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Abstract—Somewhat Homomorphic Encryption (SHE) schemes allow to carry out operations on data in the cipher domain. In a cloud
computing scenario, personal information can be processed secretly, inferring a high level of confidentiality.

For many years, practical parameters of SHE schemes were overestimated, leading to only consider the FFT algorithm to accelerate
SHE in hardware. Nevertheless, recent work demonstrates that parameters can be lowered without compromising the security [1].
Following this trend, this work investigates the benefits of using Karatsuba algorithm instead of FFT for the Fan-Vercauteren (FV)
Homomorphic Encryption scheme. The proposed accelerator relies on an hardware/software co-design approach, and is designed to
perform fast arithmetic operations on degree 2560 polynomials with 135 bits coefficients, allowing to compute small algorithms
homomorphically. Compared to a functionally equivalent design using FFT, our accelerator performs an homomorphic multiplication in
11.9ms instead of 15.46 ms, and halves the size of logic utilization and registers on the FPGA.

Index Terms—Homomorphic Encryption, SHE, FV, Hardware/software co-design, FPGA, Karatsuba, implementation.

1 INTRODUCTION

Homomorphic Encryption schemes are considered as promis-
ing in modern cryptography, because they directly allow
to carry out operations on data in the cipher domain.
Figure 1 illustrates a basic client/server transaction in an
homomorphic scenario. The most flexible ones, called Fully
Homomorphic Encryption (FHE) schemes, are able to process
unlimited additions and multiplications secretly, and so
make possible to address a wide range of algorithms. To
reduce computation times, many applications only consider
Somewhat Homomorphic Encryption (SHE) schemes, which
bound the number of operations to reduce the complexity.
While classical cryptographic schemes have sometimes ho-
momorphic properties, for addition [2] or multiplication [3]
operations, it has been necessary to wait until 2009 and
C. Gentry [4] breakthrough to discover a way to perform
both types of operations with limited restrictions. He pro-
vided an SHE scheme based on hard lattice problems, and
then turned it into an FHE scheme by using the bootstrap-
ping technique. But, due to the bootstrapping cost, FHE
schemes are considered not so practical compared to SHE
schemes.

To reduce the complexity of Homomorphic Encryption,
FHE/SHE schemes have been successfully adapted to re-
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Fig. 1: Presentation of client/server transactions in an ho-
momorphic encryption scenario.

lated problems. The most popular ones are based on the
Approximate-Great Common Divisor (a-GCD) problem [5][6],
NTRU problem [7][8] and Ring-Learning With Error (R-LWE)
problem [9][10][11][12][13][14]. In the following, we only
consider SHE schemes with polynomial arithmetic, that is
to say NTRU-based and R-LWE-based SHE schemes. Until
recently, the most promising SHE scheme with polynomial
arithmetic was YASHE’ [7], closely followed by FV [11].
However, the recent so called subfield attack [15] consid-
erably reduced YASHE' security, in particular the Decision
Small Polynomial Ratio (DSPR) assumption [16] on which the
security of the scheme relies on. Thus, FV regains interest
because it does not suffer of the weakness of DSPR. Nev-
ertheless, its ciphertext are double size when compared to
those of YASHE’, because the ciphertext is composed by 2
polynomials instead of 1 for YASHE'. Due to its practica-
bility, previous hardware implementations of SHE schemes
with polynomial arithmetic targeted YASHE’ [17][18], in-
ferring a lack of hardware implementations of FV. To our
knowledge, only software implementations of FV have been
proposed. In [19], an implementation of FV using the multi-
purpose FLINT library [20] performs an homomorphic mul-
tiplication of FV in 148ms for degree 4096 polynomials
with 125 bits coefficients. Then, FV has been implemented to



NFLIib [21], an efficient C++ implementation of ideal lattice
cryptography. Authors can perform an homomorphic mul-
tiplication in 17.2 ms for the same parameters. Finally, work
in [22] proposes to avoid the multi-precision arithmetic re-
quired by FV by using a Residue Number Systems (RNS) vari-
ant of FV. Authors report an homomorphic multiplication of
FV for degree 4096 polynomials with 168 bits coefficients in
7.68 ms. However, this implementation has some limitations
compared to the proposed accelerator that will be discussed
in Section 5.2.

Due to the proximity between YASHE’ and FV, all previous
hardware implementations of YASHE' are still relevant but
need to be adapted. Thus, timings for hardware accelera-
tion of the homomorphic multiplication of YASHE’ are not
directly comparable to timings provided earlier on software
implementations of FV. Hardware accelerators for YASHE’
implement fast arithmetic of degree n € [4096, 32768] poly-
nomials with coefficients of size log, ¢ € [125,1228], de-
pending on the required security and the complexity of the
algorithm to be homomorphically performed. To our knowl-
edge, all implementations are based on FFT algorithm [23].
In [17], a classical but optimized FFT implementation is
presented for two parameter sets. The proposed accelerator
performs an homomorphic multiplication in 6.5 ms for n
= 4096 and log, ¢ = 125 bits, and 48 ms for parameters
n = 16384 and log, g = 512 bits. Authors of [17] implemented
512 x 512 bits multipliers with a small modular reduction
by selecting a Solinas prime modulus [24]. Due to the size
of polynomials and coefficients, a cache is implemented to
connect the external memory used to store intermediate
coefficients. They also reported a bottleneck due to the di-
vide and rounding required by YASHE’, especially for large
integers. That is why in [18] a pre-computation is performed
on polynomials to reduce the size of coefficients. They split
a ciphertext into a few polynomials by using the Chinese
Reminder Theorem (CRT) on each coefficient. The overall
architecture is based on an array of crypto-units, which
gives some flexibility to process several residue polynomials
in parallel. For parameters n = 32768 and log, ¢ = 1228 bits,
their accelerator performs an homomorphic multiplication
in 121 ms including 25 ms spent for CRT.

