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ABSTRACT 
Games are often used to foster human partners’ engagement and 
natural behavior, even when they are played with or against 
robots. Therefore, beyond their entertainment value, games 
represent ideal interaction paradigms where to investigate natural 
human-robot interaction and to foster robots’ diffusion in the 
society. However, most of the state-of-the-art games involving 
robots, are driven with a Wizard of Oz approach. To address this 
limitation, we present an end-to-end (E2E) architecture to enable 
the iCub robotic platform to autonomously lead an entertaining 
magic card trick with human partners. We demonstrate that with 
this architecture a robot is capable of autonomously directing the 
game from beginning to end. In particular, the robot could detect 
in real-time when the players lied in the description of one card 
in their hands (the secret card). In a validation experiment the 
robot achieved an accuracy of 88.2% (against a chance level of 
16.6%) in detecting the secret card while the social interaction 
naturally unfolded. The results demonstrate the feasibility of our 
approach and its effectiveness in entertaining the players and 
maintaining their engagement. Additionally, we provide evidence 
on the possibility to detect important measures of the human 
partner`s inner state such as cognitive load related to lie creation 
with pupillometry in a short and ecological game-like interaction 
with a robot. 
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1 Introduction 
Historically, robots always fascinated the public, entertaining the 
audience. Indeed, the first recorded example of humanoid robot 
was a robotic musical band meant to entertain the guests of an 
Arabian king [1]. Nowadays, robots can have a role not only in 
task-oriented research or industrial applications, but also in the 
field of entertainment. e concept of Entertainment Robotics 
refers to any robotic platform and application not directly useful 
for a specific task, but rather meant to entertain and amuse 
humans. Recently several entertainment robotic platforms [2]–
[9], frameworks [10]–[13] and applications have been developed. 
Amusement and theme parks are one of the main application 
fields. Here, robots are meant to be observed, providing an 
entertaining show without any interaction. For instance the 
Disney World Company employs robots to act on stages [14], to 
perform acrobatic actions [15], [16], or to freely roam in the theme 
parks [17]. e laer can perform a finite set of human-robot 
interactions meant to handle approaching crowds. Rather than 
just being watched, a few robots socially engage the users. For 
instance, Sophia [18], [19] and Geminoid robots [20]–[22] can 
handle a dialogue with a human partner. However, despite the 
complexity of the interaction, in most cases everything is scripted 
and relies on a Wizard of Oz control configuration. Other robots 
interact physically with the human partner; for example, they play 
ping-pong [23], soccer [24], [25], table hockey [26] and ball 
catching [8]. Robot companions, like PARO [27], [28], AIBO [3], 
[4], [29] or Keepon [30], are a special branch of entertainment 
robot platforms, usually employed in education [3], [6], [31], [32] 
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and therapy [9], [33]. Such robots, usually resemble the 
appearance of animals or cute creatures, providing a limited set of 
predefined animations and reactive interactions. Recently, 
researchers started exploiting games and entertaining tasks as 
ecological and realistic scenarios to investigate human-robot 
interaction (HRI). Competitions like the IEEE Human application 
Challenge: Robot Magic and Music [34]–[37] and the IEEE 
RoboCup [24], [38], pushed researchers’ interest toward 
entertaining experiments and applications. For instance: Ahmadi 
et al. [39] and Ahn et al. [40] played rock-paper-scissor trying to 
predict playmate’s gestures; Michalowski et al. [41] studied how 
rhythm affects aention and intent in a dance game; Gori et al. 
[42] made the iCub robotic platform playing mime with a human 
partner; Leite et al. [43] studied the effect of non-verbal 
communication on user engagement with storytelling robots (see 
also [44], [45]); Aroyo et al. [46] studied the compliance of players 
to iCub’s hints in a treasure hunt; Palinko et al. [47] studied 
mutual gaze with Androids in a gaze-based social game. 
 
Entertainment applications demonstrated to be an effective way 
to introduce naïve users to robots and foster robots’ diffusion in 
the society. However, most of the presented robotic platforms and 
applications lack on autonomy, which limits their diffusion 
beyond specific contexts: robots depend on a Wizard of Oz [48] 
control configuration – and an expert handler – or follow a 
predefined script. To overcome these limitations, a robot should 
show autonomy, sensing its human partner and taking decisions 
accordingly, at least within the framework of a closed-world 
scenario as a game. 
 
