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Lattice Network Coding over Euclidean Domains
M. A. Vázquez-Castro, Frédérique Oggier

Abstract—We propose a novel approach to design and analyse
lattice-based network coding. The underlying alphabets are
carved from (quadratic imaginary) Euclidean domains with a
known Euclidean division algorithm, due to their inherent algo-
rithmical ability to capture analog network coding computations.
These alphabets are used to embed linear p-ary codes of length
n, p a prime, into n-dimensional Euclidean ambient spaces, via a
variation of the so-called Construction A of lattices from linear
codes. A study case over one such Euclidean domain is presented
and the nominal coding gain of lattices obtained from p-ary
Hamming codes is computed for any prime p such that p ≡ 1
(mod 4).

Index Terms—Euclidean Domains, Network Coding, Lattices.

I. INTRODUCTION

Lattice codes are the Euclidean space counterparts of linear
codes over finite fields. They have been extensively studied
in communications and networking, for transmission over
continuous channels.
Lattice codes provide a classical information theoretic way to
obtain achievable rates for point-to-point Gaussian channels
(e.g. [1], [2], and [3]), and it is known that rates up to
(1/2) log(1 + SNR) can be achieved using nested lattices
together with the minimum-mean square error (MMSE) esti-
mator. From a coding point of view, codes for Gaussian chan-
nels are sphere packings, and lattices yielding dense sphere
packings have been identified (see [4]) in small dimensions
(4, 5, 6, 7, and 8). In particular, linear codes can be used
as a mean to get good lattice sphere packings, via the so-
called Construction A [4]: for example, in dimension 8 the
best known packing is the Gosset lattice E8, obtained by
Construction A using a length 8 Hamming code, and in
dimension 24, the optimal packing is the Leech lattice, which
can also be obtained from a linear code.
Lattice codes have started to play a role in networking with
the advent of physical-layer network coding (PNC). PNC was
first introduced in [5] and early subsequent research focused
on three different aspects: PNC as a modulation-demodulation
technique (e.g. [6]), joint design of PNC and channel coding,
and its use in wireless networks (primarily for simple relay
networks e.g. [7] or [8]). Later works merged these aspects
as in the information theoretical work [9], where the relaying
mechanism compute and forward (CF) is introduced by which
the receiver noise is completely removed before forwarding
while analog computing is retrieved by appropriate mappings.
Such a mechanism is translated into coding strategies in
[10], where an algebraic approach relying on nested lattices
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over Principal Ideal Domains (PIDs) is proposed, together
with instances of coding and decoding schemes. Practical
approaches are available in [11] where suboptimal lattice
decoding schemes are analyzed and in [12] where a practical
integer forcing precoder (IFP) is presented.
The objective of this paper is to obtain lattice codes in
the Euclidean space that enable to map the physical layer
analog computing to arithmetics in Euclidean spaces. Our
contributions can be summarized as follows:

· We propose quadratic imaginary Euclidean domains with
a known Euclidean division algorithm as privileged un-
derlying alphabets for lattice-based network coding.
· We explicit maps from lattices to finite fields and back,

relying on the Euclidean division algorithm.
· We compute the nominal coding gain of lattices obtained

from p-ary Hamming codes over the Euclidean domain
of Gaussian integers, for any prime p such that p ≡ 1
(mod 4).

This document is organized as follows. Section II provides the
necessary mathematical background on Euclidean domains,
together with two division algorithms (in Subsection II-A),
while the relevance of quadratic imaginary Euclidean domains
to physical layer network coding is justified in Subsection
II-B. The actual method for the construction of physical layer
alphabets over quadratic imaginary Euclidean domains, with
explicit maps allowing to go from the lattice to finite fields
and back are detailed in Section III. These alphabets are used
to embed linear p-ary of length n codes into n-dimensional
ambient Euclidean spaces, as explained in Section IV, where
the case of lattices built from p-ary Hamming codes is treated.

II. QUADRATIC IMAGINARY EUCLIDEAN DOMAINS

Consider the following five sets:

Z[ρ] = {a+ bρ, a, b ∈ Z},

with

ρ =
√
D, D ∈ {−1,−2} (1)

ρ = 1+
√
D

2 , D ∈ {−3,−7,−11}. (2)

They are integral domains, that is, by definition, commutative
rings with identity 1 6= 0 where xy = 0 implies x = 0 or
y = 0 for any two elements x, y.
These five integral domains have several things in common:
firstly, they have a Z-basis given by {1, ρ} (they are called
quadratic because the Z-basis contains two elements), and
they are imaginary (contained in C but not in R). Next, for
z ∈ Z[ρ], its conjugate z̄ is defined to be

z̄ = a+ bρ̄
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with

ρ̄ =

{
−
√
D, D ∈ {−1,−2}

1−
√
D

2 D ∈ {−3,−7,−11}

with which one may define a norm function N , such that

N (z) := zz =

{
a2 −Db2 ifD = −1,−2

a2 + ab+ 1−D
4 b2 ifD = −3,−7,−11.