Due to the security issue on YASHE’, this paper proposes
to accelerate the FV scheme in hardware using Karatsuba
algorithm [25]. To our knowledge, this is the first use of
Karatsuba for R-LWE based SHE schemes, and the first
hardware accelerator dedicated to FV scheme. Compared
to previous work using Karatsuba for polynomial multipli-
cation, for example elliptic curve and paring-based cryp-
tography, this work investigates polynomials with much
larger degrees and with arbitrary size coefficients. Our ac-
celerator implements fast polynomial arithmetic for degree
2560 polynomials with coefficients of size 125bits, allowing
homomorphic circuits of depth up to 4. This choice is
motivated by the fact that for lower depths, alternatives
exist and in particular the BGN-Based scheme in [26]. We
demonstrate that for Homomorphic Encryption with low
multiplicative depth circuits, Karatsuba can be a good alter-
native to FFT. We also evaluate the scalability and the limits
of our approach compared to the FFT. In order to fairly
compare our approach with previous works, we propose
an hardware implementation on DE5-net platform from
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Terasic embedding an Altera Stratix V FPGA. However, our
hardware accelerator does not require such a large FPGA
and can possibly be implemented on smaller ones.
The main contributions of this work are as follows:

e A complete study of Karatsuba algorithm adaptation
to SHE.

e An end to end solution for accelerating FV with a
hardware/software co-design using Karatsuba algo-
rithm.

e A latency-efficient software implementation of
Karatsuba algorithm.

o A lightweight Karatsuba hardware accelerator.

This paper is organized as follows. Section II recaps some
key information on SHE cryptosystems based on a R-LWE
problem. Section III draws some optimizations of FV with
Karatsuba algorithm. Section IV details the proposed archi-
tecture and provides both software and hardware imple-
mentation details. Section V provides several discussions on
our Karatsuba approach, in particular the scalability of the
design. Section VI draws some conclusions.

2 THEORETICAL BACKGROUND
2.1 Notation

In the following, a polynomial is represented with an
uppercase and its coefficients with a lowercase. For
polynomial A, a; represents its i'" coefficient. A vector
of polynomials is noted in bold. For vector A, A[i] is the
ith polynomial of the vector. For set R and polynomial
A, A + Ug represents a uniformly sampled polynomial
in R and A < X, a polynomial sampled in a discrete
Gaussian distribution with standard deviation o. For
coefficient a; of polynomial A, a; ;. i) corresponds to the
binary string extraction of a; between bits j and k. This
notation is extended to polynomial A where A(; ) is
the sub-polynomial where the binary string extraction is
applied to each coefficient. Other standard operators are
represented as follows.

A modular reduction by an integer ¢ is noted [-],. For
integer a, |a], [a] and |a] operators are respectively
the floor, ceil and nearest rounding operations. This is
extended to polynomials by applying the operation on
each coefficient. For vectors A and B, (A,B) represents

S AJi|Bi].

2.2 Karatsuba Algorithm

Karatsuba algorithm is an improvement of the classical
polynomial multiplication algorithm which reduces the
number of sub-products.

For simplicity, we only address polynomials with an even
number of coefficients, but Karatsuba can be easily adapted
to odd ones by manipulating unbalanced sub-polynomial
multiplications, or by using zero padding. Input polyno-
mials A and B of degree n — 1 are split into two parts
of equivalent size, that is to say % coefficients. Let Ay
and Ay, be two polynomials composed respectively by the
coefficients of highest degree of A and lowest degree of
A. By the same way, one constructs By and By. Input



n/2 and

polynomials are now expressed as A = Ay, + Apz
B = B, + Bya"/?.
When multiplying A and B by the standard approach, the

resulting decomposition is given by:
Ax B= (AL + AH;U"/2)(BL + BHx"/z)
= A; By, + (ALBH + AHBL)QL‘n/2 + AgByx™

Karatsuba optimization is based on noticing that the mid-
dle factor (AL By + ApBy) can be cleverly computed by
(AL + Ap)(Br+ By)— ArLBr — AgBpy. As one can quote,
A By, and Ay By are already computed and so it does not
require additional multiplications.
At the end, Karatsuba requires 3 sub-polynomial multiplica-
tions instead of 4, at a cost of two pre-computations, namely
(Ag + Apr) and (By + Bp), and two post-computations
for the reconstruction of the middle factor. However, these
pre- and post-computations are made of additions and
subtractions only. To further reduce the complexity of the
polynomial multiplication, one can apply Karatsuba algo-
rithm on each sub-polynomials multiplication, that is to say
ApLBr, AgBy and (Ag + AL)(Bg + Br). The number of
times Karatsuba algorithm has been applied recursively is
called number of Karatsuba recursions.
After several Karatsuba recursions, one has to perform
many low degree polynomials multiplications instead of a
large polynomial multiplication. This recursiveness allows
sharing computations between the software and the hard-
ware. For example, several recursions can be performed in
software and the remaining ones in hardware.

Because each Karatsuba recursion halves the size of sub-
polynomials, Karatsuba can achieve polynomial multipli-
cation of degree 2"(p + 1) — 1, where r is the number of
Karatsuba recursions and p the degree of the smallest sub-
polynomial.

2.3 R-LWE Problem

A R-LWE instance is constructed in the ring
Z4X]/{f(X)) = Ry where Z, = Z/qZ and f(X) is
an irreducible degree n polynomial in Z,[X]. Resolving
a R-LWE problem consists on recovering a polynomial S
from the pair (AS + E, A), where S < Xpey , A < Ug,
and E < Xerr. If Xiey and Xerr are cleverly chosen, the
R-LWE pair is mostly indistinguishable from the uniform
distribution and its resolution is considered as hard as
worst-case lattice problems. Usually, S is chosen from a
binary set, and X, with a standard deviation o, > 2/n.

2.4 Cryptosystem FV

FV is a transposition of the scale-invariant Brakerski
scheme [10] into the R-LWE problem. Let A be the
security parameter that determines (g,n) € Z2, the
parameters of a R-LWE instance. Let t € Z with 1 < ¢ < ¢
be an integer which provides the upper bound of a
message size, and w € Z, that splits an element of Z,
into l,,, = [log,q/log, w] elements. Figure 2 presents
elementary primitives of FV in a flowchart style, and
introduces the notations of all operations used below.

In FV, the public key is a pair (AS + E,A) of a R-LWE

FV.GenKeys
FV.GenRelinKeys

Generate 4_3
keys !

Or——

Encrypt 4—3 FV.Encrypt 3

addition multiplication

3 } Homomorphic Homomorphic | 3
: Fv.Add :_> addition multiplication : FV.Mult :
i |
——| Decrypt 1 FV.Decrypt !

