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Objective: The purpose of present review paper is to introduce the reader to key directions of Machine Learning
techniques on the diagnosis and predictions of knee osteoarthritis.

Design: This survey was based on research articles published between 2006 and 2019. The articles were divided
into four categories, namely (i) predictions/regression, (ii) classification, (iii) optimum post-treatment planning

Prediction . X . . s .
Classification techniques and (iv) segmentation. The grouping was based on the application domain of each study.
Segmentation Results: The survey findings are reported outlining the main characteristics of the proposed learning algorithms,

the application domains, the data sources investigated and the quality of the results.

Conclusions: Knee osteoarthritis is a big data problem in terms of data complexity, heterogeneity and size as it has
been commonly considered in the literature. Machine Learning has attracted significant interest from the scien-
tific community to cope with the aforementioned challenges and thus lead to new automated pre- or post-
treatment solutions that utilize data from the greatest possible variety of sources.

1. Introduction

Knee Osteoarthritis (KOA) is a degenerative disease of the knee joint
and the most common form of arthritis causing pain, mobility limitation,
affecting independence and quality of life in millions of people [1]. There
is no known cure for KOA, but there are several medical, biological and
environmental risk factors, both modifiable and non-modifiable, that are
known to be involved in the development and progression of the disease
[2]. The aforementioned data characterizing KOA are high-dimensional,
heterogeneous and the limited number of simple logistic regression
models are not capable of handling large numbers of risk factors and most
importantly, any interactions between environmental and other medical
and biological factors. Furthermore, they cannot identify the tendency of
a healthy subject to show signs of the disease and its progression based on
patient outcomes. Despite that, the power and importance of correct
study design should not be underestimated. In the well-designed study
even “simple” analysis can give trustful results. These significant short-
falls in OA risk prediction models require a completely different model-
ling and computational approach to the problem. Advanced machine
learning techniques such as fuzzy-logic theory, discrimination metrics
(e.g. mutual information gain indexes and Fisher discrimination ratios)
and advanced classification models combined with novel and efficient

feature selection methods suitable for very large data sets could signifi-
cantly contribute to the problem of high dimensionality compared to the
existing statistical techniques applied to the OA risk prediction problem.

Machine Learning (ML) is the study of how computer algorithms (i.e.,
machines) can “learn” complex relationships or patterns from empirical
data and hence, produce (mathematical) models linking an even large
number of covariates to some target variable of interest [3]. As
mentioned before, the ability to analyze complex cases with a huge
volume of data and the maximum possible results it renders ML a valu-
able tool against KOA. It is worth noting that ML has been applied in
areas such as robotics [4], medicine [5], biochemistry [6], bioinformatics
[71, meteorology [8], agriculture [9] and the economic sciences [10].
The importance of applying ML techniques to KOA has been documented
by Jamshidi et al. [11] and Kluzek and Mattei [12] in 2019.

In this context this review has been carried out to allow each
researcher to refer to the appropriate ML method in relation to KOA. To
achieve this aim, the structure of the review is as follows. Section 2
Machine Learning in a nutshell presents the terminology and definitions,
the types, tasks and models, which are used in the studies on which this
review was based. Section 3 Review of studies presents the steps of the
methodology that were followed for the collection and classification of
the studies concerning ML techniques in KOA. In addition, it presents a
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Fig. 1. A typical machine learning system.

summary of the studied literature, highlighting the main characteristics
of proposed ML approached divided into four categories. The review ends
with Section 4 Discussion and Conclusions, which mentions the future
expectations and advantages that exist through the usage of machine
learning in knee osteoarthritis.

1.1. Machine learning in a nutshell

In ML, a sample (e.g. a patient) is represented by a number of features
which come in various forms and formats including patient's character-
istics, risk factors, shape/texture characteristics in medical images or
clinical history data. To facilitate the learning process, there features are
typically concatenated forming a multidimensional feature vector. ML
systems (Fig. 1) operate in two phases: the learning phase (training) and
testing one. Indicatively, the role of the pre-processing unit can be
broadly categorised into the following: (i) data cleaning aiming to
remove noise, missing and inconsistent examples (ii) data integration in

cases where multiple data sources are available and (iii) data trans-
formation including discretisation and normalisation. The feature
extraction/selection unit (also referred as feature engineering unit) at-
tempts to generate and/or identify the most informative feature subset in
which the learning model will be subsequently applied during the
training phase [13]. The feedback loop allows adjustments of the
pre-processing and feature extraction/selection units that will further
improve the performance of the learning model. During the testing phase,
the trained model is shown previously unseen samples (represented as
images or feature vectors) that need to be classified. The model makes an
appropriate decision (classification or regression) based on the features
that are present in each sample. Deep learning [14], that is a subfield of
machine learning concerned with algorithms inspired by the structure
and function of the brain, sets an alternative architecture by shifting the
burden of feature engineering (the process of transforming raw data into
features) to the underlying learning system. From this perspective,
feature extraction or selection are omitted leading to a fully trainable

Table 1
Presentation of indicative ML models along their characteristics.
Category Models Description Advantages Disadvantages
Bayesian Naive Bayes, Gaussian Naive Probabilistic graphical models in They model uncertainty; easy Increased computational cost in
Bayes, Multinomial Naive Bayes, which the analysis is undertaken to handle missing and hidden high-dimensional spaces; they
Bayesian Belief Network [29-32] within the context of Bayesian data require subjective definition of
inference prior probabilities
Linear Linear regression The best fit line through all data points Easy to understand and Too simple to capture complex

Tree-based [33-36]

Neural networks

Instance based
models

Support vector
machines (SVMs)

[17,18]
Logistic regression [17]

Decision trees (DT)
[37-39]

Random forest (RF) [33]

Gradient boosting [40]

Neural networks
[41-50]

Deep Neural networks (DNN) [51]
such as CNN [52], deep belief
network [53], and auto-encoders
[54].

