Dataset Open Access

High-resolution inundation dataset for coastal India and Bangladesh

Mondal, Pinki; Dutta, Trishna; Qadir, Abdul; Sharma, Sandeep


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4390084">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4390084</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-7323-6335">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-7323-6335</dct:identifier>
        <foaf:name>Mondal, Pinki</foaf:name>
        <foaf:givenName>Pinki</foaf:givenName>
        <foaf:familyName>Mondal</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Delaware, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Dutta, Trishna</foaf:name>
        <foaf:givenName>Trishna</foaf:givenName>
        <foaf:familyName>Dutta</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Goettingen, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Qadir, Abdul</foaf:name>
        <foaf:givenName>Abdul</foaf:givenName>
        <foaf:familyName>Qadir</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Maryland, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sharma, Sandeep</foaf:name>
        <foaf:givenName>Sandeep</foaf:givenName>
        <foaf:familyName>Sharma</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Goettingen, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>High-resolution inundation dataset for coastal India and Bangladesh</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>Remote sensing</dcat:keyword>
    <dcat:keyword>Cyclone</dcat:keyword>
    <dcat:keyword>Amphan</dcat:keyword>
    <dcat:keyword>Mangrove</dcat:keyword>
    <dcat:keyword>Sundarban</dcat:keyword>
    <dcat:keyword>Inundation</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-12-23</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/4390084"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4390084</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4390083"/>
    <owl:versionInfo>1.0.0</owl:versionInfo>
    <dct:description>&lt;p&gt;This collection of gridded data layers provides the extent of inundation in May 2020 resulting from the cyclone Amphan in 39 coastal districts in India and Bangladesh.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Input data:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;These geospatial data layers are derived from Sentinel-1 dual-polarization C-band Synthetic Aperture Radar (SAR) data for pre-Amphan (May 5-18, 2020) and post-Amphan (May 22-30, 2020) periods. We accessed ready-to-use SAR data on Google Earth Engine (GEE). These input data were preprocessed using Ground Range Detected (GRD) border-noise removal, thermal noise removal, radiometric calibration, and terrain correction, to derive backscatter coefficients (&amp;sigma;&amp;deg;) in decibels (dB). We used VH polarisation instead of VV, since the latter is known to be affected by windy conditions as compared to VH.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Methods:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;We developed a binary water/non-water classification scheme for the pre- and post-Amphan images using the automated Otsu thresholding approach that finds optimum threshold values based on clusters found in the histograms of pixel values. This analysis resulted in eight images: four each for pre-Amphan and post-Amphan periods (one each for coastal districts of Odisha and West Bengal and two for Bangladesh for each period). The pixels in these images have two values: 0 for non-water and 1 for water.&lt;/p&gt; &lt;p&gt;We then used a decision rule to identify areas that changed from &amp;lsquo;non-water&amp;rsquo; to &amp;lsquo;water&amp;rsquo; after the cyclone. The decision rule generated the &amp;lsquo;inundation layer&amp;rsquo; with the permanent water bodies such as river, lakes, oceans and aquaculture masked out. This analysis resulted in four images, each with pixels with a value of 1 for inundated regions.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Data set format:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;The spatial resolution of all the derived datasets is 10m. These georeferenced datasets are distributed in GEOTIFF format, and are compatible with GIS and/or image processing software, such as R and ArcGIS. The GIS-ready raster files can be used directly in mapping and geospatial analysis.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Data set for download:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;A. Three data layers for Odisha, India:&lt;/p&gt; &lt;ol&gt; &lt;li&gt;OD_pre_binary.tif&lt;/li&gt; &lt;li&gt;OD_post_binary.tif&lt;/li&gt; &lt;li&gt;OD_inundation.tif&lt;/li&gt; &lt;/ol&gt; &lt;p&gt;These data layers cover 10 districts: Baleshwar, Bhadrak, Cuttack, Jagatsinghpur, Jajpur, Kendrapara, Keonjhar, Khordha, Mayurbhanj and Puri.&lt;/p&gt; &lt;p&gt;B. Three data layers for West Bengal, India:&lt;/p&gt; &lt;ol&gt; &lt;li&gt;WB_pre_binary.tif&lt;/li&gt; &lt;li&gt;WB_post_binary.tif&lt;/li&gt; &lt;li&gt;WB_inundation.tif&lt;/li&gt; &lt;/ol&gt; &lt;p&gt;These data layers cover 9 districts: Barddhaman, East Midnapore, Haora, Hugli, Kolkata, Nadia, North 24 Parganas, South 24 Parganas, and West Midnapore.&lt;/p&gt; &lt;p&gt;C. Six data layers for Bangladesh &amp;ndash; three each for lower (L) region and upper (U) region.&lt;/p&gt; &lt;ol&gt; &lt;li&gt;BNG_L_pre_binary.tif&lt;/li&gt; &lt;li&gt;BNG_L_post_binary.tif&lt;/li&gt; &lt;li&gt;BNG_L_inundation.tif&lt;/li&gt; &lt;li&gt;BNG_U_pre_binary.tif&lt;/li&gt; &lt;li&gt;BNG_U_post_binary.tif&lt;/li&gt; &lt;li&gt;BNG_U_inundation.tif&lt;/li&gt; &lt;/ol&gt; &lt;p&gt;The data layers for the lower region cover 11 districts: Bagerhat, Barguna, Barisal, Bhola, Jhalokati, Khulna, Lakshmipur, Noakhali, Patuakhali, Pirojpur, and Satkhira.&lt;/p&gt; &lt;p&gt;The data layers for the upper region cover 9 districts: Chuadanga, Jessore, Jhenaidah, Kushtia, Meherpur, Naogaon, Natore, Pabna, and Rajshahi.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>7514698</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_L_inundation.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>9761137</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_L_post_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>8080027</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_L_pre_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>7006580</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_U_inundation.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>12942785</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_U_post_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>14430054</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/BNG_U_pre_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>20974966</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/OD_inundation.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>24475936</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/OD_post_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>27370218</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/OD_pre_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>12578612</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/WB_inundation.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>13502185</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/WB_post_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4390084"/>
        <dcat:byteSize>9670305</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/4390084/files/WB_pre_binary.tif"/>
        <dcat:mediaType>image/tiff</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
38
47
views
downloads
All versions This version
Views 3838
Downloads 4747
Data volume 652.0 MB652.0 MB
Unique views 3737
Unique downloads 1515

Share

Cite as