Fig. 2: Flowchart of a basic operation in FV.

operation in FV
q

Fig. 3: Bits to be extracted for the H%( . )H

when ¢ = 2 and ¢ a power of two.

instance, and the secret key the polynomial S. This setup
inevitably introduces an error term F called noise. During
computations, the noise will grow until possibly making
the decryption procedure faulty. An homomorphic addition
is considered not critical because the noise is just added. For
the homomorphic multiplication, the noise is multiplied,
and infers a limitation on the number of operations
achievable. Because the noise is mostly lead by the number
of multiplications performed on a ciphertext, namely the
multiplicative depth L, the impact of the homomorphic
addition is usually neglected. In practice, this impact can
possibly reduce the multiplicative depth if significant
homomorphic additions are performed. Table 1 provides
some parameters for FV extracted from [19] satisfying a
security level A of 80 bits. In particular, we used Equation
(2) to calculate the upper bound of the modulus for a
given degree and security level, and equations in Section
3.5 to extract the multiplicative depth for a given set of
parameters. We also set w to 27 bits to efficiently use
hardware resources of the Stratix V. Additional information
are given in Table 1, that will be discussed in Section 2.5.
While an homomorphic addition is just a polynomial
addition of ciphertexts, an homomorphic multiplication
requires an extra step after the polynomial multiplication
called relinearization.

To understand why a relinearization step is required, it



TABLE 1: Parameters for FV extracted from [19] satisfying a
security level X of 80 bits, with w set to 27 bits. Required n
for both NWC and classical FFT is also provided.

L logz " n for NWC Clas:icf:l)lrFFT
1 48 904 1024 2048
2 73 1428 2048 4096
3 98 1951 2048 4096
4 125 2515 4096 8192
5 152 3077 4096 8192
6 179 3636 4096 8192
7 207 4215 8192 16384
8 235 4792 8192 16384
9 264 5388 8192 16384
10 293 5982 8192 16384

is important to notice that a ciphertext is proportional
to the secret key S, plus an error. When multiplying
two ciphertexts, the resulting polynomial is of the form
of A+ BS + CS? proportional to S?. To continue
homomorphic operations, the ciphertext needs to recover
its initial form, and thus the knowledge of S? is required
on the server-side, which is not acceptable for security
purposes. Instead of manipulating S? directly, a sub R-LWE
instance is created in order to hide S2.

However, creating a sub-instance of R-LWE introduces an
error term, which will penalize the multiplicative depth.
To address this issue, several optimizations are performed
during the relinearization step based on two functions,
FV.PowersOf,, 4 and FV.WordDecomp,,, .

* « FV.WordD A):
FV.PowersOf,, ,(A): 01; ecomp,, ,(4)
A€ Rl 7 A€ Ry

- for i in 0 to Ly, — 1
foriin0toly,q—1 q
; lp =1 X logyw
A[Z} = . 2
i Iy = (i4+1) xlogy w—
[Aw ]q 11 (i+1) 2
end for Ali] = Agy 1
return A end for
return A

( FV.PowersOf,, 4(A),FV.WordDecomp,, .(B) ) = [A X B} :
q
By cleverly using FV.WordDecomp,, ,, one can perform
a scalar product with sub-polynomials with coefficients
of size logy, w instead of logy ¢, and in the context of FV,
multiply the error polynomial £ by a polynomial with
coefficients of size log, w instead of log, g.
All primitives of FV are as follows:

o FV.GenKeys()) :
S<—Xk:ey/A<_URq/E<_Xerr
Prey = (—AS + E, A)

Skey =S
return (Prey, Skey)

o FV.GenRelinKeys(Pyey, Skey)
A« U, By
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v = ([FVPowersOfmq(S,%ey) — (ASkey + E)} 7A)
return vy !

o FVEncrypt(m, Pyey) :
U < Xkey » (E1, E2) < Xerr
C = ([gm + Prey [0JU + El} ; [Pkeme + EQD
return C'
o FV.Decrypt(C, Skey) :
M = [C[0] + OWSiey |

m = | LM[o]]
return m

o FV.Add(C4,Cp):
C. = ([CA[O] + CB[O]} {CAM + CB[l]L)

return C'y !
e FVMult(Cy4,Cp,7) :
Co = [|LCal0] x cB[o]Hq
Gy = [|£(Cal0) x Col1] + Calt] x Col0]) |
Ca = [[£Calt) x Calt]],
Cyx = FVRelin(Cy, Cy, Ca, )
return C'y
« FVRelin(Cy, C, Ca, ) :
Cr = (Cry0,Cr,1)

Cro = [5’0 + < FV.WordDecomp,,, . (Cy), W[O]H

q

q

Cr1= [5’1 + < FV.WordDecomp,, , (5'2),7[1]>}

return C'g !
As one can see, all FV primitives are based on a few poly-
nomial additions and multiplications. This is why speeding
up polynomial multiplication is a good choice.

2.5 Choosing Parameters

In SHE, polynomial multiplication is typically implemented
with FFT algorithm. To be efficient, FFT must be generated
by a polynomial with irreducible factors of very small de-
gree. That is why 2" —1 and 2™ + 1 are often chosen because
they can be completely factorized with degree 1 factors.
Moreover, because 2™ + 1 is also a cyclotomic polynomial,
this method provides a solution where the polynomial
reduction is directly integrated into the computation. This
special FFT is called Negative Wrapped Convolution (NWC)
and requires a FFT of size n instead of 2n in the standard
case. However, this cyclotomic has an important issue:
When factoring ™ + 1 modulo 2, the resulting polynomial
is (x + 1)", which has a unique factor, namely (z + 1).
This is incompatible with the CRT on polynomials because
this latter requires factors with different polynomials. Thus,
the NWC, which is optimized for performance, cannot pack
several messages inside one ciphertext using CRT. This tech-
nique allows to perform the same homomorphic operation
on each message in parallel, and is called batching. For
further explanation on how to use CRT in the context of
Homomorphic Encryption, reader can refer to [27].



Because we address the problem with Karatsuba algorithm,
we have no particular restriction on input polynomials,
and we can choose a cyclotomic polynomial with batching
capabilities. However, for Karatsuba efficiency, polynomials
with a degree of 2'p are preferable, (i,p) € Z%. As it can
be noticed in Table 1, many multiplicative depths require
n to be relatively distant from a power of two. Critical
cases are when n is just above a power of two, like for a
multiplicative depth of 4 and 7, where FFT is inefficient.
To the best of our knowledge, no particular lack of security
has been demonstrated on the modulus of R-LWE instances,
thus we set it up to a power of two. Usually, g is prime due
to FFT.