K-Nearest Neighbor [55], Locally
Weighted Learning [56], Learning
Vector Quantization algorithm
[571, Self-Organising Maps [58]
SVM [59,60]

Least Squares SVM [61]

The adaptation of linear regression in
classification problems

A decision support tool that uses a tree-
like graph or model of decisions and
their possible consequences, including
chance event outcomes, resource costs,
and utility

Ensemble model that produces
multiple decision trees, using a
randomly selected subset of training
samples and variables.

Uses weak decision trees as base
models. Predictive results are obtained
through increasingly refined
approximations.

Information processing paradigm that
is inspired by the way biological
nervous systems, such as the brain,
process information.

Memory-based techniques that learn
by comparing new examples with
instances in the training database

Finds a solution (linear or non-linear)
that maximizes the margin between
classes

implement; models can be
easily interpreted

Fast to train and powerful

Fast and high performing

Can handle complex problems

Can handle extremely

complex problems

Simple and fast to implement

SoA performance; generalized
solutions; robust to high
dimensionality

associations between variables:
prone to overfitting

Not powerful enough in problems
of high complexity

Not so interpretable; slower than
other techniques

Interpretability issues; sensitive to
small changes

Not interpretable; Slow

Require a lot of power; not
interpretable; Slow

Complexity grows with data (up to
O(n) where n is the number of the
training examples), prone to
overfitting

Tuning hyperparameters is
crucial; time consuming and
difficult to interpret
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Table 2
Studies with Predictions/Regression techniques.
Author Year Data Feature engineering Learning Algorithm Validation Results
Abedin, J. 2019  Questionnaire data LASSO Elastic Net (EN), 70% training/30% Root Mean Square Error
[70] /X-ray Random Forests (RF) and testing (RMSE) for the CNN, EN, and
a convolution neural RF models was 0.77, 0.97 and
network (CNN) 0.94 respectively
Ashinsky, B. G. 2017  MRI - Weighted neighbor Loocv 75% acc
[68] distance using compound
hierarchy of algorithms
representing morphology
WN(D-CHRM)
Donoghue, C. 2011 MRI Laplacian Eigenmap Multiple linear regression 270 knees as external UptoR2=0.75
[65] Embedding validation group
Du, Y. 2018 MRI PCA ANN, SVM, Random 10-fold cross validation ANN with AUC = 0.761 for KL
[69] forest, Naive Bayes (10F-CV) grade
Random forest with area
under the curve (AUC) =
0.785 for JSM
Du, Y. 2017  MRI PCA ANN, SVM, Random 10F-CV receiver operating
[671 forest, Naive Bayes characteristic (ROC) AUC of
0.761 (ANN)
Halilaj, E. 2018  X-rays and pain scores - LASSO regression 10F-CV for model AUC of 0.86 for Radiographic
[75] selection and 10% for progression
model evaluation
Lazzarini, N. 2017  Clinical variables, food and Ranked Guided Iterative Random Forest 10F-CV AUC of 0.823 by using only 5
[771 pain questionnaires, Feature Elimination, PCA variables
biochemical markers (BM)
and imaging-based
information
Marques, J. 2013 MRI Texture Analysis for Fisher linear 10F-CV for model ROC AUC of 0.92
[66] extraction and Partial discriminant analysis selection. 10% for
least squares (PLS) evaluation
regression for selection
Nelson, A.E. 2019 Demographic, Distance weighted K- means, t-SNE Validation on 597 z = 10.1 (z-scores)
[73] MRI and biochemical discrimination (DWD), participants-
variables PCA
Pedoia, V. 2018  MRI and biomechanics Topological Data Analysis ~ Logistic Regression - AUC 83.8%
[71] multidimensional data
Tiulpin, A. 2019  X-ray, Clinical data CNN Logistic Regression (LR) OAI dataset for training AUC of 0.79
[74] and Gradient Boosting and MOST dataset for
Machine (GBM) testing, 5F-CV
Widera, P. 2019  Clinical and X-ray image Recursive feature Logistic regression, KNN, Standard 10-fold F1 score 0.573-0.689
[72] assessment metrics elimination SVC (linear kernel), SVC stratified cross-validation
(RBF kernel) and RF protocol
Yoo, T. K. 2013 Kinematic data - SVM Leave-one-out cross- 97.4% acc
[76] validation (LOOCV)

system that begins from raw or pre-processed input (e.g. image pixels or
time-series) and ends with the final output of recognized objects or
predicted values.

Learning can be classified as supervised, unsupervised or reinforce-
ment learning. In supervised learning, each data sample is represented by a
pair consisting of an input (typically a multi-dimensional feature vector)
and a desired output value (e.g. a label having real-world meaning such
as Kellgren Lawrence grades in case of KOA). The training phase involves
the task of learning a function that maps every input to its associated
output. The generated inferred function is used to map unknown inputs
during the testing phase. Unsupervised learning [15] is a class of ML
techniques that operate with unlabeled data with the goal of discovering
structures or patterns in the dataset. Novel paradigms for unsupervised
learning (the so-called self-supervised learning) have been also proposed
exploiting different labelings that are freely available besides or within
visual data to learn general-purpose features [16]. In reinforcement
learning, a model learns through trial and error interactions with its
environment using reward and penalty assignments.

In the terminology of ML, classification is considered as an instance of
supervised learning. In short, it is the task of identifying to which of a set
of categories (sub-populations) a new example belongs, on the basis of a
training set of data (experience) containing examples whose label is
known. Regression constitutes another supervised learning task, which
aims to provide a prediction of an output variable according to the input

variables which are known. The most known regression algorithms are
the linear regression [17], as well as, stepwise regression [18]. Also,
more complex regression algorithms have been developed, such as or-
dinary least squares regression [19], multivariate adaptive regression
splines [20], multiple linear regression, and locally estimated scatterplot
smoothing [21]. Table 1 cites the most well-known state-of-the-art ML
models of the literature. Dimensionality reduction (DR) is a task that be-
longs in both families of supervised and unsupervised learning types,
with the aim of providing a more compact lower-dimensional represen-
tation of a dataset preserving as much information as possible from the
original data. It is usually performed prior to applying a classification or
regression model in order to avoid the effects of the curse of dimen-
sionality. Some of the most common DR algorithms are the following: (i)
principal component analysis (PCA) [22], (ii) partial least squares (PLS)
regression [23] and (iii) linear discriminant analysis (LDA) [24]. Finally,
clustering [25] is an application of unsupervised learning typically used to
find natural groupings of data (clusters). Well established clustering
techniques are the K-means technique [26] hierarchical clustering [27],
and the expectation-maximization technique [28].

