
Testbeam software overview

Philosophy

• As per Guadi, Marlin, a chunk of data (event) is analysed sequentially
through several algorithms, which are able to pass information to each other	

!
!

• At the end of each event processing, objects can be removed from the storage
element (all, or selectively ie. based on time)

Storage

File reader

Clustering

Tracking

Analysis

Core

• There are a few core files:	

!

Analysis - this is simply a class which holds two things, a set of parameters and a vector
of algorithms. For each algorithm, it runs an initialise function at the start, a run function
for each event, and a finalise function at the end of processing	

!
Parameters - this is simply a global object where parameters can be placed (minimum no.
clusters on track, etc.). For each detector in the conditions file, it holds an entry with the
number of pixels, pitch, global position, local to global transform	

!
Algorithm - all algorithms inherit from algorithm, allowing the analysis class to run each
of them despite not knowing what they are. They have a name, and the three functions
mentioned	

!
Clipboard - the object which passes objects between algorithms. It contains a map of
objects, which you can get by their name

Core

Analysis

Vector of algorithms

Parameters

Clipboard

Clustering

Tracking

Whatever

Objs

• All of the objects which you want to pass between algorithms/write to file	

!

All objects of this type inherit from TestBeamObject, which is simply a TObject
(required by root in order to write to file)	

!
Currently implemented are Timepix3Pixel, Timepix3Cluster, Timepix3Track	

Algorithms

• Where the real work is done. Each algorithm inherits from Algorithm, and can do whatever
it likes. Currently there are a few there:	

!
Timepix3EventLoader - very self-explanatory, decodes input files and puts pixels onto
the clipboard.	

!
Timepix3MaskCreator - picks up pixels from the clipboard, and if any pixel fires more
times than X then it will be masked. At the end, it reads in the current mask file, masks
the pixels that it found to be noisy, and writes out a new mask file	

!
Timepix3Clustering - very stupid algorithm that looks at all neighbouring pixels, and if
they have a time difference of < 100 ns clusters them. Calculates the centre of gravity
(ToT weighted at the moment) and puts the clusters on the clipboard	

!
BasicTracking - takes a hit on the reference plane, and looks for the closest hit (in time)
on all other planes. If the hit is within ~100um then the hit is added to the track. Tracks
are fitted and placed on the clipboard

Steering

• The last part, located in core. This is simply the “main” function for c++, which makes an
Analysis object and tells it what algorithms to add	

!
All algorithm parameters (that you don’t want to set from the command line) can be set
here - defaults probably stay in the algorithm declaration, but if you want to change them
then you can	

!
Command line arguments are read	

!
The analysis class is run	

!
Escape behaviour added - if you ^C while the code is running, it will tell the analysis class
to finalise all of the algorithms so that the histograms are written out properly and the file
closed

Size of the code

• The core section of the code, that handles passing objects, running algorithms, etc. consists
of 3 .cpp files, and 5 header files	

!

• Each algorithm has 1 .cpp file and 1 header file	

!

• Each object has 1 header file	

!

!
!
In total the code is probably 12 files, with an addition 2 for each algorithm implemented.
It should be fast (no overhead), easy to install and only links against ROOT for
compilation	

!
Compilation is performed with a simple Makefile. If you add a new algorithm, it will
attempt to compile it without you doing anything (simply looking for all .C files in the
algorithms folder)	

!
To include your algorithm in the analysis, just add the header in Steering.C and then: 	

!
	

 MyAlgorithm* myAlgorithm = new MyAlgorithm();	

	

 analysis->add(myAlgorithm);	

Trying it out

• The code is now committed to git: 	

!

	

 https://gitlab.cern.ch/CLICdp/tbAnalysis	

!

• Once you set up git (blame/ask Adrian) then you can check it out:	

!
	

 git clone ssh://git@gitlab.cern.ch:7999/CLICdp/tbAnalysis.git tbAnalysis	

!

• Then type “make”	

!
!
!
• An example set of data (from September ’15) is included on the repository, and if you go the

macros folder and run analyse.sh then it will begin analysing the data	

!

ssh://git@gitlab.cern.ch:7999/CLICdp/tbAnalysis.git

