss density (integrated over X) as a function of Z (like for X, the sampling points Z are
not equidistant. You may plot this loss density as follows : plot(Z, loss_of Z), xlabel('Z"),
ylabel(‘absorption’)

loss_of Z_X(Z,X) = n/A Im(index(Z,X).*2) (|e(Z,X,1)>+|e(Z.X,2)|+e(Z,.X,3)])

index: index(i,j) is the complex refractive index at the location {z(i), x(j)}

An alternative to calculate the losses in the slices is to calculate the difference in the flux of the incoming and

outgoing Poynting vector. This method is faster, but in some cases the calculation of the integral can be more

precise. In homogeneous layers with non-diagonal anisotropy, only this method is possible

Second approach based on Poynting theorem (always valid even for homogeneous layers with non-diagonal
anisotropy):
An alternative approach to compute the losses in the layers consists in calculating the difference in the flux of the
incoming and outgoing Poynting vectors. This approach is faster, but in some cases, the computation of the integral
can be more accurate. In homogeneous layers with non-diagonal anisotropy, only this approach is possible.

To specify which approach used per layer, we define a vector

parm.res3.pertes_poynting = [0,0,0,1,0]; % for instance for a 5-layer grating

with “07”, the integral approach is used (default option) and with “1”, the Poynting approach is used. The length of
parm.res3.pertes_poynting is equal to the number of layers. We may set parm.res3.pertes_poynting =0 or 1;
the scalar is then repeated for all layers.

We may then compute the flux of the Poynting vector in the layer-boundary planes
[e, Z, index, wZ,loss_per_layer,loss_of Z,loss of Z X, XwX,Flux_Poynting] = res3(x,aa,profile,einc,parm);

Flux_Poynting is a vector. Flux_Poynting(1) corresponds to the upper interface of the top layer. The flux is
computed for a normal vector equal to the Z vector. If Flux_Poynting(p) > 0, the energy flows toward the top and
if it it negative the enerfy flows toward the bottom.

For an illumination from the top and a lossy substrate, the substrate absorption is —Flux_Poynting
(end)/(0.5*prod(period)). For an illumination from the bottom and a lossy superstrate, the superstrate absorption
is Flux_Poynting (1)/(0.5*prod(period))

Note on the computation accuracy of the integral approach:

To compute volume integrals like the loss or the electromagnetic energy, we use a Gauss-Legendre integration
method. This method, which is very powerful for 'regular' functions, becomes inaccurate for discontinuous
functions. Thus, the integration domain should be divided into subdomains where the electric field E is continuous.
For the integration in X and Y, this difficult task is performed by the program, so that the user should only define
the limits of integration: the input “X” and “y” arguments are now vectors of length 2, which represent the limits
of the x and y intervals (to compute the loss over the entire period, we may take x(2)=x(1)+period_x,
y(2)=y(1)+period_y. The integration domain is then divided into subintervals where the permittivity is continuous,
each subinterval having a length less than A/(2r). For every subinterval, a Gauss-Legendre integration method of
degree 10 is used. This default value can be changed by setting parm.res3.gauss_x=..., parm.res3.gauss_y=....
The actual points of computation of the field are returned in the output arguments X and Y.

For the z integration, the discontinuity points are more easily determined by the variable 'profile’. The user
may choose the number of subintervals and the degree in every layer using the parameter parm.res3.npts, which
is now an array with two lines (in subsection 8.1 this variable is a line vector): the first line defines the degree and
the second line the numbers of subintervals of every layer. For example: parm.res3.npts =[[10,0,12];[3, 1
, 5]1; means that 3 subintervals with 10-degree points are used in the first layer, 1 subintervals with 0 point in
the second layer, 5 subintervals with 12degree points in the third layer.

The actual z-points of computation of the field are returned in the output variable Z, and the vector wZ
represents the weights and we have sum(loss_of Z.*wZ)=sum(loss_per_layer). Although the maximum degree
that can be handled by reticolo is 468, it is recommended to limit the degree values to modest numbers (10-30
maximum) and to increase the number of subintervals (the larger the degree, the denser the sampling points in the
vicinity of the subinterval boundaries).

Note that if einc= result. TEinc_top PlaneWave_TE_Eu, the energie conservation test for a TE incident plane
wave from the top is
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sum(result. TEinc_top_reflected.efficiency)+
sum(result. TEinc_top_transmitted.efficiency)+
sum(loss_per_layer) / (.5*period_x* period_y ) = 1.
Usually, this equality is achieved with an absolute error < 1075,

For specialists:
-loss_of_Z_X_Y =pi/ wavelength*imag(index.”2).*sum(abs(e(:,:,:,1:3)).72,4);
-loss_of_Z =(reshape(loss_of_Z_X_Ylength(Z),[])*wXY(:)).;
-by setting index(index ~= index_chosen)=0 in the previous formulas, one may calculate the absorption loss in
the medium of refractive index index_chosen.