Inspired by the television show Box of Lies [49], we explored 
whether the iCub humanoid robot could lead an entertaining 
magic trick in an autonomous way by detecting its human 
partner’s lies. In the game, iCub has to detect in real-time the 
player’s secret card – the card about which the human is lying – 
from a set of six random cards, during a quick and ecological social 
interaction. e approach is inspired by previous findings on lie 
detection in HRI [50], [51] based on cognitive load assessment 
[52], [53] via pupillometric features [54], [55]. We propose an 
autonomous end-to-end (E2E) architecture which integrates the 
cognitive load assessment, the decision making and the robot 
control, enabling iCub to lead the magic trick with no need of a 
Wizard of Oz control configuration. Based on our system, iCub 
successfully detected players’ secret cards with an accuracy of 
88.2% (N=34, against a chance level of 16.6%). We further report 
post hoc analysis of the participants’ strategies and pupillometry 
features and discuss whether the approach adopted could be 
improved and could effectively detect the cognitive load 
associated to lie creation in a short and game-like interaction. 

2 Magic Trick Interaction Design 
We designed a human-robot interaction where the iCub robotic 
platform plays a magic trick with a human player. e players 
describe six cards in front of iCub and have to lie about one of 
them (the secret card). iCub autonomously detects which is the 

fake description among the six. During the game, the players sit 
in front of iCub with a table (covered with a black cloth) between 
them. On the table, lie six green rectangular marks, a deck of 84 
gaming cards with blue back, a keyboard and a Tobii Pro Glasses 
2 eye-tracker [56] (Figure 1). 

  

Figure 1: Participant describing a card to iCub from 
Logitech Brio 4k webcam point of view. 

As the game starts, iCub asks the players to shuffle the deck, draw 
out six random cards without looking at them and put the deck 
aside. en, iCub instructs the player to shuffle the six cards again, 
draw out one of them (iCub calls it secret card), memorize it and 
put it back on the table. en, iCub asks to look at all the cards, 
one by one, shuffle them and put them covered on the six green 
marks. iCub says that, to perform a magic trick, it is going to point 
each card one by one and instructs the player to take the pointed 
card, describe it and then put it back on the green mark. It says: 
“e trick is this: if the card you take is your secret card, you should 
describe it in a deceitful and creative way. Otherwise, describe just 
what you see”. Finally, iCub asked the player to wear the Tobii Pro 
Glasses 2 eye-tracker, take a deep breath and relax. Aer that, 
iCub starts pointing the cards one by one, providing a verbal 
feedback at the end of each description. Aer the last description, 
iCub guesses the secret card and asks the player a confirmation: 
the player has to remove all the cards from the table to confirm 
the guess or show the secret card to reject it. 

3 Computational Architecture 
iCub could autonomously lead the whole magic trick thanks to the 
E2E architecture in Figure 2.  

3.1 Secret Card Detector 
During the magic trick iCub guesses players’ secret card by 
detecting the Task Evoked Pupillary Responses (TEPRs) [54], [57] 
related to lying [53]. e variation of cognitive load [58], [59] 
during a task has been proved to reflect on pupillometry features 
[60], in particular on pupil dilation. e fabrication and 
maintenance of a credible and consistent fake card description 
triggers a cognitive load peak in players’ mind [52], [61], [62] 



 

which reflects on their pupils. During the magic trick, iCub 
measures in real-time the player’s pupil dilations through the 
Tobii Pro Glasses 2 eye-tracker. e Secret Card Detector 
implements the algorithm that allows iCub to detect the secret card 
among the six cards, based on an heuristic approach [50]. At the 
end of the game, iCub selects as secret card the one related to the 
highest mean pupil dilation among the six. More precisely, for 
each card, it computes an average value from the moment the 
players take the card from the marker to the moment they put it 
back (we refer to these intervals as player’s turns). Before 
evaluating which is the secret card, each pupil dilation datapoint 
is normalized with respect to the average pupil dilation during the 
5 seconds before the first pointing (when iCub asks the player to 
take a deep breath and relax) [50], [63]. 

 

Figure 2: end-to-end computational architecture to play the 
Magic Trick with the iCub humanoid robot 

3.2 Tobii Streamer 
e Tobii Pro Glasses 2 is a wearable eye-tracker meant to collect 
pupillometric features and post-hoc analyze them [56]. We 
developed the Tobii Streamer (extending the Tobii Glasses Py 
Controller python module [64]) in order to stream the right eye 
pupil dilation in real-time over a YARP robotic platform [65]. Even 
if the magic trick is based only on the right eye pupil dilation, the 
features for both eyes are logged on YARP for further analysis. We 
decided to focus on right-eye features since prior findings on lie 
detection based on pupillometric features [51] and Tobii 
documentation [66] reported no significant difference between 
the two eyes. We also decided to skip the Tobii Pro Glasses 2 eye-
tracker calibration to not impact the informality of the interaction. 
Tobii documentation reports how the calibration is only relevant 
for the gaze features and does not impact the pupil dilation 
measurement [66]. Finally, the system uses the Tobii REST APIs 
to record the full set of pupillometric features, exposed by the 
proprietary soware, for future analysis. 