Recently, deep learning has attracted wide-spread attention because
of its enormous representing power, automated feature learning capa-
bility and best-in-class performance in solving complex problems [62].
Deep NNs make use of deeper architectures, extensible hidden units and
nonlinear activation functions to model complex data, whereas one of
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their most attractive aspects is that they automate feature engineering
thus alleviating the need for domain expertise and hardcore feature
extraction. Currently, DL models have dramatically improved the
state-of-the-art in many different sectors and industries including
healthcare [63]. DL models can be either supervised, partially super-
vised, or even unsupervised. Convolutional neural networks (CNN) are
among the most famous DL networks where feature maps are extracted
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by performing convolutions in the image domain. A comprehensive
introduction on CNNs is given in Refs. [52]. Other typical DL architec-
tures that belong to the family of probabilistic undirected graphical
models are deep Boltzmann machines, and deep belief networks [53].
Auto-encoders [54] are unsupervised DNNs whose main idea is to encode
high dimensional data into a low-dimensional latent vector and try to
reconstruct the input data as flawlessly as possible by only using its

National Health and
Nutrition Examination
Surveys (KNHANES V-1)
data

(internal validation
group) and OAI (external
validation group)

Table 3
Classification studies employing biomechanical data and/or distinct variables.
Author Year Data Feature engineering Learning Algorithm Validation Results
Aksehirli, O 2013  Demographic - SVM, 152 OA knees for training ~ 76,77% acc &
[92] characteristics and some PNN and 102 healthy for 90,55% acc
gene polymorphisms testing
Beynon, M. J. 2006  Biomechanical Data Simulated annealing (SA) ~ Dempster—Shafer theory LOOCV 96.7% &
[78] and genetic of evidence (DST) & 93.3% acc
algorithms (GAs) Linear discriminant
analysis (LDA)
de Dieu 2017 Biomechanical Data Time-domain statistical Multilayer perceptron, 22 subjects (11 healthy 99.5%,
Uwisengeyimana, J [89]. features Quadratic support vector and 11 OA) 99.4%
machine, complex tree & 98.3% & 91.3% acc
deep learning network
with k-NN
Deluzio, K.J. 2007  Biomechanical Data PCA Discriminant analysis Ccv Misclassification
[84] rate 8%
Jones, L. 2008 Biomechanical Data PCA The Dempster—Shafer LOOCV 97.62% &
[85] (DS)-based classifier 77.82% acc
& ANN
Kotti, M. 2014 Biomechanical data PPCA Bayes classifier 47F-CV 82.62% acc
[83]
Kotti, M. 2017  Biomechanical data - Random forest 50% training/50% 72.61% acc
[90] testing, SF-CV
Lim J. 2019 Demographic and PCA DNN 66% training/34% AUC of 76.8%
[86] personal characteristics, testing
lifestyle- and health
status-related variables
Long, M. J. 2017  Outcome scores and - KNN 70% training/30% test. AUC of 1.00
[94] biomechanical gait 30% of training was left
parameters out for validation
McBride, J. 2011 Biomechanical data - Neural networks 50% training/50% 75.3% acc
[95] testing
Mezghani, N. 2008 Biomechanical data Discrete wavelet Nearest neighbor LOOCV 38 of 42 cases acc
[79] transform (DWT) classification (NNC)
Mezghani, N. 2008  Biomechanical data Discrete wavelet Nearest neighbor LOOCV 91% acc
[80] transform (DWT) & classifier (NNC) 67% acc
Polynomial expansion
Mezghani N. 2017  Biomechanical Data - Regression tree 10F-CV for model ROC AUC of 0.85
[96] selection. 10% for model
evaluation
Moustakidis, S. 2010 Biomechanical data Wavelet Packet, FS via KNN1 10F-CV 86.09% acc
[81] SVMFuzCoC SVM (AAA) 89.71% acc
SVM (1AA) 90.18% acc
FCT 88.35% acc
C4.5 91.12% acc
FDT-SVM 93.44% acc
Moustakidis, S. 2019  Clinical Data Feature subsets DNN 10F-CV 86.95% acc
[88] exploration Adaboost (for age 70+)
Fuzzy KNN 78.60% acc
Fuzzy NPC 77.39% acc
CFKNN 72.40% acc
73.60% acc
Phinyomark, A. 2016 Biomechanical Data PCA SVM 10F-CV 98-100% acc
[87]
Sen Koktas, N. 2006  Biomechanical data - MLPs Ccv 1.5 of the subjects
[93] has been
misclassified
Sen Koktas, N. 2010  Biomechanical data Mabhalanobis Distance Decision tree - MLP multi- ~ 10F-CV 80% acc
[82] (Also included age, body algorithm classifier
mass index and pain
level)
Yoo, T. K. 2016  Predictors of the scoring Logistic regression ANN 66.7% training/33.3% ROC AUC of
[91] system in the Fifth Korea validation, KNHANES V-1 0.66-0.88




Table 4

Medical image-based classification studies of KOA.

