Figure Open Access

Effects of Network Topology On the Performance of Consensus and Distributed Learning of SVMs Using ADMM

Shirin Tavara; Alexander Schliep


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nkm##2200000uu#4500</leader>
  <controlfield tag="005">20201231131513.0</controlfield>
  <controlfield tag="001">4406001</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Data Science and AI division, Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg</subfield>
    <subfield code="a">Alexander Schliep</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">299710349</subfield>
    <subfield code="z">md5:ffdeb1f8fec350cda6df45bb9d86fb8a</subfield>
    <subfield code="u">https://zenodo.org/record/4406001/files/Effects of Network Topology On the Performance of Consensus and Distributed Learning of SVMs_reversion.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-schlieplab</subfield>
    <subfield code="o">oai:zenodo.org:4406001</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Data Science and AI division, Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg</subfield>
    <subfield code="0">(orcid)0000-0003-0669-9978</subfield>
    <subfield code="a">Shirin Tavara</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Effects of Network Topology On the Performance of Consensus and Distributed Learning of SVMs Using ADMM</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-schlieplab</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The Alternating Direction Method Of Multipliers (ADMM) is a popular and promising distributed framework for solving large-scale machine learning problems. We consider decentralized consensus-based ADMM in which nodes may only communicate with one-hop neighbors. This may cause slow convergence. We investigate the impact of network topology on the performance of an ADMM-based learning of Support Vector Machine (SVM) using expander, and mean-degree graphs, and additionally some of the common modern network topologies. In particular, we investigate to which degree the expansion property of the network influences the convergence in terms of iterations, training and communication time. We furthermore suggest which topology is preferable. Additionally, we provide an implementation that makes these theoretical advances easily available. The results show that the performance of decentralized ADMM-based learning of SVMs in terms of convergence is improved using graphs with large spectral gaps, higher and homogeneous degrees.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4400611</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4406001</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">image</subfield>
    <subfield code="b">figure</subfield>
  </datafield>
</record>
80
12
views
downloads
All versions This version
Views 8068
Downloads 1212
Data volume 3.6 GB3.6 GB
Unique views 7464
Unique downloads 1010

Share

Cite as