8. Bloch-mode effective indices

RETICOLO gives access to another output: the Bloch mode associated to all textures. The Bloch mode k of the
texture | can be written

|2") = Zmn af,(;{n expli(ke + mK,)x] exp(i(ki* + nK,)y) exp (i %nﬁfl,z)

where n~is the effective index of the Bloch mode k of the texture .

Instruction:

[aa, n_eff] = resl(wavelength, period, textures, nn, kparallel, delta0, parm);

Note that the “n_eff” variable is a Matlab cell array: “n_eff{ii}” is a column vector containing all the Bloch-mode
effective indices associated to the texture “textures{ii}”. The element number 5 of this vector, for example, is
called by the instruction “n_eff{ii}(5);”. An attenuated Bloch-mode has a complex effective index.

Bloch mode profile visualization:
To plot the profile of Bloch mode Num_maode of the texture Num_texture:

resl(aa, neff, Num_texture, Num_mode);

To obtain the profile datas in the format given by res3:
[e,0] = resl(aa, neff, Num_texture, Num_mode); % by default, for [x| < period(1)/2 and |y| < period(2)/2

[e,0] = resl(aa, neff, Num_texture, Num_mode, X, y); % by specifying the X,y vectors,
x=linspace(0,3*period(1),100) and y=linspace(3,3+period(2),100) for example.

9. Annex

9.1. Checking that the textures are correctly set up
Setting “parm.resl.trace = 1;” generates a Matlab figure which represents the refractive-index distribution of all
the textures.

9.2. The “retio” instruction

RETICOLO automatically creates temporary files in order to save memory. These temporary files are of the form
“abcd0.mat”, “abedl.mat” ... with abed randomly chosen). They are created in the current directory. In general
RETICOLO automatically erases these files when they are no longer needed, but it is recommended to finish all
programs by the instruction “retio;”, which erases all temporary files. Also, if a program anormally stopsone may
execute the instruction “retio” before restarting the program.

The “retefface” instruction allows to know all the “abcd(0.mat” files and to erase them if wanted.

If we are not limited by memory (this is often the case with modern computers), we can prevent the writing of
intermediate files on the hard disk by the setting

parm.not_io = 1;

before the call to res1. Then it is no longer necessary to use the retio instruction at the end of the programs to erase
the files.

IMPORTANT: to use parfor loops, it is imperative to take the option parm.not_io = 1.

9.3. How to save and to reload the “aa” variable

To save the “aa” variable in a “.mat” file, the user has to define a new parameter containing the name of the file
he or she wants to create : “parm.resl.fperm = 'file_name';”. field name is a char string with at least one letter.
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The program will automatically save “aa” in the file “file_name.mat”. In a new utilisation it is sufficient to write
aa = 'file_name';.

Example of a program which calculates and saves the “aa” variable

[...] % Definition of the input parameters, see Section 3

parm.resl.fperm = ‘toto’;

[...] % Definition of the textures, see Section 4.1

aa = resl(wavelength,period,textures,nn,k_parallel,angle_delta,parm);

Example of a program which uses the “aa” variable and then calculates the diffracted waves

[...] % Definition of the profile, see Section 4.2. Note that the textures used to define the profile argument have
to correspond to the textures defined in the program which has previously calculated the “aa” variable.
aa=’toto’;

result = res2(aa,profile);

retio;

9.4. Asymmetry of the Fourier harmonics retained in the computation

nn= [['31_2]1[274]]1

This defines the set of non-symmetric Fourier harmonics retained for the computation. In this case, the Fourier
harmonics from —3 to +2 are retained in the x-direction, and the Fourier harmonics from —2 to +4 are retained in
the y-direction.

The instructions “nn = [3,2];” and “nn = [[-3,-2];[3,2]];” are equivalent.

Take care that the use of symmetry imposes symmetric Fourier harmonics, if not the computation will be done
without any symmetry consideration.

10. Summary

parm=res0
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Fig. 8 Summary.
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11. Examples

The following examples can be copied and executed in Matlab.

wavelength=38

period=[10,15];% same unit as wavelength

n_incident medium=1;% refractive index of the top layer

n transmitted medium=1.5;% refractive index of the bottom layer
angle theta=10;k parallel=n incident medium*sin(angle theta*pi/180);
angle delta=-20;

parm=res0; % default parameters for "parm"
parm.resl.champ=1; % the eletromagnetic field is calculated accurately
nn=[3,2]; % Fourier harmonics run from [-3,3]in x and [-2,2] in y