Author Year Data Localization of joints Feature engineering Learning Algorithm Validation Results
Bien, N. 2018 MRI - - CNN (MRNet) Validation A: 82,9% training, AUC of 0.937
[971 8.5% tuning and 8,6 validation B:
60%-20%-20% into training,
tuning, and validation sets using
an external dataset
En, Chuah Zhi 2013 MRI - Discrete Wavelet Transform ANN-based 57,1% (200 images) training/ 94.67% acc
[98] (DWT) 42,9% testing (150 images)
Kubkaddi, 2017 MRI - GLCM SVM with RBF kernel, SVM with 70% training/30% testing 95.45% acc, 95.45% acc &
Sanjeevakumar linear kernel & 87.8% acc
[100] SVM with polynomial kernel
Kumarv, A. 2017 MRI - GLCM SVM 15 images/hold out validation 86.66% acc
[101]
Marques, J. 2012  MRI - PLS with Fisher LDA, 10F CV ROC AUC of 0.86 (Diagnosis) & 0.63
[102] forward feature selection (PLS- PLS regression, (Prognosis),
FFS) sparse PLS and ROC AUC of 0.88 & 0.67,
sparse LDA ROC AUC of 0.89 & 0.69,
ROC AUC of 0.93 & 0.70,
ROC AUC of 0.89 & 0.59
Pedoia, V. 2019 MRI (T, relaxation - PCA Densely Connected Convolutional 65-20-15% split of training, AUC = 83.44%, Sensitivity = 76.99%,
[99] time maps), Neural Network (DenseNet) validation, and holdout testing set ~ Specificity = 77.94%
Demographics RF AUC = 77.77%, Sensitivity = 67.01%,
and KOOS Specificity = 71.79%
Anifah, L. 2013  X-ray Gabor filter GLCM Self Organising Maps (SOM) 16,2% training/83,8% testing Accuracy rate of 93.8% for KL-Grade 0,
[103] 70% for KL-Grade 1,
4% for KL-Grade 2, 10% for KL-Grade
3 and 88.9% for KL-Grade 4
Anifah, L. 2018 X-ray Gabor kernel - SOM 8,8% training/91,2% testing 40.52% acc for KL-Grade 2 & 36.21%
[105] for KL-Grade 0
Antony, J. 2017  Xray FCN FCN CNN 70% training/30% validation, Multi-class classification accuracy
[117] Multi-center validation 60.3%
Antony, J. 2016  X-ray Sobel Pre-trained CNN Linear SVM 70% training (with 5F CV)/30% Fitting a linear
[104] horizontal image (BVLC reference CaffeNet and testing SVM produced 95.2% 5F CV and
gradients, linear SVM VGG-M-128 networks) 94.2% test accuracy for knee joint
detection; 57.6% accuracy in the muti-
class KOA severity task (Grades 0-4)
Bayramoglou, N 2019  Xray BoneFinder Local Binary Patterns (LBP), Logistic regression 5F CV on OAI for training and AUC of 0.84
[108]. Fractal Dimension (FD), validation in MOST data
Haralick features, Shannon
entropy, and Histogram of
Oriented Gradients (HOG)
Chen, P. 2019 X-ray Customized one-stage - CNN models (VGG-19) training, validation, and testing 69.7% acc
[110] YOLOvV2 network sets with a ratio of 7: 1:2.
Gorriz, M. 2019  Xray Trainable attention CNN (VGG-16) 70% training/30% testing and 64.3% acc
[118] modules 10% of the training data was kept
for validation
Gornale, Shivanand 2017  X-ray Images are cropped to Histogram of orientated gradients Multiclass SVM Classification results validated by Classification rate of 97.96% for
S. 512 x 409 pixels and (HOG) two experts that were in close Grade-0, 92.85% for Grade-1, 86.20%
[112] finally agreement for Grade-2, 100% for Grade-3 &
rescaled Grade-4
Liu, B. 2020  X-ray Region proposal network - FLA (Faster R-CNN as originaland ~ 5F CV 82.5% acc
[119] (RPN) our adjusted model as FLA)
Minciullo, L. 2017 X-ray PCA based PCA- Indecisive Forest (IF) 5F CV 87.61% acc
[106] combination of statistical 3 stage Constrained Local Model Optimised Indecisive Forest (OIF) 88.15% acc
shape and texture models
2017  X-ray Shape Model Statistical Shape Model (PCA) Random Forest 5F CV

(continued on next page)
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Table 4 (continued)

Results

Validation

Learning Algorithm

Localization of joints Feature engineering

Data

Year

Author

ROC AUC of 0.842 (binary) & 0.479

(5-class problem)

Minciullo, L.

[107]

For affected subjects' accuracy is 80%

71,4% training, 4,8% validation

and 23,8% testing

SVM

Texture analysis

algorithm

Dividing Image into

Blocks

X-ray

2016

Navale, D. L.

[113]

95% acc

75% training/25% testing.

SVM

Histogram method, GLCM and

Cropping of images

X-ray

2016

Sharma, S.
[114]

Canny Edge Detection Technique

66.71% acc (multi-class Grades 0-4)

67% training, 11% validation and
22% testing, multi-center

validation

CNN ResNet-34

FCN, as proposed in
Antony 2017

X-ray

2018

Tiulpin, A.

[111]

AUC of 0.98

5-fold subject-wise stratified CV

An ensemble of deep residual

Random forest regression

voting approach

X-ray

2019

Tiulpin, A.
[109]

networks with 50 layers, squeeze-

excitation

implemented in a
BoneFinder tool

and ResNeXt blocks

64.64% acc

The data was split into training,
validation, and test sets with a
ratio of 2/3, 1/6, and 1/6,

respectively
3FCV

A multi-layer, feed-forward graph

convolutional network

Shape Space, Graph Convolutional

Filters

X-ray

2019

von Tycowicz, C

[120].

Up to 94.33% class accuracy for Grade

SVM (Gaussian kernel)

Contrast Limited Adaptive

Images were cropped
around the knee

properly

X-ray

2016

Wahyuningrum, R. T

Histogram Equalization (CLAHE)-
2DPCA/Structural 2-Dimensional

[115].

