Dataset Open Access

Visual and visual-inertial SLAM: State-of-the-Art, Classification and Experimental Benchmarking

Servières, Myriam; Renaudin, Valérie; Dupuis, Alexis; Antigny, Nicolas


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20210106002719.0</controlfield>
  <controlfield tag="001">4415641</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">AME-GEOLOC/Univ. Gustave Eiffel</subfield>
    <subfield code="a">Renaudin, Valérie</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ECN</subfield>
    <subfield code="a">Dupuis, Alexis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">AME-GEOLOC/Univ. Gustave Eiffel, AAU-CRENAU/ECN</subfield>
    <subfield code="a">Antigny, Nicolas</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">9652365</subfield>
    <subfield code="z">md5:52513a79ae82ba6d3406481309db3557</subfield>
    <subfield code="u">https://zenodo.org/record/4415641/files/data_groundtruth.csv</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">17289543519</subfield>
    <subfield code="z">md5:9f838ad010fcbdede820b4cdaae67f1f</subfield>
    <subfield code="u">https://zenodo.org/record/4415641/files/data_img.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">11047477</subfield>
    <subfield code="z">md5:5c543ed997c0eb373af45f648898c346</subfield>
    <subfield code="u">https://zenodo.org/record/4415641/files/data_IMU.csv</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">589</subfield>
    <subfield code="z">md5:69fb7b12f0bed53ce12e251cd9663d19</subfield>
    <subfield code="u">https://zenodo.org/record/4415641/files/sensor.yaml</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:4415641</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">AAU-CRENAU/ECN</subfield>
    <subfield code="0">(orcid)0000-0001-5749-1590</subfield>
    <subfield code="a">Servières, Myriam</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Visual and visual-inertial SLAM: State-of-the-Art, Classification and Experimental Benchmarking</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;IRSTV dataset used in the publication &amp;quot;Visual and visual-inertial SLAM: State-of-the-Art, Classification and Experimental Benchmarking&amp;quot;,&amp;nbsp;Myriam Servi&amp;egrave;res, Val&amp;eacute;rie Renaudin, Alexis Dupuis&lt;sup&gt;&amp;nbsp;&lt;/sup&gt;and Nicolas Antigny&lt;sup&gt;,&lt;/sup&gt; Hidawi Journal of Sensors, To be published&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4415640</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4415641</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
66
89
views
downloads
All versions This version
Views 6666
Downloads 8989
Data volume 294.6 GB294.6 GB
Unique views 5757
Unique downloads 5151

Share

Cite as