.

Note that a2 −Db2 ∈ Z, but so does a2 + ab+ b2 1−D
4 since

−3,−7 and −11 are all congruent to 1 (mod 4). This norm
N happens to coincide with the Euclidean norm, that is

N(z) =

{
N(a+ b

√
D) = |a+ ib

√
D|2 (3a)

N(a+ b 1+
√
D

2 ) = |a+ b
2 + i b

√
D

2 |
2. (3b)

The cases of D = −1 and D = −3 are the famous Gaus-
sian integers and Eisenstein-Jacobi (EJ) integers respectively.
Gaussian integers form a square lattice while EJ integers form
a lattice with hexagonal symmetry.

Finally, the five of them are Euclidean domains, which ex-
plains the term quadratic imaginary Euclidean domains.

Definition 1: A Euclidean domain is an integral domain R
for which there exists a function d : R\{0} → Z≥0 with the
property that for any x, y ∈ R with y 6= 0, we can write

x = qy + r

with either r = 0 or d(r) < d(y).

The five integral domains above are furthermore said to be
norm-Euclidean because d = N , the Euclidean norm, in their
case. The concept of Euclidean domain generalizes that of
division in Z to some other rings.

A. Euclidean Division Algorithms

It is important for our application to physical network coding
to have an explicit division algorithm, which outputs r on
the input (x, y). Such an algorithm is known for these five
quadratic imaginary Euclidean domains, though it is worth
noting that there are integral domains known to be Euclidean,
with no explicit division algorithm [13].

Proposition 1: The integral domain Z[ρ], for ρ =
√
D, D ∈

{−1,−2} and ρ = 1+
√
D

2 , for D ∈ {−3,−7,−11}, are norm-
Euclidean domains.

We provide these well-known proofs, not only for the sake
of completeness, but also because they provide algorithms to
perform a norm-Euclidean division.

Proof: Note first that

N(r) < N(y) ⇐⇒ N(x− yq) < N(y)

⇐⇒ N(x−yqy ) < 1

⇐⇒ N(xy − q) < 1

for x, y, q in R, using the multiplicativity of the norm.

Case I: ρ =
√
D with D = −1,−2.

Using the above remark, it is enough to show that for every
α ∈ Q(ρ), there exists a β ∈ Z[ρ] such that N(α− β) < 1.

Take α = a1 + a2ρ ∈ Q(ρ) and β = b1 + b2ρ ∈ Z[ρ], where
b1 (resp. b2) is the integer nearest to a1 (resp. a2), that is

|b1 − a1| ≤
1

2
, |b2 − a2| ≤

1

2
.

We are left to compute

N(α− β) = N(a1 + a2ρ− b1 − b2ρ)

= (a1 − b1)2 −D(a2 − b2)2 ≤ 1−D
4

which is indeed strictly smaller than one when D ∈ {−1,−2}.
Case II: ρ = 1+

√
D

2 with D = −3,−7,−11.

It is again enough to show that for every α ∈ Q(
√
D), there

exists a β ∈ Z[ρ] such that N(α − β) < 1. Take α = a1 +

a2

√
D ∈ Q(

√
D), and β = b1 + b2

1+
√
D

2 ∈ Z[ρ], where b2 is
an integer such that b2/2 is as close as possible to a2, that is

| b22 − a2| ≤
1

4
,

and b1 is an integer such that b2/2 + b1 is as close as possible
to a1, that is

| b2+2b1
2 − a1| ≤

1

2
.

We are left to compute

N(α− β) = N(a1 + a2

√
D − b1 − b2 1+

√
D

2 )

= (a1 − b1 − b2
2 )2 −D(a2 − b2

2 )2 ≤ 1

4
− D

16

which is indeed strictly smaller than one when D ∈
{−3,−7,−11}.
Example 1: To divide 3 + i by 2 + i in Z[i], compute

α =
3 + i

2 + i
=

7

5
+ i
−1

5

thus q = 1 and

3 + i = (2 + i) + 1, N(1) = 1 < N(2 + i) = 5.

