Dataset Open Access
da Silva de Souza, Rafael;
Kennamer, Noble;
de Oliveira Ishida, Emille Eugenia
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.4399109</identifier> <creators> <creator> <creatorName>da Silva de Souza, Rafael</creatorName> <givenName>Rafael</givenName> <familyName>da Silva de Souza</familyName> <affiliation>SHAO</affiliation> </creator> <creator> <creatorName>Kennamer, Noble</creatorName> <givenName>Noble</givenName> <familyName>Kennamer</familyName> <affiliation>UCI</affiliation> </creator> <creator> <creatorName>de Oliveira Ishida, Emille Eugenia</creatorName> <givenName>Emille Eugenia</givenName> <familyName>de Oliveira Ishida</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0406-076X</nameIdentifier> <affiliation>CNRS</affiliation> </creator> </creators> <titles> <title>Active Learning with RESSPECT: Data Set</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>supernova</subject> <subject>active learning</subject> <subject>classification</subject> </subjects> <dates> <date dateType="Issued">2020-10-26</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4399109</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4399108</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/astronomy-general</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ieee</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This folder contains pre-processed simulated data first made available by Rick Kessler for the&nbsp;<br> <a href="https://arxiv.org/abs/1008.1024">Supernova Photometric Classification Challenge (SNPCC)</a>.</p> <p>All data were feature extracted using the <a href="https://arxiv.org/pdf/0904.1066.pdf">Bazin parametric&nbsp;function</a>.</p> <p>This version of the data set&nbsp;was used to obtain the results reported in&nbsp;<a href="https://arxiv.org/pdf/2010.05941.pdf">Kennamer et al., 2020&nbsp;- <em>Active learning with RESSPECT: resource allocation for extragalactic astronomical transients</em>.</a>&nbsp;Published during the&nbsp;<a href="http://www.ieeessci2020.org/symposiums/ciastro.html">2020 IEEE Symposium Series on Computational Intelligence</a>. The code used to obtain the results shown in the paper is available in the <a href="https://github.com/COINtoolbox/RESSPECT">COINtoolbox</a> (github).&nbsp;<br> <br> This work was developed under the <a href="https://cosmostatistics-initiative.org/resspect/">RESSPECT project</a>, an inter-collaboration agreement established between the <a href="https://lsstdesc.org/">LSST Dark Energy Science Collaboration (LSST-DESC)</a> and the <a href="https://cosmostatistics-initiative.org/">Cosmostatistics Initiative (COIN)</a> in order to develop an active learning pipeline to advise the allocation of telescope resources.</p></description> <description descriptionType="Other">The Cosmostatistics Initiative was supported by the French government via a CNRS-MOMENTUM grant from 2018-2020 under the project: Active Learning for Large Scale Sky Surveys.</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 75 | 75 |
Downloads | 21 | 21 |
Data volume | 4.6 GB | 4.6 GB |
Unique views | 69 | 69 |
Unique downloads | 17 | 17 |