Principal Component Analysis

(S2DPCA)

75.28% acc

3FCV

Long Short Term Memory

(LSTM)

CNN (VGG-16)

Manually

X-ray

2019

Wahyuningrum, R. T

cropping on the knee

[116].

joint with dimensions of
400 x 100 pixels
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coding. Recurrent neural networks (RNN) is another important family of
DL models that define unique topological connections between their
neurons in order to encode temporal information in sequential data [64].

2. Methods
2.1. Literature search approach

This survey was based on research articles published between 2006
and 2020 using the search engines Scopus, PubMed and Google Scholar.
During our search, we identified articles that used ML for the study of
KOA by various techniques. Especially, for this search, the terms machine
learning, deep learning and knee osteoarthritis were used. A prerequisite
for the inclusion of an article in our research was the occurrence of one of
the three terms mentioned as keywords, either in the title or in the ab-
stract of each article.

2.2. Exclusion criteria

In the first instance, all articles retrieved and collected were
examined for the title and the abstract by one of the authors. In order to
reach our original goal, we excluded the following categories: non-
English articles, postgraduate dissertations, doctoral dissertations,
studies not involving people with knee osteoarthritis and studies using
traditional technical statistics. All the selected articles have been pre-
sented either in journal papers or conferences. Finally, the rest of the
authors reviewed again the titles and abstracts to ensure that they met
the membership criteria.

2.3. Assessed outcomes

The studies, which are recorded in this article, were divided into four
categories, namely (i) Predictions/Regression (13 studies), (ii) Classifi-
cation (43 studies), (iii) Optimum post-treatment planning techniques (4
studies) and (iv) Segmentation (15 studies). The grouping was based on
the technical characteristics of the ML methods and the application
domain of each study.

Then, after separating the articles, the following information was
extracted from each article: Author, Year of publication, Data (MRI, X-
Ray, Kinetic and Kinematic data, Clinical data and Demographics),
Feature Engineering approach, Learning Algorithm techniques, Valida-
tion and Results (evaluation of performance).

3. Results
3.1. Predictions/regression

Despite the fact that OA field has been relatively slow adopting
advanced analytical models compared to other fields, nowadays many
studies focus on developing ML prediction models for KOA based on
medical imaging (Magnetic Resonance Imaging (MRI), X-ray), clinical
information, self-reported and biomechanical data.

3.1.1. Data sources

Imaging technologies (either MRI or X-ray) were incorporated into
the majority of advanced analytical models to predict knee articular
cartilage morphology with accuracies varying from 76.1% up to 92%
([65-69]). Recently, the combination of multimodal data (medical im-
ages with clinical or biomechanical data) has formed the basis for more
powerful and efficient models. To enhance the quality of the available
raw data or overcome the curse of dimensionality, a number of sophis-
ticated algorithms were reported in the literature including: (i) LASSO
[70], Topological Data Analysis [71], Recursive feature elimination
(RFE) [72], PCA [73] for dimensionality reduction or (ii) CNN [74] to
extract new more informative deep features for images. The major
finding of these studies was that the accuracy of image-based prediction
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Table 5
Studies with ML-driven post-treatment planning techniques of KOA.
Author Year Data Feature engineering Learning Algorithm Validation Results
Chen, H-P. 2016 Biomechanical data Tilt angle calculation and initial Multi-layer SVM 10-fold cross 90.6% on layer-1 SVM & 92.7%

[123] posture classification algorithm validation on layer-2 SVM

Huang, P-C. 2017 Biomechanical data Sequential forward feature selection (SFS) Multi-class SVM 10-fold cross Accuracy for rehabilitation

[124] validation exercises recognition is 100% and
for motion identification is 97.7%.

Levinger, P. 2009 Biomechanical data SVM SVM LOOCV Accuracy of 100% for the training

[121] set and 88.89% for the test set

Wittevrongel, B 2015 Biomechanical data k-equal frequency binning Decision tree & LOOCV Best accuracy 92.9% &

[122]. Rule sets 76.5% respectively

of KOA progression can be improved if it is complemented with data
sources such as clinical data, self-reported and biomechanical data.

3.1.2. Learning techniques

Due to their efficiency and predictive performance, ensemble algo-
rithms (RF or Gradient Boosting) were selected in five out of the twelve
(12) studies in this category. However, a significant number of studies
employed simpler models (e.g. linear regression models [65,75] or logistic
regression [71]) to implement the regression or prediction task. Non-linear
SVMs were also investigated in four (4) papers ([67,69,72,76]) and this
choice could be attributed to the fact that they are relatively efficient in
low and medium size feature spaces and that they generalize well. More
complex learning (and subsequently more difficult to handle) approaches
were finally tested in some studies ([67,69,70]) using NN-based archi-
tectures such as Artificial neural networks (ANNs) and CNNs.

3.1.3. Validation

In the majority of those studies, validation has been performed with
n-fold cross validation. Hold-out (typically 70%/30% for training/
testing) and Leave-one-out cross-validation (LOOCV) have also been
observed as a validation approach in some of the studies. It is worth
noting that Tiulpin et al. [74] used an independent test set (acquired in
another center) for validation. An overview with all the studies including
prediction models of KOA are shown in Table 2:

3.2. Classification

This section presents the outcomes of our survey on the application of
classification models on the field of KOA research. It is worthwhile to
note the plurality of different datasets along with the heterogeneity of
data types used by each study. The identified data sources are: biome-
chanical data (kinematic-kinetic data and EMG signals), osteoarthritic
outcome score, demographic characteristics, some gene polymorphisms,
radiographs, X-ray and MRI. For this reason, we are grouping the studies
into two categories, the first for biomechanical data-scores and the sec-
ond for images.

3.2.1. Biomechanical data and discrete variables

3.2.1.1. Data sources. Biomechanical data were the most widely used
source of information in the reported studies including kinematic-kinetic
data and electromyography signals. Furthermore, clinical data consisting
of self-reported, osteoarthritic outcome scores, demographic character-
istics and some gene polymorphisms were used as additional sources
complementing the biomechanical features.

