Published March 28, 2017 | Version v1
Journal article Open

Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model

  • 1. Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
  • 2. Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden
  • 3. Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany
  • 4. Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, 07701 Jena, Germany

Description

Nitrous oxide is a strong greenhouse gas and atmospheric ozone-depleting agent which is largely emitted by soils. Recently, lichens and bryophytes have also been shown to release significant amounts of nitrous oxide. This finding relies on ecosystem-scale estimates of net primary productivity of lichens and bryophytes, which are converted to nitrous oxide emissions by empirical relationships between productivity and respiration, as well as between respiration and nitrous oxide release. Here we obtain an alternative estimate of nitrous oxide emissions which is based on a global process-based non-vascular vegetation model of lichens and bryophytes. The model quantifies photosynthesis and respiration of lichens and bryophytes directly as a function of environmental conditions, such as light and temperature. Nitrous oxide emissions are then derived from simulated respiration assuming a fixed relationship between the two fluxes. This approach yields a global estimate of 0.27 (0.19–0.35) (Tg N2O) year−1 released by lichens and bryophytes. This is lower than previous estimates but corresponds to about 50 % of the atmospheric deposition of nitrous oxide into the oceans or 25 % of the atmospheric deposition on land. Uncertainty in our simulated estimate results from large variation in emission rates due to both physiological differences between species and spatial heterogeneity of climatic conditions. To constrain our predictions, combined online gas exchange measurements of respiration and nitrous oxide emissions may be helpful.

Files

bg-14-1593-2017.pdf

Files (2.1 MB)

Name Size Download all
md5:270872ed1c20f17fba314d621f9299eb
2.0 MB Preview Download
md5:63bb1fdcdfc079fb61d8f1eab4469508
118.3 kB Preview Download

Additional details

Funding

PAGE21 – Changing Permafrost in the Arctic and its Global Effects in the 21st Century 282700
European Commission