3.3 Turns Detector 
e Turns Detector allows iCub to autonomously handle the turn-
taking during the game. Indeed, iCub needs to know when the 
players take a card to start the pupil dilation aggregations and 

when they put it back on the table to store the collected data and 
present the new item. e Turns Detector implements a simple 
HSV color thresholding that detects the number of blue (cards) 
and green (marks) rectangular blobs in the scene. During the 
game, iCub double checks the number of visible marks and cards 
blobs to robustly understand the game phases. For instance, it 
detects when the players put the cards on the table for the first 
time by detecting zero green marks; this triggers the rules 
explanation. When the players take a card to describe it, it tracks 
five blue and one green blobs until the player put it back on the 
table. 

3.4 Magic Trick Controller 
e Magic Trick Controller handles iCub speech and movements 
and coordinates the other components. iCub’s pointings were 
performed in a human-like manner: first gazing to the card and 
then pointing, by moving both the arm and the body. In order to 
increase players’ engagement and provide a more social 
interaction, iCub acknowledges the end of each description with 
a simple feedback sentence (e.g., “ok”, “mh mh”, “I see”). e Magic 
Trick Controller autonomously commands the Secret Card 
Detector to segment the pupil dilation timeseries, based on the 
card tracking of the Turns Detector. At the end of the game, it 
autonomously handles the validation of the detected secret card 
description. Moreover, it annotates, through YARP, the 
timestamps related to the beginning and end of each pointing and 
description, along with the position of the secret card for further 
post-hoc analysis. 

4 Methodology 
To validate our computational architecture, we tested it in real 
interactions with several participants. e main objective is to 
demonstrate the effectiveness of our proposed architecture to 
make iCub autonomously lead an entertaining and effective 
human-robot interaction, based on the real-time reading of a 
biometrical feature from the players. 

4.1 Participants 
We asked 39 participants to play the magic trick with iCub. ey 
were 14 males and 25 females with an average age of 28 years 
(SD=8) and a broad educational background; they received a 
monetary compensation of 10 € to participate in the experiment. 
Participants signed an informed consent form approved by the 
ethical commiee of the Regione Liguria (Italy) where it was 
stated that cameras and microphones could record their 
performance and agreed on the use of their data for scientific 
purposes. Even if all participants completed the experiment, we 
discarded 5 interactions from the analysis (see Sec. 5.1.1), leading 
to a sample of N=34 participants (12 males, 22 females). 

4.2 Setup 
For the experiment, the experimental room was arranged to 
replicate an informal interaction scenario between a human and a 
robot (Figure 3). e participant sat on a chair in front of iCub. 



 

Between the participant and the robot, we set a table covered with 
a back cloth. On the table lied: a deck of 84 playing cards with blue 
back, six green rectangular marks, a keyboard, and a Tobii Pro 
Glasses 2 eye-tracker. On participant’s le, there was a lile 
drawer while, on the right, a black curtain hid the experimenter 
from participant’s sight. Behind iCub, a 47 inches television 
showed iCub speech during the interaction (to avoid any 
misunderstanding of the robot’s speech). e Tobii Pro Glasses 2 
streamed and recorded pupil dilations with a frequency of 100 Hz. 
A Logitech Brio 4k webcam [67], placed on the television, 
recorded the participant during the whole interaction (Figure 1). 
e windows blinders were closed, and the room was lit with 
artificial light to ensure a stable light condition for all the 
participants during different times of the day. 

4.3 Materials 
A Dixit Journey gaming cards deck has been modified by coloring 
the back of each card in blue. ese 80x120 mm cards present 84 
different toon-styled drawings meant to stimulate creativity and 
creative thinking [68] (Figure 3, Right). Six green 95x70 mm marks 
with a white border have been glued to the black cloth. e iCub 
humanoid robot [69] played the role of magician. The 
experimenter, hidden behind the black curtain, monitored the 
scene through iCub’s eyes to ensure the safety of the players. 

4.4 Procedure 
At least one day before the experiment, the participants filled in 
the Big Five personality traits questionnaire (extroversion, 
agreeableness, conscientiousness, neuroticism, openness) [70], 
the Brief Histrionic Personality Disorder (BHPD) [71] 
questionnaire and the Short Dark Triad (SD3, machiavellianism, 
narcissism, and psychopathy) [72], meant to assess their 
personality. 
 
