Dataset Open Access

Active Learning with RESSPECT: Data Set

da Silva de Souza, Rafael; Kennamer, Noble; de Oliveira Ishida, Emille Eugenia


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">supernova</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">active learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">classification</subfield>
  </datafield>
  <controlfield tag="005">20210219183054.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The Cosmostatistics Initiative was supported by the French government via a  CNRS-MOMENTUM grant from 2018-2020 under the project: Active Learning for Large Scale Sky Surveys.</subfield>
  </datafield>
  <controlfield tag="001">4399109</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">UCI</subfield>
    <subfield code="a">Kennamer, Noble</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CNRS</subfield>
    <subfield code="0">(orcid)0000-0002-0406-076X</subfield>
    <subfield code="a">de Oliveira Ishida, Emille Eugenia</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">415689636</subfield>
    <subfield code="z">md5:19f408e6da71dce5c05aa5546c99d25e</subfield>
    <subfield code="u">https://zenodo.org/record/4399109/files/IEEE2020.tar.gz</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1328</subfield>
    <subfield code="z">md5:f4e87bde151cd7d1678a1527572eac78</subfield>
    <subfield code="u">https://zenodo.org/record/4399109/files/README</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-ieee</subfield>
    <subfield code="p">user-astronomy-general</subfield>
    <subfield code="o">oai:zenodo.org:4399109</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">SHAO</subfield>
    <subfield code="a">da Silva de Souza, Rafael</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Active Learning with RESSPECT: Data Set</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-astronomy-general</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ieee</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This folder contains pre-processed simulated data first made available by Rick Kessler for the&amp;nbsp;&lt;br&gt;
&lt;a href="https://arxiv.org/abs/1008.1024"&gt;Supernova Photometric Classification Challenge (SNPCC)&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;All data were feature extracted using the &lt;a href="https://arxiv.org/pdf/0904.1066.pdf"&gt;Bazin parametric&amp;nbsp;function&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;This version of the data set&amp;nbsp;was used to obtain the results reported in&amp;nbsp;&lt;a href="https://arxiv.org/pdf/2010.05941.pdf"&gt;Kennamer et al., 2020&amp;nbsp;- &lt;em&gt;Active learning with RESSPECT: resource allocation for extragalactic astronomical transients&lt;/em&gt;.&lt;/a&gt;&amp;nbsp;Published during the&amp;nbsp;&lt;a href="http://www.ieeessci2020.org/symposiums/ciastro.html"&gt;2020 IEEE Symposium Series on Computational Intelligence&lt;/a&gt;. The code used to obtain the results shown in the paper is available in the &lt;a href="https://github.com/COINtoolbox/RESSPECT"&gt;COINtoolbox&lt;/a&gt; (github).&amp;nbsp;&lt;br&gt;
&lt;br&gt;
This work was developed under the &lt;a href="https://cosmostatistics-initiative.org/resspect/"&gt;RESSPECT project&lt;/a&gt;, an inter-collaboration agreement established between the &lt;a href="https://lsstdesc.org/"&gt;LSST Dark Energy Science Collaboration (LSST-DESC)&lt;/a&gt; and the &lt;a href="https://cosmostatistics-initiative.org/"&gt;Cosmostatistics Initiative (COIN)&lt;/a&gt; in order to develop an active learning pipeline to advise the allocation of telescope resources.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4399108</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4399109</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
75
21
views
downloads
All versions This version
Views 7575
Downloads 2121
Data volume 4.6 GB4.6 GB
Unique views 6969
Unique downloads 1717

Share

Cite as