B. Relevance to Physical Layer Network Coding

The connection between the above Euclidean division and
physical layer network coding is done via congruence classes.
Let x, y be two elements in R a Euclidean domain. By
definition

r ≡ x (mod y) ⇐⇒ x = yq + r

for r, q in R, and we say that x is congruent to r modulo y.
The congruence relation induces a partition of R into residue
classes modulo y. For x ∈ R, we denote its residue class as

[x]y = {r ∈ R, r ≡ x (mod y)} . (4)

Example 2: Let us continue Example 1, with y = 2 + i. Then

[3 + i]2+i = {r ∈ Z[i], r ≡ 3 + i (mod 2 + i)} = [1]2+i.

Also [0]2+i = [2 + i]2+i, and a partition of Z[i] is given by

[0]2+i, [1]2+i, [i]2+i [1 + i]2+i, [2]2+i,

where 0, 1, i, 1 + i, 2 are remainders of the norm-Euclidean
division, since their norm is smaller than 5.
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The set of congruence classes in R is a ring, called quotient
ring, and often denoted by R/(y), where (y) represents the
set of multiples of y in R. For the five cases of interest here,
it is known [13] that R/(y) has a field structure whenever y
is prime, and its cardinality is the Euclidean norm N(y) [13].
This is illustrated in the above example.
The quotient ring R/(y) inherits some of the structure of
R. Hence, the selection of R to construct the physical layer
alphabet depends on the structure that is required for network
coding computations.
There are several (infinitely many in fact) elements of R
that are mapped to one residue class, however, the Euclidean
division gives a natural candidate, its remainder. It has the
advantage of being of small norm, here in fact, of small
Euclidean norm, which is valuable in terms of constellation
shaping, as will be elaborated and illustrated in the next
section.
This justifies why quadratic imaginary Euclidean domains
form a natural algebraic framework for the construction of
physical layer alphabets. First, alphabets coming from imagi-
nary quadratic Euclidean domains are naturally represented in
the complex plane. Second, the existence of a known explicit
division algorithm makes the construction of physical layer
alphabets and physical network coding computations algorith-
mically feasible: we map "nature" computation to component-
wise modular arithmetics (mod operation), which is also used
at transmitter, intermediate and receiver nodes.
Note that the five cases considered are the only imaginary
quadratic fields known to be Euclidean domains (see [13]).
They are particular cases of those considered in [10], where a
theoretical physical layer networking piece of work was devel-
oped solely based on structural (not algorithmic) properties.

III. ALPHABET DESIGN FOR PHYSICAL LAYER NETWORK
CODING

Let Z [ρ] be the imaginary quadratic norm-Euclidean domains
considered above. Let p ∈ Z and π a prime number in Z [ρ] .
Then it is known [13] that p = ππ̄ in Z [ρ], when

p ≡


1 (mod 4) if D = −1
1, 3 (mod 8) if D = −2
1 (mod 6) if D = −3
1, 2, 4 (mod 7) if D = −7
1, 3, 4, 5, 9 (mod 11) if D = −11.

The set of congruence classes Z[ρ]/(π) for these primes π is
a field and its cardinality is N(π) = p (since N(p) = p2), as
discussed above. Thus R/(π) is isomorphic to the finite field
Fp = {0, 1, . . . , p− 1} with p elements.
Example 3: In Z[i], 5 = (2 + i)(2 − i). Take π = 2 + i. We
computed a set of congruence classes in Example 2. Notice
that i = (2 + i)(−1 + i) + 3, i+ 1 = (2 + i)(−1 + i) + 4 thus
[i]π = [3]π , [1 + i]π = [4]π , so that

[0]π, [1]π, [3]π, [4]π, [2]π,

is the same set of congruence classes with different represen-
tatives, which illustrates that it is isomorphic to F5.

We next proceed with the construction of alphabets within the
framework established so far, distinguishing our algorithmic
construction from the structural constructions known so far
[10].
Definition 2: Given one of the five quadratic imaginary Eu-
clidean domain Z[ρ], and a prime p ∈ Z such that p = ππ̄, a
physical layer alphabet for network coding is chosen to be

Aπ = {x ∈ Z[ρ], N(x) < N(π) = p}

where we recall that this algebraic norm corresponds to the
Euclidean one.
We have |Aπ| = N (π) = ππ = p.
The norm Euclidean division provides a way to map an
arbitrary element x ∈ Z[ρ] to Aπ . Recall that when dividing
x ∈ Z[ρ] by π, we get

x =

{
π[xπ̄p ] + r, D ∈ {−1,−2}
π[[xπ̄p ]] + r, D ∈ {−3,−7,−11},

where [a + ib] := [a] + i[b] and [a] for a in Q
(√

D
)

means
the closest integer from a. Also [[a + ib]] := [[a]] + i[[b]] is
a notation that we introduce: [[b]] for b in Q

(√
D
)

means
the closest half-integer from b, after which [[a]] is obtained
by finding the integer a′ such that [[b]] + a′ is the closest to
a ∈ Q

(√
D
)

. Hence, [xπ̄p ] and [[xπ̄p ]] are in Z[ρ] by definition.