Aer signing the informed consent, the experimenter led the 
participants in the experimental room. e experimenter asked 
the participants to sit on the chair in front of iCub, stated that 
iCub was going to explain everything and closed the black curtain, 
hiding himself from players’ sight. iCub led the experiment as 
described in Sec. 2. During the initial rule explanation, iCub 
instructed the participant to press a key on the keyboard to move 
to the next task (i.e., aer shuffling the cards deck or aer 
memorizing the secret card). No time limit was given to memorize 
the secret card, neither to describe the cards. Aer the magic trick, 
the participants performed a second card game with iCub lasting 
on average 8 minutes (SD=2). 
 
At the end of the game, the experimenter led the participants in 
the initial room and asked them to fill in a post-questionnaire. e 
questionnaire includes the NASA-TLX [73] and a set of questions 
meant to evaluate players’ experience during the game: (i) 
experienced fun (5-points Likert scale), (ii) effort on fabricating a 
deceitful and creative secret card description (5-point Likert scale), 
(iii) deceptive strategy adopted (open question; e.g., premeditating 
the card description while iCub was explaining the rules; or being 
vague); and (iv) perceived strategy adopted by iCub in the 

detection (open question). Also, we asked whether players had 
previous experience on improvising and acting and if they knew 
the Dixit card game. Finally, the participants were deeply 
debriefed, and they had time to ask questions about the 
experiment before receiving the monetary compensation. 
 

   

Figure 3: (Le) Experimental room setup with iCub, the 
participant, six green marks, six blue cards, a Tobii Pro 
Glasses 2 and a keyboard on the table; (Right) Dixit Journey 
gaming cards (author: Jean-Louis Roubira, designer: Xavier 
Collette, publisher: Libellud). Top right card described as “a 
blue shark riding a bike”   

4.5 Measurements 
4.5.1 Card Segmentation. e card segmentation is autonomously 
performed by the architecture: the pupil dilations and the 
beginning and end events of each pointing and card description 
are logged on YARP which ensures the synchronization of the 
timestamps. For each card, we identified 3 temporal intervals: (i) 
robot’s turn: from the moment iCub starts the pointing to the 
moment the players take the card from the table; (ii) player’s turn: 
from the moment the players take the card to the moment they 
put it back on the table; (iii) card trial:  the combination of both 
previous turns: from the beginning of iCub’s pointing to the 
moment the players put the card back on the marker. 
 
4.5.2 Gaze Measurements. Participants’ pupillometry features were 
recorded using the Tobii Pro Glasses 2 eye-tracker at a frequency 
of 100 Hz. Recorded features include right and le pupil dilation 
in mm, gaze point 2D, gaze point 3D and fixation and saccades 
events. Since we decided to not perform the Tobii Pro Glasses 2 
calibration, only pupil dilation features are reliable. For each of 
the 3 temporal intervals, (robot turn, player turn and card trial) 
we computed 5 features: duration, maximum, minimum, mean 
and standard deviation of pupil dilation leading to a final feature 
set composed of 15 features.  
 
4.5.3 Data Preparation. To post-hoc analyze the collected data (see 
Section 5.4), we preprocessed the pupil dilation features. We 
applied a low pass filter at 10 Hz, a median filter, and a rolling 
window filter to clean the pupil dilation time series. Before 
segmenting the intervals, we corrected each time series 
subtracting a baseline average value for each participant [63]. We 
computed the baseline, by averaging the pupil dilation, for each 



 

eye separately, during the five seconds before the first pointing – 
when iCub asks the player to take a deep breath and relax. In this 
reference system, a positive value represents a dilation, while a 
negative value represents a contraction with respect to the 
baseline. 

5 Results 

5.1 In-game Analysis 
e Magic Tricks lasted 8 minutes (SD=2) on average, from when 
iCub started explaining the rules to the final confirmation of the 
detection. ICub successfully detected players’ secret card with an 
accuracy of 88.2% (against a chance level of 16.6% and considering 
the N=34 interactions not affected by technical issues or rule 
misunderstanding; see below). 
 
5.1.1 Discarded Interactions. Although all participants completed 
the game, we had to exclude 5 of them from further analysis. Two 
of them failed to follow the rules of the game: one misunderstood 
the instructions and fabricated a deceitful and creative description 
for all the cards; one misunderstood iCub’s pointing gesture and 
ended the game without describing the secret card. Another 
participant took very long to describe each card concluding the 
game aer 26 minutes (vs. an average of 8 min for all other 
participants). For the last two participants we had technical issues: 
for one, a problem with the blinders did not allow to maintain a 
stable light condition during the game; for the other, even if the 
secret card detection was successful, we had a problem with the 
storage server that prevented the data saving. 
 
