Dataset Open Access

Active Learning with RESSPECT: Data Set

da Silva de Souza, Rafael; Kennamer, Noble; de Oliveira Ishida, Emille Eugenia


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4399109</identifier>
  <creators>
    <creator>
      <creatorName>da Silva de Souza, Rafael</creatorName>
      <givenName>Rafael</givenName>
      <familyName>da Silva de Souza</familyName>
      <affiliation>SHAO</affiliation>
    </creator>
    <creator>
      <creatorName>Kennamer, Noble</creatorName>
      <givenName>Noble</givenName>
      <familyName>Kennamer</familyName>
      <affiliation>UCI</affiliation>
    </creator>
    <creator>
      <creatorName>de Oliveira Ishida, Emille Eugenia</creatorName>
      <givenName>Emille Eugenia</givenName>
      <familyName>de Oliveira Ishida</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0406-076X</nameIdentifier>
      <affiliation>CNRS</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Active Learning with RESSPECT: Data Set</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>supernova</subject>
    <subject>active learning</subject>
    <subject>classification</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-10-26</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4399109</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4399108</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/astronomy-general</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ieee</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This folder contains pre-processed simulated data first made available by Rick Kessler for the&amp;nbsp;&lt;br&gt;
&lt;a href="https://arxiv.org/abs/1008.1024"&gt;Supernova Photometric Classification Challenge (SNPCC)&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;All data were feature extracted using the &lt;a href="https://arxiv.org/pdf/0904.1066.pdf"&gt;Bazin parametric&amp;nbsp;function&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;This version of the data set&amp;nbsp;was used to obtain the results reported in&amp;nbsp;&lt;a href="https://arxiv.org/pdf/2010.05941.pdf"&gt;Kennamer et al., 2020&amp;nbsp;- &lt;em&gt;Active learning with RESSPECT: resource allocation for extragalactic astronomical transients&lt;/em&gt;.&lt;/a&gt;&amp;nbsp;Published during the&amp;nbsp;&lt;a href="http://www.ieeessci2020.org/symposiums/ciastro.html"&gt;2020 IEEE Symposium Series on Computational Intelligence&lt;/a&gt;. The code used to obtain the results shown in the paper is available in the &lt;a href="https://github.com/COINtoolbox/RESSPECT"&gt;COINtoolbox&lt;/a&gt; (github).&amp;nbsp;&lt;br&gt;
&lt;br&gt;
This work was developed under the &lt;a href="https://cosmostatistics-initiative.org/resspect/"&gt;RESSPECT project&lt;/a&gt;, an inter-collaboration agreement established between the &lt;a href="https://lsstdesc.org/"&gt;LSST Dark Energy Science Collaboration (LSST-DESC)&lt;/a&gt; and the &lt;a href="https://cosmostatistics-initiative.org/"&gt;Cosmostatistics Initiative (COIN)&lt;/a&gt; in order to develop an active learning pipeline to advise the allocation of telescope resources.&lt;/p&gt;</description>
    <description descriptionType="Other">The Cosmostatistics Initiative was supported by the French government via a  CNRS-MOMENTUM grant from 2018-2020 under the project: Active Learning for Large Scale Sky Surveys.</description>
  </descriptions>
</resource>
75
21
views
downloads
All versions This version
Views 7575
Downloads 2121
Data volume 4.6 GB4.6 GB
Unique views 6969
Unique downloads 1717

Share

Cite as