In order to demonstrate the interest of the proposed ap-
proach based on Karatsuba, we choose a multiplicative
depth of 4, which corresponds to a parameter set of n =
2515 and log, ¢ = 125 bits.

To be as close as possible to the required n, we set the
smallest sub-polynomial to degree 4, with 9 recursions
of Karatsuba. That allows a polynomial multiplication of
degree at most 2'p — 1 = (4 +1)-2% — 1 = 2559. Thus,
the associated irreducible polynomial can be selected in the
range [2515,2560]. For n = 2560, one can find a cyclotomic
polynomial with 5 coefficients, and thus the polynomial
reduction can be fastly implemented. If one wants batching
capabilities, setting n to 2560 allows to pack at least 64 bits
in a ciphertext in a batching fashion.

3 PROPOSED OPTIMIZATIONS

Proposed optimizations focus on two FV primitives:
FV.Mult and FV.Relin. Even if accelerating the polynomial
multiplication impacts all FV primitives, an homomorphic
server will mainly perform homomorphic additions and
multiplications. Accelerating polynomial addition is also
possible, but is not relevant compared to the complexity of
a polynomial multiplication.

3.1 FV.Mult

Referring to FV.Mult, a rounding is required after
polynomial multiplication. This operation can be time
consuming for FFT implementations because the modulus
has to be prime. For Karatsuba, it can be set to a power of

two and thus the H( . )—‘ operation becomes very simple,

corresponding to a shift of log, ¢ — 2 bits. In parallel,
one can also execute the modular reduction to further
optimize the operation. Finally, computing H%() is
equivalent to extracting several bits, as shown in Figurqe 3.
The 4 polynomial multiplications in FV.Mult can also be
reduced to 3 ones with the help of Karatsuba algorithm.
In fact, computations of Cp, C; and C3 can be seen as a
computation of sub-factors of Karatsuba. By that way, the

polynomial C'; can be expressed as:
Cy = 3((0,4[0} + cAm) x (Cpl0] + 03[1])> —Co— Cy;

3.2 FV.Relin

FV.Relin requires [, ; degree n — 1 polynomial multipli-
cations, with sub-products of size log,w X log,q bits,
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and [, 4 — 1 degree n — 1 polynomial additions. Because
logy g % loge g = (lw,q X logyw) X log, g, the number of
elementary operations between the polynomial multiplica-
tion and the relinearization step are theoretically equivalent.
However, FFT algorithm cannot be optimized in that way
because coefficients are in a different space. Thus, sub-
polynomial multiplications must be performed separately.
Because Karatsuba algorithm does not have such a limi-
tation, it is possible to modify the architecture to perform
the relinearization step with limited modifications. The op-
timization relies on two properties:

1 Product/accumulation can be performed on coeffi-
cients instead of sub-polynomials.

2 Polynomial product/accumulation required by the
relinearization step can be performed on sub-
polynomials.

Assertion 1 can be easily demonstrated by writing the
definition of the standard polynomial multiplication
algorithm:

A = FV.WordDecomp,, ,(4)
for a given set of sub-polynomials C[i] = AJi] x B.

l

g
&

el
1

2q

k
> Alil;Be-;

1

(=)

i

.
Il

AN

Standard multiplication

Lu.q

(2 Al

i];Br—;

Integer multiplication
accumulation

As one can see, because each sum is independent, one can
swap product/accumulation at coefficient level.
For Assertion 2, it is required to expand the prod-
uct/accumulation with Karatsuba:
C = <A B>
ux q
= Z Ali]
lw,q

+ (ALl + Auli))(Br + Bn)

- AL[Z]BL — AH[Z]BH)xn/g}

L,
lw,q

+ 3" (ALli] + Agli])(BL + By)

i=1

lw,q

BL + z" ZAH

=1

lw,q lw,q

—a™?> AL[i|B, —a"?>  Ayli|B

=1 i=1



4 |IMPLEMENTATION

The complete implementation relies on a hard-
ware/software co-design approach. The software runs a
complete SHE library and deports some specific polynomial
multiplications to the FPGA when needed. The flow chart in
Figure 5 shows how the different operations are dispatched
between hardware and software. The proposed architecture
is composed of a CPU Intel core i7-4910MQ with 4 cores
running at 2.9 GHz, connected to the hardware platform
through a PCle 3.0 with 8 lanes. The hardware platform
embeds a powerful FPGA, a stratix V GX from Altera. Our
accelerator is designed to fully speed-up both FV.Mult and
FV.Relin, but can accelerate any operation which requires
polynomial multiplication, that is to say almost all steps
of FV. However, this study only focuses on FV.Mult and
FV.Relin.

4.1 Software Implementation Details

The software part of FV implementation is performed using
NTL library [28] compiled with GMP [29] support, 64 bits
version with -O3 option. We also ported FLINT [20] cyclo-
tomic calculation to NTL, in order to process at runtime
any cyclotomic polynomial. Because the bottleneck of SHE
schemes is the homomorphic multiplication, much effort
has been done to optimize pre- and post-computations of
Karatsuba. The pseudo-code for pre- and post-computations
are provided in Algorithms 1 and 2. The starting point of
both algorithms is respectively PRE_COMPUTATION(r, 0)
and POST_COMPUTATION(r, 0), where r is the number of
Karatsuba recursions.

Algorithm 1 Karatsuba Pre-Computation

1: procedure PRE_COMPUTATION(r, f)

2 ir,j«f

3 ig—1—1

4 Jo3j4+0,513j+1,j2+3j+2
5: if ¢ > 0 then
6.
7
8
9

Piyjo < Pij [n/2i41 0]
Pio-,jl — PiJ ["/zi'“”/QiJrl*l]
Pio,jz — Pio»jo + B(ijl

: PRE_COMPUTATION (ig, jo)
10: PRE_COMPUTATION (ig, j1)
11: PRE_COMPUTATION (ig, j2)
12: end if

13: end procedure

Table 2 provides latencies of software pre- and post-
computations with various optimizations.
Each line of the pre-computation section in Table 2 repre-
sents latency for one polynomial, and must be multiplied
by two for a complete evaluation of a pre-computation
cost during a polynomial multiplication. At the opposite,
the “fully-threaded” approach in line 7 processes two pre-
computations at a time with 6 threads in parallel. For a
deeper analysis of software performances, results are pro-
vided for two different Karatsuba recursions.
As one can see in lines 1 and 2 in Table 2, pre-allocation
of sub-polynomials is crucial due to the size of ciphertexts.