5.1.2 Detection Failures. Considering the 4 participants (out of 34) 
in which iCub failed to detect the secret card, we had two 
particularly interesting cases. One participant produced an 
incomplete description for the first card because the experimenter 
interrupted it by mistake. Looking at the pupil dilation timeseries 
of that player, it experienced a cognitive load peak probably due 
to the novelty of the game. We speculate that the card description 
was interrupted too early to allow a mitigation of such cognitive 
load (and hence the pupil dilation), resulting in a higher mean 
pupil dilation; indeed, iCub detected that card as the secret card. 
For the second participant we noticed a pupillary paern opposite 
with respect to the others: the secret card was the one related to 
the lowest mean pupil dilation among the six. Regarding the other 
two: one reported, during the debriefing, to be used to creative 
thinking; the second one described the card vaguely and by 
omiing details rather than creating a novel one. Both failures 
could be explained by the need for a lower cognitive effort to 
fabricate a creative description because of the adopted strategies. 
 
5.1.3 Experimenter’s Interventions. In general, the game unfolded 
properly, and we encountered a few issues that required human 
intervention. More precisely, considering all the interactions, the 
experimenter had to intervene 3 times verbally mainly to remind 
the player to put the deck aside to prevent interferences with the 
cards and marks tracking. Additionally, some technical issues 

occurred: some major (N=5) where the experimenter had to stop 
and restart the game and two minors where the experimenter 
needed to intervene (i.e., asking to move the cards deck). e 
major issues were related to either the malfunction of the Tobii 
Pro Glasses 2 that prevented the streaming of pupil dilations (N=4) 
or to robot malfunction that needed the restart of the robotic 
platform (N=1). Aer restarting the devices, the game went 
flawlessly for those participants. Finally, for 2 participants one of 
the card description was erroneously interrupted. In one case, the 
Turns Detector failed to track the cards due to a misplacement 
over the marks; in the other case the interruption was due to a 
human error, as mentioned above, that did not hinder the 
completion of the game. 

5.2  estionnaire Analysis 
With the questionnaire analysis, we mainly wanted to 
understand: (i) how much the game was able to entertain the 
players; (ii) if a bad performance during the game (due to 
misdetections and/or game failures) had an impact on players’ 
fun; (iii) how much effort was required to play the game.  
 
5.2.1 Experienced Fun. Considering the whole sample (N=39), 
participants reported a high average fun of M=4.4 (SD=0.82). We 
then compared the fun for those for which iCub failed to detect 
the secret card (N=8, M=3.75, SD=1.28) and for the others (N=31, 
M=4.63, SD=0.56). A Wilcoxon rank-sum test showed no 
significant statistical differences between the two samples 
(Z=1.74, p=0.082). Moreover, we supposed that the presence of 
failures during the interaction could impact the experienced fun. 
We compared the reported fun of the games which proceeded 
without any (even minor) technical issues and the iCub 
successfully guessed the secret card (N=26, M=4.68, SD=0.56), 
against the others (N=13, M=4.0, SD=1.08). e Wilcoxon rank-
sum test revealed no significant statistical difference, although 
there was a trend to find more entertaining the flawless games 
(Z=1.9, p=0.056).  
 
5.2.2 Creative Effort and Task Load. On average, participants 
reported a creative effort of M=3.6 (SD=0.97), considering only the 
individuals who followed the game rules and for which there was 
no severe technical issue or outlier behavior (N=34). e 
participants for which iCub failed the secret card detection 
reported an average creative effort of M=3.0 (SD=1.41, N=4), while 
the others reported an average creative effort of M=3.87 (SD=0.73, 
N=30), with no significant difference between the two groups 
(Wilcoxon rank-sum test, Z=1.12, p=0.26). Considering task load 
in general, the Task Load indeX (TLX), computed from the NASA-
TLX questionnaire was not high on average. Participants reported 
an average TLX of M=3.7 (out of 10, SD=1.03). 
 
A Wilcoxon rank-sum tests showed that both Fun (Z=378.0, 
p<0.001) and creative effort (Z=341.5, p<0.001) are significantly 
higher than the “neutral” median value (3). Also, we found that 
the higher was the reported effort in creating a lie, the higher was 
the experienced fun (Spearman correlation: rs(28) = 0.53, p<0.001).  
Considering the relation with the personality traits of the 



 

participants from the pre-questionnaire, the creative effort was 
linearly (negatively) correlated with the openness to experience 
(t(28)=-3.96, p<0.001, Adj. R2=0.62), and (positively) correlated 
with the conscientiousness (t(28)=5.99, p<0.001, Adj. R2=0.62), 
whereas no other element of the Big 5 showed a significant 
correlation with it. Regarding the Dark Triad, we found a positive 
linear correlation between the machiavellianism (t(28)=3.49, 
p=0.0019, Adj. R2=0.271) and the mental effort component of the 
NASA-TLX. We found no effect from the histrionic questionnaire. 
 