% textures for all layers including the top and bottom
texture=cell (1, 3);

textures{l}= n incident medium; % uniform texture
textures{2}= n_ transmitted medium; % uniform texture

textures{3}={n_incident medium, [0,0,5,2,n transmitted medium,1] };
aa=resl (wavelength, period, textures,nn, k parallel,angle delta,parm);

profile={[4.1,5.2,4.11,1[1,3,2]1};
two D=res2(aa,profile)

eff TETM=two D.TEinc top reflected.efficiency{-1,1}

% (-1,1) order efficiency (TE+TM) for a TE-illumination from the top layer
eff TE=two D.TEinc bottom transmitted.efficiency TE{-1,1}

% (-1,1) TE efficiency for a TE-illumination from the top layer

J=two D.Jones.inc bottom transmitted{-1,1};% Jones’matrix

abs(J)."2 % (-1,1) order efficiency for an illumination from the bottom layer

o)

% field calculation in plane y=0

x=linspace (-period (1) /2,period (1) /2,51);y=0;%(x,y) coordinates (z-coordinates are
determined by res3.m)

einc=[0,1];% E-field components in the (u, v) basis (default is illumination from
the top layer)

parm.res3.trace=1; % plotting automatically

parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,y,aa,profile,einc, parm);
figure;pcolor (x,z,real (squeeze(e(:,:,:,2)))); % user plotting

shading flat;xlabel('x');ylabel('y');axis equal;title('Real(Ey)");

% Loss calculation

textures{3}={.1+51,[0,0,5,2,1,1] };

aa_ loss=resl (wavelength, period, textures,nn, k parallel,angle delta,parm);

two D loss=res2(aa loss,profile)

parm.res3.npts=[[0,10,01;[1,3,111;

einc= two D loss.TEinc_ top.PlaneWave TE Eu;

parm.res3.trace=0;
[e,z,index,wZ,loss per layer,loss of Z,loss of Z X Y,X,Y,wXY]=res3([-
period(l)/2,period(1l) /2], [-period(2)/2,period(2)/2],aa loss,profile,einc,parm);

Energie conservation=sum(two D loss.TEinc_top reflected.efficiency)+sum(two D loss.
TEinc_top transmitted.efficiency)+sum(loss per layer)/(.5*prod(period))-1

o

retio $ erase temporary files

STACK VITH FULL ANISOTROPY %

wavelength=8;
period=10; % same unit as wavelength
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RETICOLO Code for the diffraction by stacks of lamellar gratings

n_incident medium=1; %refractive index of the top layer

n transmitted medium=1.5; % refractive index of the bottom layer

angle theta0=10;k parallel=n incident medium*sin(angle thetaO*pi/180);
angle delta=-20;

parm=resO;parm.not io=1; % default parameters for "parm"
parm.resl.champ=1; % the electromagnetic field is calculated accurately

o)

nn=0; % Fourier harmonics only O
% textures for all layers including the top and bottom layers
textures=cell (1,3);

textures{l}= n incident medium; % uniform textures

textures{2}= n_ transmitted medium; % uniform textures

epsilon=[[2.1160 0 0.7165];[0 1.3995 0]; [0.7165 0 2.1160]11;
textures{3}={epsilon} ;

[aa,neff]=resl (wavelength,period, textures,nn, k parallel,angle delta,parm);

profile={[4.1,5.2,4.11,1[1,3,2]};
conical=res2 (aa,profile);

% field calculation

x=linspace (-period/2,period/2,51); % x coordinates (z-coordinates are determined by
res3.m)

einc=[0,1]; % E-field components in the (u, v) basis (default is illumination from
the top layer)

parm.res3.trace=1l; % plotting automatically

parm.res3.npts=[50,50,50];

[e,z,index]=res3 (x,aa,profile,einc,parm) ;
figure;pcolor (x,z,real (squeeze(e(:,:,3)))); % user plotting

shading flat;xlabel('x');ylabel('y');axis equal;title('Real(Ez)");

% Loss calculation

epsilon=randn(3)+li*randn(3) ;epsilon=epsilon+epsilon';H=randn(3,1)+1li*randn(3,1) ;ep
silon=1i*H*H'+epsilon’';

% integral method: general non-diagonal anisotropy without amplification
textures{3}={epsilon};

aa_ loss=resl (wavelength,period, textures,nn, k parallel,angle delta,parm);
conical loss=res2(aa_ loss,profile);
einc=conical loss.TEinc_ top.PlaneWave TE Eu;
parm.res3.npts=[[5,10,5];[4,10,411;

% Poynting method: diagonal anisotropy only

parm.res3.trace=0;

parm.res3.pertes poynting=1;

[e,z,index,wZ,loss_per layer]=res3([-period/2,period/2],aa loss,profile,einc,parm);
Energie conservation Poynting=sum(conical loss.TEinc top reflected.efficiency) +sum/(
conical loss.TEinc top transmitted.efficiency)+sum(loss_per layer)/(.5* period)-1
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