3.2.1.2. Feature engineering. Feature extraction and dimensionality
reduction have been applied to improve the predictive capabilities of the
learning models as well as to increase their computational efficiency. A
variety of algorithms and techniques were reported in the literature
including: (i) Simulated annealing (SA) [78], Genetic algorithms (GAs)
[78], Discrete wavelet transform (DWT) ([79,80]), Wavelet Packet [81],
SVM-based Fuzzy criteria [81] and Mahalanobis Distance algorithm [82]

for feature selection and/or extraction (ii) Probabilistic PCA (PPCA) [83]
and PCA ([84-87]) for dimensionality reduction and (iii) feature subsets
exploration or use of time-domain statistical features ([88,89]) to lead in
more powerful learning models. PCA has been observed to be the most
popular feature engineering technique due to its simplicity and easiness
to handle.

3.2.1.3. Learning techniques. A variety of machine learning models were
used for implementing the detection and/or classification tasks. KNNs
and SVMs were the most frequently selected algorithms being tested in
(7) out of nineteen studies in this subcategory. Furthermore, RF [90], DT
[82], Dempster Shafer Theory [78,85], Bayes classifier [83] and
Discriminant analysis [84]) were also investigated. Finally, the use of
deep learning techniques (e.g. ANNs [85,91], PNNs [92], MLPs [82,89,
93] or CNNs [86,89]) was limited due to the nature of the available
training datasets (heterogeneous features and small sample sizes).
An overview of the aforementioned studies is shown in Table 3:

3.2.2. Medical images

Medical images form a crucial source of information in the KOA
research. The types of medical imaging that have been analysed in this
survey were either MRI or X-ray. According to our knowledge only six
studies have been presented in the literature, until now, that reported the
development of MRI data analysis methodologies for the diagnosis of
KOA. Only one of the aforementioned studies adopted a deep learning
approach applying directly learning algorithms (CNN and specifically
MRNet) on the available images without the inclusion of any feature
selection technique [97]. The rest of the reported studies employed a
number of feature engineering techniques prior to the application of the
learning models. Discrete wavelet transform, Gray level Co-occurrence
Matrix (GLCM) and PCA are among the algorithms that were used to
either extract new features or reduce the feature space dimensionality. As
regards the learning part, NNs ([98,99]), SVM [100,101] and LDA [102]
were the most commonly employed models for early detection and
diagnosis of KOA.

Localization of joints was a crucial task in the reported X-ray appli-
cations. Numerous approaches of varying complexity were applied such
as filtering (Gabor, Sobel) ([103-105]), statistical shape/texture analysis
([106,1071), fully automated software tools (Bonefinder ([108,109])) or
more sophisticated deep learning networks including YOLO and FCN
([110,111]). In some cases, manual cropping was also performed
([112-116]). PCA and GLCM were again selected in many of the reported
papers to generate small and informative feature subsets, whereas several
recent studies adopted CNN-based methodologies as an alternative for
the feature extraction task. Deep learning networks (e.g. VGG-19,
VGG-16, DenseNet, ResNet-34 and LSTM) were also involved in several
studies acting as the main learning algorithm. State-of-the-Art ML models
such as SVMs were finally selected in a few Xray-based studies to drive
the decision making process. In most of the cases, validation was per-
formed via k-fold CV and hold-out whereas some studies adopted more
robust validation strategies (cross-center validation). The main charac-
teristics of the reported image-based classification studies are shown in
Table 4.
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Table 6
Segmentation techniques applied on the KOA research.
Author Year Data  Feature engineering Learning Algorithm Validation Results
Ababneh, 2010 MRI Disjoint (non-overlapping) A graph-cut based 30 images from the OAI database 96% acc
SY. block-wise scanning, two- segmentation algorithm
[136] pass
block discovery
Ambellan, F. 2019 MRI - Combination of Datasets: (i) SKI10, (ii) OAI Imorphics (i) 74.0 &+ 7.7 Total score
[126] Statistical Shape models and (iii) OAI ZIB (ii) For femoral cartilage the DSC is 89.4%;
(SSMs) and 2D/3D CNN for baseline and 89.1%
(iii) The DSC is 98.6% for femoral bone,
98.5% for
tibial bone, 89.9% for femoral cartilage, and
85.6% for tibial cartilage
Gan, H-S. 2017 MRI k-means clustering Flexible seeds labelling Manual validation by two experts on Dice's
[125] algorithm, Fuzzy c-mean method 10 images reproducibility of 0.80 for observer 1 and
0.82 for
observer 2
Gornale, 2019  X- ROI extraction using Sobel, Otsu's Segmentation, 532 digital Knee X-ray images The accuracy rate of 91.16% for Sobel
Shivanand Ray Prewitt edge detection, Texture based method, 96.80% for Otsu's method, 94.92%
S. Computation of basic Segmentation and for texture method and 97.55% for Prewitt
[132] statistical features KNN method is obtained
Kashyap, S. 2016 MRI Extraction of 3D Haar-like LOGISMOS, just-enough The data from OAI were divided into ~ Border positioning errors (mm)
[134] features from volume of interaction (JEI) as post-  two training sets with 15 and 13 Femur signed 0.03 + 0.19
interest (VOI) processing and which were used to train the NAFand ~ Femur unsigned 0.55 + 0.11
Random Forest Classifier ~ the second RF classifier. 53 data-sets Tibia signed 0.10 + 0.17
were used for testing Tibia unsigned 0.61 + 0.14,
For RF classifier:
Femur signed —0.06 + 0.18
Femur unsigned 0.56 + 0.11
Tibia signed 0.16 + 0.24
Tibia unsigned 0.65 + 0.17
Kashyap, S. 2018 MRI Neighborhood Hierarchical Random 108 MRIs from baseline, and Cartilage surface positioning errors (in mm)
[135] Approximation Forests Forest Classifier 12 month follow-up scans of 54 of 4D
k-means clustering and LOGISMOS patients Femur signed 0.01 + 0.18
Femur unsigned 0.53 + 0.11 at Baseline
Marstal, K. 2011 MRI Histogram equalization, K-means MRI scans from 50 subjects (25 for Average sensitivity, specificity and dice
[133] extraction of similarity training) similarity coefficient of 0.853 + 0.093,
features from neighboring 0.999 + 0.001, 0.800 + 0.106 and 0.831 +
patches and PCA 0.095, 0.999 =+ 0.001, 0.777 + 0.054 on
tibial and femoral cartilages respectively
Panfilov, E. 2019 MRI - Deep learning U-net with ~ 5-fold cross-validation. Dataset A: 88 Mean of volumetric DSCs is 0.907 (U-net +
[129] two modern MRI images, Dataset B: 108 MRI mixup, Dataset A) for femoral cartilage
regularization images and Dataset C: 44 MRI images  and
techniques, DSCs is 0.821 (U-net + UDA2, Dataset C).
namely, supervised
mixup and UDA
Park, S-H. 2009 MRI Combined Intensity and Iterative Local Branch- LOOV on 8 3D MRI images Average similarity index
[137] Shape Priors and-mincut over 0.80 for normal participants and 0.75,
0.67, and 0.64 for participants with
established knee OA
Swanson, M. 2010 MRI Manual selection of seed Threshold operation Validation on 10 normal knees images =~ Mean similarity
S. points, histogram and fitted followed by conditional and 14 knees with OA Index 0.64-0.80
[138] Gaussian curves of the dilation and post-
region processing
Tack, A. 2018 MRI 2D U-net followed by CNN (3D U-Net) Validation on 5 different datasets of DSCs was 83.8% for medial menisci
[127] statistical shape models of MRI images from OAI with 2F CV (MM) and 88.9% for lateral menisci (LM) at
menisci baseline, and 83.1% and 88.3% at 12-month
follow-up.
Tack, A. 2019 MRI - 3D CNN (3D U-Nets) MRI data of 1378 subjects Accuracy of 88.02 + 4.62 for medial tibial
[128] from the OAI (2F CV) cartilage (MTC) and 91.27 + 2.33 for lateral
tibial cartilage (LTC) at baseline and 87.43
+4.02
and 90.78 + 2.42 at 12-months follow-up
Tamez-Pena, 2012 MRI Manual creation of atlases Multi-atlas segmentation ~ LOO on 48 MRI images DSC 0.88 and 0.84 for the
J. G [139]. by experts using CiPAS using CiPAS platform femoral and tibial cartilage
Tiulpin, A. 2017  X- Anatomically-based joint SVM The images from MOST were used to ~ Mean intersection over the union equals to:
[131] ray area proposal create training (991), validation 0.84 (MOST), 0.79 (Jyvaskyla) and 0.78
and Histogram of Oriented (110) and test sets (473), Jyvaskyla (OKOA).
Gradients (93), OKOA (77)
Tiulpin, A. 2019  X- ROI localization using low- Hourglass-like encoder- 5-fold patient-wise cross-validation Presicion 92.11 + 0.34 at 2.5 mm
[130] ray costs annotations decoder split stratified by a KL grade (748