5.2.3 Deceptive Strategies. e players exploited a variety of 
strategies to fabricate the creative and deceitful description for the 
secret card. We manually translated the qualitative reports of the 
participants, integrated with experimenter’s notes during the 
experiment in a finite set of strategies with intersection. e 
question was not mandatory, hence just 24 participants reported 
a qualitative strategy. Most of the players (N=8) reported the 
usage of memory recall, related to a previous card or a past event; 
3 players swapped the roles of the characters in the cards and just 
3 players reported the creation of a brand-new image; 3 
participants focused on adding details while 3 tried to be vague 
and generic about the description; finally, 3 participants focused 
on the credibility and consistency. We also identified two classes 
related to the timing of fabrication of the creative description: 8 
participants reported they premeditated the description as iCub 
presented game rules; other 8 participants instead, improvised the 
description on the fly. We did not find any statistical difference 
between the samples on predicting fun or creative effort.  
 
We applied a similar preprocessing on the perceived methods 
used by iCub to detect the secret cards. Although the eye-tracker 
was the only evident sensing device in the interaction, 27 of the 
39 players (69%) did not mention gaze or pupil when describing 
the strategy used by the robot to guess the secret card. 8 
participants assumed iCub was able to detect a variation on the 
description, including both prosodic features and number of 
details; 3 participants assumed iCub detected the presence or 
absence of keywords in their descriptions; only a participant 
thought about facial and postural features. Interestingly, 6 
participants assumed iCub knew all the 84 cards and hence it 
could understand the card description and match it (or not) with 
one of the cards. Few of them (N=3) also assumed iCub could see 
the card from its reflection on the glasses and pair the image with 
the description.  
 
Finally, as a qualitative report, all the participants were surprised 
when the experimenter presented iCub and stated that it was 
going to lead the experiment. At the end of the experiment, they 
all reported they had fun, even the ones that experienced failures. 
ey were also extremely surprised to learn the effect of cognitive 
load on pupil dilation. 

5.3 Post-hoc Analysis 
We analyzed the collected pupillometric features to provide 
statistical support to the results of the validation experiment and 
assess whether the heuristic method can be further improved. A 

Saphiro-Wilk [74] and D’Agostino K-squared [75] normality tests 
showed that the data were normally distributed, justifying the use 
of a parametric analysis.  
 
5.3.1 Robot and Player turns comparison. First, we ran a paired t-
test comparing the average of mean pupil dilation for right and 
le eyes. Results showed no significant difference (t(33)=1.58, 
p=0.123), hence we focused on the right players’ eye as in the real-
time Magic Trick. We compared the mean pupil dilation for the 
secret card against the average of the other cards during the 
different turns of the game. We performed a two-way repeated 
measures ANOVA on players’ mean pupil dilations with factor 
“card label” (two levels: Real, Fake) and factor “turn” (two levels: 
Robot, Player). e test shows a highly significant difference in 
players’ pupil dilation as a function of the card label (F(1, 
33)=44.17, p<0.001, ηp2=0.57), no significance of the turn factor 
(F(1,33)=2.69, p=0.11, ηp2=0.08), but a highly significant 
interaction (F(1,33)=58.01, p<0.001, ηp2=0.64). Hence, mean pupil 
dilation is overall different between real and untruth card 
descriptions, but this difference is significantly larger in the player 
turn, i.e., while the description was performed. More precisely, 
post-hoc analysis (Bonferroni corrected) showed that the mean 
pupil dilation for the secret card description was significantly 
higher than the mean pupil dilation for the average of the other 
cards during the player’s turn (t(33)=9.87, p<0.001) but not in the 
robot’s turn (t(33)=0.16, p=0.33). e effect is also visible in Figure 
4. For the player’s turn, we also analyzed whether other features 
(maximum, minimum and standard deviation of pupil dilation) 
differed significantly between the secret card and the others. 
Paired t-test tests showed that both minimum pupil dilation 
(t(33)=7.18, p<001) and maximum pupil dilation (t(33)=7.87, 
p<0.001) were significantly higher during the false description 
than during the truthful ones.  