Algorithm 2 Karatsuba Post-Computation

1: procedure POST_COMPUTATION(r, f)
2: i7r,j«f

3 ig—1—1

4: Jo3j4+0,513j+1,j2+3j+2
5: if ¢ > 1 then
6
7
8
9

POST_COMPUTATION (i, jo)
POST_COMPUTATION (i, j1)
POST_COMPUTATION (i, j2)
: end if

10: P@j[n/ﬂ*l---ﬂ] « Pig jo

1 Pijlaaitoanpi] < Py

122 Pijlsnszittormgeitt] = Py g, — P

13: end procedure

0.Jo Piod'l

Because Karatsuba is constructed with recursive calls (lines
9, 10, 11 of Algorithm 1), there is no data dependencies
between calls. Thus, multi-threading can possibly be used
to reduce latency. Based on our experiments, applying
multi-threading beyond the first recursion of Karatsuba is
counterproductive. Moreover, threading each sub-calls of
PRE_COMPUTATION (line 6 in Table 2) is not efficient.

To further reduce pre-computations latency, an optimized
version of the presented algorithm has been designed and
implemented, which reduces at the same time pre-allocation
and latency. If one carefully examines lines 6 and 7 of
Algorithm 1, these steps duplicate a given polynomial into
two sub-polynomials. This is counterproductive because no
operation is performed. To avoid this issue, we added a
few extra parameters to the PRE_COMPUTATION function
in order to give the index and the number of coefficients
instead of duplicating them. Figure 4 presents the proposed
optimization, where dashed polynomials represent polyno-
mials which are duplicated during the initial algorithm. This
strategy saves 66% of memory and reduces latency by 13%
compared to the basic one (line 2 and 4 in Table 2). Finally,
the whole optimizations reduce computation time by 62%
for the pre-computation.

We also try various optimizations to reduce computation
time of post-computations, however no particular method
has given sufficient results to be implemented in the final
design, except multi-threading which is very efficient for
this step. This implies that extra post-computations in hard-
ware may be a good alternative to improve performances of
the overall acceleration.

4.2 Hardware Implementation Details

Our hardware implementation of Karatsuba is based on
a DE5-450 Terasic platform with an Altera Stratix V GX
(SGXEA7N2F45C2) FPGA. The DE5 platform is plugged
as a peripheral of a computer and communication between
the software and the hardware is done through PCle.

The advantage of Karatsuba algorithm is that it can be
scaled upon the available hardware resources. If one has
limited hardware resources and can only compute polyno-
mial of relatively small degree, the software part can com-
pute extra pre- and post-computations at a cost of a higher
computation time. However, if too many pre- and post-
computations are performed in software, total computation



TABLE 2: Software performances for pre- and post-
computations. Computations are executed on a Intel core
i7-4910MQ with 4 cores running at 2.9GHz.

Setup (n,log, q) (2560, 125)
Karatsuba recursions 5 6

Dynamic allocation 1.97 ms 7.25 ms
Pre-allocation 338 us 546 ps
o Threaded (x2) 263 ps 409 ps
a. Optimized (Opt.) 285 us 480 ps
Opt. and threaded (x2) 213 us 336 ps
Opt. and threaded (x3) 285 us 366 ps
fully-threaded (x6) 406 ps 488 us
*g Basic 1.89 ms 2.94 ms
o Threaded 931 us 1.37 ms

Y

P Pm @

Fig. 4: Data dependencies on Karatsuba pre-computations.
Dashed circles represent polynomials that can be extracted
from the input polynomial directly instead of solid lined
ones which require a polynomial addition.

Pm ” PM , Pm i Pm

time can become higher than a pure software polynomial
multiplication. As stated before, for n = 2560, our Karat-
suba setup requires 9 Karatsuba recursions, with smaller
sub-polynomials of degree 4. In order to be competitive, 6
recursions are made in software, and the 3 remaining in
hardware. With this setup, 2-3° = 729 sub-polynomials
of degree 2560/2° — 1 = 39 are sent to the accelerator,
corresponding to 29160 coefficients.
Figure 6 provides a high-level overview of the hardware ac-
celerator, where input sub-polynomials are named P and Q.
The accelerator has been designed to perform the operation
on sub-polynomials as soon as they arrive. Thus, transfer la-
tency is completely hidden during Karatsuba computations.
After the pre-computation and the pre-crossbar, the ac-
celerator generates several lines of sub-polynomials, which
are multiplied in parallel. The post-crossbar and the post-
computation perform the reconstruction of the polynomial
before sending it through the PCle.
In the following, an architecture of Karatsuba with degree
3 sub-polynomials instead of 4 is presented in order to
simplify the comprehension, and all intermediate pipeline
stages are not represented for the same reason.

4.2.1 Bus constraint

Because the bus is based on a PCle 3.0 with 8 lines, it can
handle transfers up to 250MB/s per line in full-duplex.
By taking into account the relatively low frequency of FP-
GAs and their parallel capabilities, the FPGA interface can
send /receive 256 bits in parallel at 250 MHz. According to
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Fig. 5: Flowchart of a basic operation in our architecture.

our setup, coefficients have a size of 125bits and so the bus
size is sufficient to send two coefficients at a time. However,
implementing a 125 x 125bits multiplier is not efficient in
practice, that is why all elementary operators have been
serialized in the proposed architecture. Because embedded
DSPs are optimized to perform a 27 x 27 bits integer product,
we decided to split coefficients into 27 bits parts. This choice
allows 9 inputs/outputs simultaneously and gives some
flexibility to implement multiple Karatsuba operations in
parallel. The remaining bandwidth is also beneficial for
FV.Relin, giving the possibility to send relinearization keys
v during the transfer of the polynomial to be relinearized,
avoiding to store them temporarily in hardware.

In the following, an add/subtraction/multiplication opera-
tor is considered to be serialized, with a carry propagation.