models for landmark
localization

knee joints in total)




C. Kokkotis et al.

number of papers

2006 2007

2008

2009 2010 2011 2012

m Predictions/Regression m Classification

2013

Osteoarthritis and Cartilage Open 2 (2020) 100069

2014 2015 2016

2017 2018 2019

2020

Optimum post-treatment planning techniques = Segmentation

(a)
Genes .
Questionnaire / survey data ‘
Biomechanical data v Lo
N
Clinical data ‘
Imaging data (X-ray) ' ’
Imaging data (MRI) .
> & & o
o S )
& & & &
& & 2 &
& & «© €
23 & & -
N
6\9‘

(b)

Fig. 2. a) A temporal evolution chart depicting the number of papers per category published each year since the year 2006 and included in the survey, b) Bubble chart
showing a distribution of the papers considered in this survey arranged according to the data sources utilized in each survey category.

3.3. Optimum post-treatment planning techniques

As concluded in this survey, there is a lack of studies on the devel-
opment of ML based decision support systems (DSS) for the post-
treatment stage of KOA. According to our knowledge, the first attempt
in that direction was made in 2009 in Ref. [121] where the authors
presented an approach for detecting recovery from knee replacement
surgery using gait spatio-temporal parameters. Their main aim was to
investigate if the classifier could detect changes at 2 and 12 months
following knee replacement surgery. The proposed method achieved to:
(i) detect improvements in gait function and (ii) recognize gait parame-
ters that are altered due to KOA. In Ref. [122], the authors tackled the
task of selecting the appropriate gait re-training strategy as a ML problem
and presented interpretable learning models. Using the trained models, a

specialist was able to know which technique would work best for a
specific patient. Online segmentation for KOA rehabilitation monitoring
was also investigtaed in Ref. [123]. The novelty of this system was the
real-time feedback to patients and physiotherapists. Finally, a SVM-based
human motion identification for rehabilitation exercise assessment of
KOA was proposed in Ref. [124] using biomechanical data with reliable
results (up to 100% in recognizing the types of rehabilitation exercises
and over 97.7% in motion identification). In the majority of the reported
studies, the SVM technique was applied (in three out of four reports) on
biomechanical data leading to even perfect identification rates (up to
100%). The validation was performed with 10-fold cross validation or
with the leave one out (LOO) cross-validation approach. The studies with
the ML-empowered post-treatment planning techniques of KOA are
shown in Table 5.



C. Kokkotis et al.
3.4. Segmentation

Image segmentation is the process of changing the representation of
an image into meaningful segments. MR image segmentation for KOA is
typically performed by clinicians following a manual, laborious, time-
consuming process that is prone to subjective diagnosis error. There-
fore, many studies have focused on interactive, semi or fully automated
cartilage segmentation to assist the medical research in KOA. At this
point, it should be mentioned that even in the case of ML and especially
in supervised learning approaches, a researcher/doctor still needs to
label the images, hence the developed trained model is prone to the
subjectivity.