 

Figure 4: Average right mean pupil dilation for the secret 
card (red) and averaged other cards (green) during the magic 
trick turns. Error bars represent standard errors of the 
mean. Stars represent statistical difference (** p<0.001) 

5.3.2 Card trials analysis. As an exploratory analysis, we 
investigated whether it is possible to further simplify the 



 

interaction by removing the turn segmentation. Figure 5 
represents the right mean pupil dilation during the whole card 
trial for secret card and average of the other cards for each 
participant. Except for two participants, all the others lie above 
the identity line, showing larger mean pupil dilation on the secret 
card. We ran a paired t-test comparing the mean pupil dilation on 
the secret card with the average of the others during the whole 
card trials. e abovementioned affect is still present since the 
mean pupil dilation (t(33)=9.14, p<0.001), maximum pupil dilation 
(t(33)=6.91, p<0.001) and minimum pupil dilation (t(33)=6.37, 
p<0.001) are significantly higher during secret cards descriptions. 
If the heuristic to detect the secret card had been based on the 
whole card trial interval, the robot would have guessed the right 
card with an accuracy of 85.3% (against a chance level of 16.6%). 
is simulation result proves that it is possible in the future to 
further simplify the interaction and the Secret Card Detector, by 
analyzing online the whole interval from the instantiation of one 
pointing to the beginning of the next, without the need of 
segmenting exactly the time in which the participant takes the 
card from the table. 
 

 

Figure 5: Right mean pupil dilation during the whole card 
interval for secret card and average of the other cards for 
each participant. e black dot represents the sample mean 
with standard error.  

5.3.3. A more robust lie detector. e heuristic function enables 
iCub to autonomously lead the proposed game; however, it is still 
affected by two limitations: (i) it is unreliable in case of light 
changes during the game; and (ii) it does not consider unexpected 
behaviors from the players (e.g., lying on multiple cards). To 
address these limitations, in the post-hoc analysis we corrected 
each pupil dilation datapoint by subtracting the average pupil 
dilation during the five seconds before each card trial. is kind of 
baseline should compensate for potential fluctuations of both 
environmental light and players’ cognitive load during the game. 
en, we trained a machine learning model able to classify a 

generic description as true or false, independently from the 
number of items or lies. Assuming lying is a rare behavior with 
respect to a normal truth telling, we analyzed the problem as an 
anomaly detection; this technique also avoided us to oversample 
the dataset to tackle its unbalancing. We considered the whole 
feature set and included data from both right and le players’ 
eyes, discriminated by a proper categorical feature. We trained a 
one-class support vector machine (OCSVM) [76] on the resulting 
dataset (405 datapoints x 16 features). OCSVMs are semi-
supervised models meant to train only on normal data (true card 
descriptions), learning to discriminate what is abnormal (false 
card descriptions). We considered 75% of the true card 
descriptions as train set and the remaining (both true and false) as 
validation and test sets. A grid-search cross validation shows that 
the best model has an AUCROC of 0.61, an F1 score of 79.6%, a 
precision of 77.4% and a recall of 81.8%. 

6 Discussion 
In this study we show how a humanoid robot can successfully 
guide a prolonged and entertaining activity with a human partner 
based on a real-time measurement of players’ pupil dilation. Our 
innovative approach shows how the autonomous end-to-end 
(E2E) architecture successfully promotes an enjoyable activity 
with a robot. At the same time the architecture allows for the 
extraction of important information about the inner state of the 
human partner (i.e., cognitive load related to lying). Players’ lies 
can be recognized with a good accuracy level of 88.2% (N=34, 
against a chance level of 16.6%) during a short interaction (8 min) 
without leveraging on a priori knowledge of individual aitudes. 
e measures of fun and task load, reported aer the game, 
confirm how the magic trick is entertaining, even if iCub failed to 
detect the secret card or malfunctions happened during the 
interaction. Also, the reported creative effort and task load suggest 
how the human-robot interaction does not require any significant 
effort to be played. 
 
e current architecture implementation and setup still presents 
two main issues, as the employed pupillometry measure is 
sensitive to illumination changes during the interaction and the 
approach is not robust against unexpected behaviors from the 
players (e.g., multiple lies).  Considering the sensitivity to 
illumination, it mostly represents a limitation for outdoor 
environments. Since our solution does not require a specific 
illumination, but rather a constant one, this requirement can be 
easily met in most indoor contexts. For what concerns the 
dependency of the system on a fixed number of lies or items, the 
different preprocessing and the one-class support vector machine 
tested in the post-hoc analysis show promising expectations that 
also these limitations could be overcome. However, further 
research must be performed to improve the reliability of the 
system. 
 