4.2.2 Pre-computation

The pre-computation step is the first block of Karatsuba ac-
celerator and must be applied to the two input polynomials
P and ), preferably simultaneously in order to limit tempo-
rary storage of polynomials. This is also an important step
because this stage determines the parallelism of the design.
Our implementation is based on a recursive structure where
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architecture

the elementary unit is visible in Figure 7(b). Because coeffi-
cients are sent by ascending order and because we need to
add low order coefficients to high order coefficients, a FIFO
is implemented to temporary store first arrived coefficients.
This leads to two outputs: the first one is just a copy of the
input and refers to polynomials P, and Py of Karatsuba
algorithm, when the second one refers to the polynomial
Pr, . For the next recursion, a pre-computation needs to be
applied to Pr, Py and Prp. This can be easily performed
by implementing a pre-computation unit on each output of
the first unit. A minor modification of the FIFOs is required,
because input polynomials are halve sized compared to the
first unit. This approach has been applied once more on the
proposed accelerator to implement 3 Karatsuba recursions.

As it can be easily noticed, the more recursions we perform,
the more outputs the unit has and, so, the more parallelism
is reached. For 1 recursion, the unit has 2 outputs, 4 outputs
for 2 recursions and so on. It is also important to notice
that each output creates a valid sub-polynomial which can
be multiplied with the related output of the other pre-
computation unit. However, because the branch P g cre-
ates a valid polynomial only half of the time, many outputs
are used inefficiently. Figure 7(a) shows this phenomenon.

(a) Elementary operations schedule

A 4

>

FIFO

A 4

+
*

(b) Architecture

A 4

Fig. 7: Overview of elementary pre-computation operations
schedule 7(a) and the associated architecture 7(b).

That is why a scheduling is implemented to reorder sub-
polynomials and reduces the number of outputs, as it will
be explained in Figure 8.

4.2.3 Pre-crossbar

After the pre-computations, 8 outputs are generated be-
cause 3 recursions of Karatsuba are applied, and so 8 sub-
polynomial multipliers are required if no optimization is
done. This infers an idleness of multipliers of 1 — % =
58% which is not efficient. The sub-polynomials reorder-
ing is performed by a simple crossbar because the pre-
computation is deterministic. Figure 8 presents the strategy
adopted for the scheduling of sub-polynomials, requiring
4 polynomial multipliers instead of 8. The new idleness
of multipliers is 1 — % = 16% which is much more
acceptable. In order to reduce even more this idleness,
implementing extra pre-computations in hardware provides
more flexibility to efficiently schedule sub-polynomials. Ta-
ble 3 recaps the minimum number of outputs for a given
number of Karatsuba recursions in hardware, according to
our architecture. As it can be noticed, when sufficient pre-
computations are deported to the hardware, the multipliers
usage can tend toward 100%, at a cost of a complex crossbar.

4.2.4 Serial polynomial Multiplier

Implemented degree 4 polynomial multipliers are based on
the standard polynomial multiplication algorithm. In order
to be able to send polynomials without interruption, a full-
parallel design is implemented and requires 5 serial integer
multipliers in parallel. By doing that, the accelerator can
benefit to the full potential of PCle and its high throughput.
Figure 9(a) presents the elementary operations required
for a polynomial multiplication of degree 3. Each column
of the elementary operations section represents the output
of a serial integer multiplier. The polynomial multiplier
itself is split into three distinct parts. First, a scheduling
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Fig. 8: Schedule example after a pre-computation with 3 recursions of Karatsuba.

TABLE 3: Impact of the pre-crossbar over the efficient use of
embedded multipliers, and the number of sub-polynomials
multipliers required in parallel.

without scheduling with scheduling
required required
sub- sub-
Recursions || multipliers | polynomials| multipliers | polynomials
usage multipli- usage multipli-
ers in ers in
parallel parallel
1 75 % 2 75 % 2
2 56.25% 4 75 % 3
3 42.19% 8 84.38% 4
4 31.64% 16 84.38% 6
5 23.73% 32 94.92% 8
6 17.8 % 64 94.92% 12
7 13.25% 128 94.92% 18
8 10.01% 256 98.57% 26
9 7.51% 512 98.57% 39
10 5.63% 1024 99.42% 58

of input coefficients is performed. Then, a coefficient-wise
multiplication is performed using serial integer multipliers.
Finally, a reconstruction step, which consists on additions
between coefficients, is applied.

When sub-polynomials are sent successively, the
polynomial multiplication produces output coefficients
when the next input polynomials are received. This
implies to carefully manage the output of serial integer
multipliers in order to avoid any overlapping. To address
this issue, a demultiplexer is implemented just after
serial integer multipliers, and dispatches coefficients into
two branches. To further reduce the complexity of the
architecture, demultiplexers also set to zero their outputs
when no coefficients are sent, allowing to implement very
simple elementary units during the reconstruction step.
Figure 9(b) shows the proposed polynomial multiplier. This
architecture is very flexible and can be scaled upon the size
of sub-polynomials.

4.2.5 Serial integer multiplier

As stated before, embedded DSPs are optimized for 27x27
bits integer multiplications, so coefficients are split in 27
bits segments. This infers that coefficients are divided into
[125/27] 5 parts. Similarly to the serial polynomial
multiplier, serial integer multipliers are based on a stan-
dard multiplication approach. This conducts to very close
architectures, as it can be shown in Figure 9(c). The main

difference relies on the management of a carry propagation
between intermediate coefficients.

Now, one needs to decide if the E( . )1 operation is done
at this point or later. By implementing it now, remaining
computations are performed on smaller coefficients and so
it reduces hardware consumption. By implementing it later,
this operation can be scheduled more efficiently, or can even
be deported to the software. Because this operation is very
simple in our setup, the reduction is executed following
the integer multiplication as it can be seen in Figure 9(b).
Section IV discusses some cases where implementing the re-
duction just after the integer multiplication is not necessarily
the best choice, especially for higher multiplicative depths.

4.2.6 Post-crossbar

Because a scheduling has been applied on sub-polynomials
after the pre-computation, a reverse scheduling is required
to realign sub-polynomials before post-computations. How-
ever, this step requires much more storage than the pre-
crossbar because all sub-polynomials must be aligned with
the most delayed one during the pre-crossbar. Two strate-
gies can be used here. One consists on implementing
a complex crossbar, producing directly well aligned out-
puts, like during the pre-crossbar. Another strategy consists
on implementing successive stages of post-crossbars and
post-computations in order to realign as less as possible
sub-polynomials. This can lead to reduce storage require-
ments because many polynomials are already well aligned
for a given recursion, considering that only 33% of sub-
polynomials have been moved during the pre-crossbar.