3.4.1. Landmark localization and shape modelling

To increase the performance of medical image segmentation tech-
niques, landmark localization and shape modelling have been utilized as
preliminary tools before the application of ML or DL. As recorded,
landmark localization took place by using either hourglass-like encoder-
decoder models or with manual cropping and selection of seed points.
Furthermore, a number of shape modelling tools were employed to
extract informative shape-relevant characteristics from the available
images including: Statistical Shape Models (SSMs), Combined Intensity,
Shape Priors, Histogram of Oriented Gradients (HoG) and edge detectors.

3.4.2. Segmentation

Segmentation was accomplished employing either interactive or
(semi- and/or fully) automated approaches. Flexible seeds labelling
applied on MRI data [125] was the dominant approach on the integrative
segmentation category. To enable automation on the segmentation tasks,
advanced DL-based techniques were adopted (e.g. CNN ([126-128]),
unsupervised domain adaptation DL [129] and DNN [130]) or even
state-of-the-art ML techniques such as SVM ([131]), KNN ([132,133])
and RF ([134,135]). Finally, more traditional segmentation approached
were also proposed including: two-pass block discovery mechanism
[136], Iterative Local Branch-and-mincut [137], Gaussian fit model
[138] and multi-atlas segmentation (MAS) [139].

3.4.3. Validation

OAI and MOST were the most-used databases to validate the perfor-
mance of the aforementioned segmentation approaches. Validation was
performed using k-Fold CV, LOOV or even manual assessment from
experts.

An overview of all the identified KOA segmentation studies of our
survey is given in Table 6:

4. Discussion and conclusions

Our literature survey outlined the current usage of machine learning
methods in KOA diagnosis and prediction challenge. Fig. 2 shows an
increasing trend of ML-related studies and papers in the field of KOA
indicating the need for (i) enhancing our understanding about the onset
and progression of the disease and (ii) new data-driven tools that could
enable early diagnosis and prediction of KOA. ML could play a key role
towards these directions extracting valuable knowledge from various
types of clinical data (biomechanical parameters, images, kinematics)
and finding new solutions that utilize data from the greatest possible
variety of sources.

Data has to be seen as an asset being one of the most important and
instructive assets of the healthcare industry. In KOA research, several
data sources have been considered as inputs forming powerful multi-
dimensional training and testing data sets. Medical Imaging is one of
the dominant data sources of the sector with MRI and X-ray images being
typically employed in the majority of the papers of our survey (25 and 25
papers out of 75 used MRI and X-ray, respectively). Biomechanical pa-
rameters were also investigated in 21 studies demonstrating a big po-
tential to be useful input data in KOA diagnosis, prognosis and the post-
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treatment planning. Finally, other complementary data sources have
been also considered in KOA research in several papers including pain,
outcome scores, demographics, generic attributes and genes (Fig. 2).

Feature engineering algorithms were applied on the available clinical
data to either reduce the input feature dimensionality or extract new
informative parameters from the raw data. PCA was employed in a
number of papers to compress 3D kinematic time-series, ground reaction
forces and MRI/X-ray images into more compact representations. Time
domain and time-frequency domain features (e.g. DWT or Wavelet
packet) were also extracted from GRF or EMG signals. GLCM was proved
to be a quite popular technique for extracting textural features in studies
where MRI or X-ray images are considered as inputs. A number of feature
selection techniques has been also employed to select the most infor-
mative features from the pool of the available or extracted parameters.
Partial least squares, simulated annealing, random selection and
sequential forward FS were among the techniques that were used to
reduce the feature dimensionality of the initial space so as to increase the
computational efficiency as well as generalisation capability of the sub-
sequent classification or regressing models. Pre-trained CNN models
were finally employed to extract valuable information for clinical images.

As far as the type of the ML models that were reported in our survey,
SVMs were proved to be the most frequently used model in all the survey
categories. Four (4) SVM-based studies were identified in the knee OA
prediction survey, whereas another ten (10) papers made use of SVM for
classification purposes including biomechanical discrete parameters or
images (mostly MRI and X-ray). Moreover, SVM was also employed in
three (3) out of the four (4) papers in the post-treatment survey. The
choice of SVM could be attributed to the fact that they generalize well in
practice and that are computationally effective in high dimensional
spaces. Neural networks were the second most frequent technique with
three (3) studies reported for knee OA prediction and eighteen (18) ap-
plications of NN-based models in the OA classification survey. Con-
volutional neural networks were finally considered in studies where
clinical images were used as inputs. CNN-based approaches were either
employed for feature extraction and/or for quantifying the severity of
knee OA.

Nowadays biomedical research and clinical practices on KOA are
struggling to cope with the growing complexity of interactions with the
gained knowledge being fragmented and associated either with molec-
ular/cellular processes or with tissue and organ phenotype changes
related to clinical symptoms. Therefore, KOA is a big data problem in
terms of the big data complexity and not the data size as it has been
commonly considered in the literature. To tackle this huge complexity
challenge, a multidisciplinary research approach should be proposed in
the future across many disciplines: biomedical modelling via mechanistic
analyses at various scales to capture locally the available knowledge into
predictive simulations; medical imaging and sensing technologies to
produce quantitative data about the patient's anatomy and physiology;
data processing to extract from such data information that in some cases
is not immediately available; big data analytics and computational in-
telligence tools that will generate personalised ‘hyper-models’ under the
operational conditions imposed by clinical usage. Machine learning can
explore massive design spaces to identify correlations and multiscale
modelling can predict system dynamics to identify causality. This has the
potential to lead to the development of individually tailored treatments
to maximize the efficacy of treatment. Research work at the intersection
of machine learning and KOA offers great promise for improving clinical
decision-making, and accelerating relevant intervention programs. To
enable appropriate adoption of advanced learning algorithms and stay
tuned with the new developments in ML/DL that are embracing research
to other medical fields, open data, tools, and discussions must be forceful
encouraged within the KOA research community.
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