Although the validation experiment was conducted with the 
humanoid robot iCub, the architecture is highly modular and 
portable. e relatively limited sensing and acting abilities needed 



 

along with the decomposition between sensing and robot control 
make the architecture easily adaptable to different robotic 
platforms. e pointing actions could be replaced by different 
ways to show the cards, and the detection of the robot and player 
turns could be performed with ad hoc sensing. e architecture is 
also extremely light weighted: it does not require excessive 
computational power or a network connection. is makes it 
easily deployable directly on other robotic platforms’ boards. We 
did not explore the effect of robot appearance on game 
entertainment; however, we speculate that the childish 
appearance of the iCub humanoid robot contributed to engage the 
players, making the game more entertaining. Further research 
must be performed to address the impact of robot appearance on 
the proposed game. 
 
e interaction, and hence the autonomous architecture, could be 
further simplified. We demonstrated with a post-hoc analysis that 
even considering the whole interval of time in which a single card 
is shown and described, the heuristic would work well (accuracy: 
85.3% against a chance level of 16.6%). Hence, the Turn Detector 
could be simplified by detecting just the end of the description to 
know when to present the next stimulus. Indeed, the Turn 
Detector implementation, based on the HSV color thresholding of 
cards and marks, is a limitation of the current architecture. It 
depends on light conditions and camera calibration and it is prone 
to potential false positives due to other colored objects in the 
scene. We decided to implement such simple approach thinking 
about the potential deployment of our entertainment architecture 
in other fields. For instance, amusement and theme parks are 
crowded and loud places, hence it would not be feasible to use 
speech-based algorithms (i.e., a voice activity detector algorithm) 
to detect players’ descriptions. We also decided to avoid any 
computer-readable marks (i.e., QR codes) to avoid that the player 
would assume that iCub could recognize the cards by their backs. 
inking about a future deployment of the architecture, it will be 
mandatory to improve our card tracking method. For instance, we 
could track players’ gestures or the original Dixit gaming card 
back with a feature-based object localization algorithm. is way, 
it would also be possible to remove the green marks on the table, 
further simplifying the setup of the game. 
 
e elimination of the green marks would reduce the required 
materials to just the eye-tracker. Even if the interaction unfolded 
naturally, we recognize that the use of a head mounted eye-
tracker, though lightweight, reduced the naturalness of the task. 
We partially reduce its impact on the informality of the 
interaction by removing the calibration phase, since it is not 
strictly required to measure pupil dilation. Moreover, 27 of the 39 
participants did not mention the eye-tracker (or any eye-related 
feature) as the method used by iCub to detect their secret card. 
Hence, we speculate that the eye-tracker did not compromise 
players’ fun during the game, nor induced them to be self-aware 
of their own gaze behavior. However, to port the application to a 
real-world scenario, the ideal solution would be measuring the 
player’s pupil dilation from the RGB cameras embedded on the 
robotic platform. Recent research developments have shown the 

feasibility of using RGB cameras to assess pupillometric features 
[77]. Hence, we believe that in the future it will be possible to also 
remove the eye-tracker requirement. 
Beside the applications in a real-world entertaining scenario (i.e., 
amusement parks), the system could represent a natural way to 
introduce robots in the society by allowing naïve users to 
experience a quick, pleasant, and interactive game with a real 
robot. Additionally, this system could become a novel tool to 
measure pupillometric modulations associated to creativity in a 
pleasant and non-invasive way (e.g., appropriate for children). 
Also, this work demonstrates that a robot can effectively monitor 
the variations in cognitive load during a natural interaction. e 
generality of cognitive load detection is supported by the high 
variability of the items employed (84 different cards). Hence, the 
measure should not be limited to a specific set of items. is is 
novel with respect to the state-of-the-art cognitive load 
assessment methods based on long, tedious and strictly 
constrained tasks [51], [78], [79] and cumbersome sensing 
devices. Hence, it represents a step toward those applications 
where robots could take benefit from evaluating the human 
partner’s internal state and change their behavior accordingly 
(e.g., by providing a less challenging task). Moreover, this 
evaluation is performed preserving the informality of the human-
robot interaction, an important factor in fields like teaching or 
caretaking. 
 
In the future we plan to improve the architecture as both (i) an 
entertaining and autonomous game with a humanoid robot and 
(ii) and an effective and quick method to assess human partners’ 
cognitive load in real-time. We aim to adapt iCub’s behavior based 
on the measured cognitive load. 

7 Conclusion 
anks to the autonomous architecture proposed in the 
manuscript we provide evidence that robots can, at the same time, 
(i) autonomously guide a human-robot interaction in and 
ecological magic trick (detecting players’ secret cards with an 
accuracy of 88.2%, against a chance level of 16.6%) and (ii) 
promote, through the proactive interaction, the online acquisition 
of important insights on the human counterpart’s inner state. e 
future implications of such approach are activities that are 
beneficial or entertaining for the human partners and, at the same 
time, allow the robots to adapt their behavior to the specific inner 
state of the participant in real-time. is will be a key factor for 
robots that aim to act in fields related to tutoring, caregiving, and 
security. Finally, we hope that the development of more accessible 
and portable entertaining applications could foster the diffusion 
of robots in the world as enjoyable playmates, thus paving the 
way toward their acceptance in the society. 
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