Define the natural map ϕπ : Z[ρ]→ Aπ , such that

ϕπ(x) =

{
x− π[xπ̄p ], D ∈ {−1,−2}
x− π[[xπ̄p ]], D ∈ {−3,−7,−11}.

A. From Complex Alphabets to Finite Fields and Back

Let Z[ρ] be one of the 5 norm-Euclidean domains defined in
(1) and (2), and let p be a prime such that p = ππ̄ in Z[ρ].
Recall from the previous subsection that Z[ρ]/(π) ' Fp.
Define the map µπ : Fp → Aπ , such that

α
µπ7−−→ r =

{
α− π[απ̄p ], D ∈ {−1,−2}
α− π[[απ̄p ]], D ∈ {−3,−7,−11}. (5)

The map µ−1
π : Aπ → Fp given by

µ−1
π (r) = r̄uπ + rvπ̄ (mod p),

is the inverse of µπ , for u, v such that 1 = uπ+vπ̄. They exist
because π and π̄ are coprime, and there is a Euclidean division
(thus a Bezout identity). Indeed, write α ∈ Fp as α = r+ aπ
for a ∈ Z[ρ], and notice that ᾱ = r̄ + āπ̄ must be equal to α
(since α ∈ {0, . . . , p− 1}). Then

r̄uπ + rvπ̄ (mod p)

= (ᾱ− āπ̄)uπ + (α− aπ)vπ̄ (mod p)

= ᾱuπ + αvπ̄ (mod p)

= α (mod p).

The maps are summarized below:

x = π|xπ̄p |+ r ∈ Z[ρ]
ϕπ−−→ ϕπ(x) = x− π|xπ̄p |

= r ∈ Aπ
µ−1
π−−→ µ−1

π (r) = r̄uπ + rvπ̄

µπ(α) = α− π|απ̄p |
µπ←−− = α ∈ Fp
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where |.| stands for [.] when D = −1,−2 and for [[.]] when
D = −3,−7,−11 as previously defined. The map µπ and its
inverse have been studied in the particular cases of D = −1
and D = −3 in [14], [15], [16].
Figure 1 shows the obtained alphabet and labelling in the 2-
dimensional Euclidean space for D = −1 and prime p = 73.

Figure 1. Example of alphabets obtained from Z[i] for p = 73.

B. Packing Gains

The physical layer alphabet Aπ is carved from Z[ρ], which
forms a 2-dimensional lattice. The Voronoi region of this
lattice Z[ρ] corresponds to the decision regions around each of
the constellation symbols. The volume of the Voronoi region
is the volume of the lattice.
Definition 3: The volume of a lattice is the volume of its
fundamental parallelotope, given by |det(G)|, where G is a
matrix containing the basis vectors of the lattice.
The volume (or area for a 2-dimensional lattice) for the five
values of D considered are shown in the second row of Table
I, and are easily computed from the basis given in the first
row of Table I. The third row shows the packing gain, that
is the ratio between the area of a classic QAM constellation,
and that of the lattice Z[ρ]. It is observed that the packing for
D = −3 is the best (10 log10(1.155) = 0.625 dB) as expected,
since this corresponds to the hexagonal lattice, a lattice known
to be dense.

D −1 −2 −3 −7 −11
a basis of the (1, 0), (1, 0), (1, 0), (1, 0), (1, 0),

lattice Z[ρ] (0, 1) (0,
√
2) ( 1

2
,
√
3

2
) ( 1

2
,
√
7

2
) ( 1

2
,
√
11
2

)

vol(Z[ρ]) 1
√
2

√
3/2

√
7/2

√
11/2

1/vol(Z[ρ]) 1 0.707 1.155 0.756 0.603

Table I
PACKING GAIN OVER QAM.

Note that the shape and size of the constellation is determined
by the selected prime.