4.2.7 Post-computation

Post-computation follows the same approach than pre-
computation and is constructed by a recursive architec-
ture. Figure 10(a) shows elementary operations required
for a post-computation stage, and Figure 10(b) the related
architecture. As it can be noticed, much more operations
are required compared to pre-computations, comprising six
coefficient additions and 14 coefficient subtractions.

4.2.8 Adapting FV.Relin in hardware

Several modifications to our design are required to use
Karatsuba for relinearization. First, one needs a pre-
computation and a pre-crossbar for each relinearization key.
Second, the integer multiplier needs to be adapted. How-
ever, no modifications are needed for post-computations.
By sending polynomials as before, the FV.WordDecomp,,
operation is already done. Because the first relinearization
key must be multiplied by the first segment of the poly-
nomial to be relinearized, the second key with the second
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Fig. 9: Overview of polynomial and integer multipliers,
elementary operations schedule 9(a) and the associated ar-
chitectures 9(b) & 9(c).

segment and so on, relinearization keys are not sent at the
same time but shifted, as shown in Figure 11(a). Like for
the standard polynomial multiplier, both architectures of
the polynomial multiplier and the integer multiplier are
visible in Figures 11(b) and 11(c). The polynomial relin-
earizer multiplier is quite similar to the standard one except
of the left operand operations that are performed on each
relinearization key. The integer multiplier has now as many
inputs as the number of relinearization keys, and FIFOs
are added after DSPs in order to realign coefficients as
it can be seen in Figure 11(a) at the bottom. By adding
simple switches before and after DSPs, the serial polynomial
multiplier and the polynomial relinearizer multiplier can
share the same logic, limiting as much as possible hardware
resources consumption.

5 DISCUSSION
5.1 Implementations Results

Table 4 provides implementation results and compares the
proposed solution to the FFT implementation in [17], which
uses NWC. Even if the FFT implementation performs a

functionally equivalent. Indeed, to multiply two degree 2560
polynomials, one needs a 8192-FFT or a 4096-NWC. The
only difference is the fact that our design supports the
batching technique. However, even in the case of the NWC,
our accelerator reduces computation time by 23% for the
homomorphic multiplication in FV, and reduces ALMs by
57%, registers by 46%, embedded memory by 99.95% and
DSPs by 30%. This is due to the fact that our accelerator
is hardware/software co-designed and some computations
are deported to the software, when FFT requires an au-
tonomous implementation in hardware. The large memory
saving is also the consequence that our accelerator runs
as a flow and so does not require to store large banks of
coefficients. Moreover, even if Karatsuba needs to send more
coefficients than FFT to the hardware accelerator, the trans-
fer is hidden during Karatsuba hardware computations.

By considering the polynomial multiplication only, FFT
implementation has a lower latency than our accelerator,
due to the lower complexity of FFT. However, for FV.Relin,
Karatsuba becomes very efficient, because it can be cleverly
adapted to this step as stated in Section 4.2.8, compared to
the FFT which fails in flexibility. To the best of our knowl-
edge, our solution is the first one which allows batching
operations for multiplicative depth up to 4.

As one can see, our solution has fp,.. upper than the
frequency provided by the PCle, that is to say 250 MHz.
The computation times provided are based on this restricted
frequency only.

By carefully examining software results, the only critical op-
eration is the post-computation. To reduce the dependence
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TABLE 4: Implementations results compared to FFT imple-

Serial integer relinearizer

(b) Polynomial relinearizer architecture

(c) Integer relinearizer architecture

Fig. 11: Overview of polynomial and integer multipliers,
elementary operations schedule 11(a) and the associated
architectures 11(b) & 11(c).

from the CPU load, extra post-computations in hardware
may be a good solution.

5.2 Comparison to Software Implementation of FV

Recent work on pure software implementation of FV
in [22] provides very promising computation times
for low level multiplicative depths. For parameter set
(n=4096, log, g =168), authors of [22] can achieve an homo-
morphic multiplication in 7.68 ms. They implement a full

al0lo a[llo a2l a[3lo al0i a[l]i a[21 a3 .
WMo Ak Ak Al Al Al Alls Afo)y | Mentation from [17].
Inputs Yo At A2 Al A AU A[Us Our design FFT [17]
] % { }2 { } ] Setup (n, log, q) | @560, 125 (4096, 125)
] 0] 0] . ALM 29534 69058
] 0 0] o Registers 76823 144747
L : 2 Memory bits 4131 8031568
~ DSPs 100 144
% % % fmaz 331.13 MHz 100 MHz
: [ [ ;; Software pre-computation 488 us
[ [ ‘g Hardware accelerator 583.2 us
[ [ é Software post-computation 1.37 ms
[ 25 E Total 2.44 ms 1.96 ms
[ [ Software pre-computation 336 us
. 5 Hardware accelerator 583.2 us
& | Software post-computation 1.37 ms
Total 2.29 ms 4.79 ms
YASHE’ x 4.73 ms 6.75 ms
FV x 11.9 ms 15.46 ms

RNS variant of FV to reduce the size of coefficients, then
compute fast polynomial arithmetic using NWC FFT. The
modulus is larger than ours because, for efficiency, authors
of [22] set w to 62 bits, inferring a larger modulus but a much
smaller relinearization key.

Compared to the FFT hardware implementation in [17] with
parameters set (n=4096, log, ¢=125), the pure software
solution is two times faster. Compared to our approach,
because our design can use the batching technique and
not the optimized software implementation, our accelerator
remains interesting. To allow batching, the NWC requires
to double the size of the FFT. Thus to fairly compare the
two approaches, software timing results for parameters
(n=8192, log, ¢=168) would be required. Due to the lack
of software implementation results, we just provide an
estimation of computation time based on the NTT com-
plexity provided in [22]. Because NTT has a complexity
of O(nlog,n), increasing the NTT from size 4096 to 8192
increases the complexity by a factor of 2.16. Thus, we can
estimate the computation time of the full RNS software im-
plementation with batching to 7.68 ms x 2.16 =16.58 ms, and
so our accelerator remains competitive. Moreover, the size
of ciphertexts is smaller in our case due to a smaller w, but
also because polynomials degree is smaller. Furthermore,
several optimizations can be made on our accelerator, in
particular on the software part, in order to further improve
its competitiveness.