IV. LATTICES OVER EUCLIDEAN DOMAINS

We next use the Euclidean alphabets obtained above to embed
linear p-ary codes into the n-dimensional Euclidean space.

A. Euclidean Lattices for Networking

Let C [k, n, dH ]p be a linear block code of length n, dimension
k over Fp, minimum Hamming distance dH and generator ma-
trix

[
Ik B

]
. The Euclidean image of the linear block code

C [k, n, dH ]p in Anπ is obtained by applying µπ componentwise
on every codeword of C [k, n, dH ]p. By abuse of notation, we
will next use µπ and similarly ϕ−1

π componentwise.

Furthermore, we obtain a version of Construction A [4]:.

Proposition 2: The preimage ϕ−1
π (µπ(C [k, n, dH ]p)) forms a

lattice over Z[ρ], that is all linear combinations with coeffi-
cients in Z[ρ] of some set of linearly independent vectors in
a Euclidean space. This lattice has a generator matrix

G =

[
Ik B
0 πIn−k

]
(6)

containing basis vectors.

Proof: The proof is similar to known Constructions A
(e.g. [17]). That ϕ−1

π (µπ(C [k, n, dH ]p)) forms a lattice follows
since C [k, n, dH ]p is a group, and ϕπ componentwise is a
group homomorphism. Indeed if x = π[xπ̄p ] + r and y =

π[yπ̄p ]+s, then x+y = π([xπ̄p ]+[yπ̄p ])+r+s and ϕπ(x+y) =
x+y (mod π) = r+ s which is equal to ϕπ(x) +ϕπ(y) = x
(mod π) + y (mod π) = r + s, which is enough. For the
claim on a generator matrix, compute a lattice point x using G,
show that µπ−1ϕπ(x) is in C [k, n, dH ]p and conclude using
a volume argument (see [17] for similar computations).

We are next interested in the properties of this lattice, in
particular its Hermite parameter.

Definition 4: The Hermite parameter or nominal coding gain
of a lattice Λ

γc(Λ) =
λ(Λ)

vol(Λ)1/n

measures the normalized density of the lattice, where

λ(Λ) = min {‖v‖ , v ∈ Λ\ {0}}

is the minimum distance of the lattice Λ, given by the length
of the shortest nonzero lattice vector.

In the case of a lattice obtained via Construction A described
above, its Hermite parameter depends not only on the encoding
linear block code C [k, n, dH ]p but also on the specific Eu-
clidean domain Z[ρ] and selected prime number p. An example
is provided in the next subsection.

Note that the shaping region is naturally given by the canonical
projection ϕπ that defines the signal constellation.

B. The Hamming Euclidean Lattice

We consider the lattice obtained when C [k, n, dH ]p is a p-ary
Hamming code, defined as follows.
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Definition 5: Given an integer r ≥ 2, the p-ary Hamming
code Ham(r, p) over the finite field Fp with n = pr−1

p−1 is
an [n, n− r, 3] linear code defined by a parity check matrix
whose columns form a list of nonzero vectors satisfying the
condition that no two vectors are scalar mutliples of each other.
Example 4: We use the Hamming code Ham(2, 5) with gen-
erator matrix 

1 0 0 0 4 4
0 1 0 0 4 3
0 0 1 0 4 2
0 0 0 1 4 1


over the Gaussian integers with p = 5 (see Example 3). We
show in Figure 2 the 625×625 matrix of crossed distances be-
tween the constellation symbols µ2+i (C [4, 6, 3]5) ∈ A6

2+i ⊂
Z [i]

6 where some symmetry properties can be appreciated.

Figure 2. Visualization of µ2+i

(
C [4, 6, 3]5

)
in terms of crossed distances

between constellation symbols.

We now compute the nominal coding gain of the lattice
obtained from the p-ary Hamming code.
Theorem 1: The nominal coding gain of a p-ary Hamming
lattice Λ over a quadratic Euclidean domain Z [ρ] with ρ =√
−1, for a Hamming code Ham(r, p) for any p ≡ 1 (mod 4)

equals

γc(Λ) =
3

pr/n
.

Proof: From (6), the volume of this lattice Λ is vol(Λ) =
pr, r = n− k, thus

γc(Λ) =
λ(Λ)

pr/n
,

and the minimum Euclidean distance of the constellation is 3.
Hence, the result follows.
Figure 3 plots this nominal coding gain, showing the well
known fact that p-ary Hamming codes are not asymptotically
optimal, i.e, the minimum Hamming distance does not grow
linearly with the block length. However, they can still yield
sufficiently good performance for low signal-to-noise ratios.
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