5.3 Scalability of the Proposed Accelerator

Our implementation results demonstrate that for the pro-
posed homomorphic scenario, that is to say circuits with
multiplicative depths up to 4, our accelerator reduces both
computation times and hardware resources on the FPGA
compared to the FFT. However, a main concern is to evalu-
ate the scalability of the architecture for higher multiplica-
tive depths. Due to the asymptotic complexity of the FFT,
it is clear that Karatsuba will fail in competitiveness after a
certain degree.
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TABLE 6: Example of polynomial multiplication degree
achievable with Karatsuba.

Our design FFT [17]
Setup (n, log, q) | (6144,512) | (16384, 512) Sub_lljc:)le;ensgmial Karatsuba mp[;)]lg’;(])g;laén
- ALM 153642 141090 degree recursions degree
o Registers 329235 391773
g i 5 9 2560
o) Memory bits 301 645 17626 400
3 6 9 3072
~ DSPs 456 577
7 9 3584
fmaa 262.47 MHz 66 MHz
= . 8 9 4096
- SOIf_thzre pre—comlputatlon 2.74 ms 9 9 4608
‘g ardware accelerator 7.98 ms
2 Software post-computation 8.68 ms > = e
=S Total 1 : > 6 10 6144
g ota 9.39 ms .88 ms 7 10 7168
: Software pre-computation 1.95 ms 8 10 8192
4 Hardware accelerator' 23.94 ms 9 10 9216
& | Software post-computation 8.68 ms 5 11 10240
Total 34.58 ms 20.80 ms 6 11 12288
YASHE" x 52.7 ms 47.54 ms 7 11 14336
FV x 124.36 ms 122.30 ms 8 11 16384
9 11 18432

To estimate that degree, we have implemented various con-
figurations of our accelerator until matching to an existing
FFT implementation both in terms of hardware resources
consumption and computation time. We found a turning
point of our Karatsuba approach for degree 6144 polynomi-
als with 512bits coefficients. With such parameters, an FFT
using the batching technique must be of size 16384 with
512 bits coefficients. Table 5 provides implementation results
of our accelerator for parameters set (n =6144, log, ¢ =512)
compared to FFT implementation in [17] with parame-
ters set (n=16384, log, ¢=512). As one can see, the hard-
ware resources consumption is equivalent with comparable
computing time. The main limit to Karatsuba scalability
is clearly the relinearization. Compared to the hardware
computation time of the polynomial multiplication, the
relinearization takes 3 times longer. Indeed, due to the
limited bandwidth of the PCle, we are not able to send the
complete relinearization key. Because the PCle is equivalent
to a 250 MHz bus with 256 bits width on the FPGA side,
and because our polynomials coefficients are split into 27
bits segments, we can only send 9 polynomials in parallel
(9 x 27 = 243 < 256). Thus, when the number of relin-
earization sub-keys exceeds 8, we need to start again the
hardware relinearization process with the remaining sub-
keys. For parameters set (n =6144, log, ¢ =512), the number
of relinearization sub-keys is 19, requiring 3 hardware re-
linearizations. The software computation time of post recur-
sions is also an important issue, but can be compensated by
additional efforts on the software part.

5.4 Pros and Cons of Karatsuba Compared to FFT

As settled in Section 4, Karatsuba can be more efficient than
the FFT for both computation time and resources utilization
for specific parameters. Karatsuba has several advantages
compared to FFT, despite its highest asymptotic complex-
ity. First, Karatsuba is a simple algorithm, with basic pre-
and post-computations and so can be easily implemented.
Second, Karatsuba can perform polynomial multiplications

with non-power of two degrees, allowing to fit more pre-
cisely to the required parameters. Table 6 provides examples
of polynomial multiplications achievable with Karatsuba.
Third, the modulus can be freely selected compared to
FFT, reducing the complexity of the division and rounding
operation required by the FV scheme to a simple shift. More-
over, the division and rounding in the FFT case is reported
to be an important bottleneck in [17]. Fourth, thanks to
the use of Karatsuba, several computations can be hidden
during transfers. For our accelerator, the sub-polynomials
multiplication performed on the FPGA is hidden by the
transfers through the PCle. Fifth, the relinearization can be
efficiently adapted to Karatsuba as explained in Section 3.2.
Karatsuba has also some limitations. First, Karatsuba re-
quires a software/hardware co-design approach to meet
competitive computation times, which is not the case for
FFT. Second, as stated in Section 5.3, Karatsuba is a good al-
ternative to FFT only until a certain degree. We estimate this
degree to 6144 subject to change if improvements are made
on Karatsuba or FFT implementations. Third, because the
polynomial multiplication degree achievable by FFT is often
over-sized for a given multiplicative depth, changing the
multiplicative depth only requires to change the modulus,
assuming that the degree does not exceed the size of the FFT.
For Karatsuba, each multiplicative depth requires a specific
configuration, inferring a substantial modification of the
hardware accelerator to change the lowest sub-polynomial
multiplication degree.

6 CONCLUSION

In this paper, we demonstrate that for some cases, especially
when the polynomial degree is just upper than a power of
2 and less than 6144, Karatsuba algorithm can be a good
alternative to FFT. The study provides a complete imple-
mentation of a software/hardware co-design approach of
Karatsuba for degree 2560 polynomials with 135 bits coeffi-
cients, allowing homomorphic operations on the FV scheme



for algorithms with a multiplicative depth up to 4. We also
provide information on the scalability of our approach and
an estimation of the degree when Karatsuba becomes less
efficient than FFT. Compared to previous state of the art
contributions, and especially implementation in [17], our ac-
celerator can perform an homomorphic multiplication of FV
in 11.9ms, when a functionally equivalent design using FFT
requires about 15.46 ms for a multiplicative depth up to 4,
and halves the hardware resources consumption. Moreover,
our approach goes in the right direction considering that
recently published Homomorphic Encryption schemes have
a lower polynomial degree than previous ones [1].

Future work will consist on evaluating the proposed solu-
tion to a more constraint architecture. We will also investi-
gate how to improve the design scalability.
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