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ABSTRACT

Transient signals are very difficult to characterize due to their

short duration and their wide frequency content. Various

methods such as spectrogram and wavelet decomposition

have already been extensively used in the literature to detect

them, but show limits when it comes to near similar tran-

sients discrimination. In this paper, we propose the multi-lag

phase space analysis as a way to characterize them. This

data-driven method enables the comparison between features

extracted from two different signals. In an example, we

compare the multi-lag phase space representations of three

similar transients and show that common features can be

found to discriminate them. Finally the results are compared

with a wavelet decomposition.

Index Terms— Phase space representation, Transients,

Recurrence

1. INTRODUCTION

Transient signals are characterized by very short durations

over the observation and they often characterize fast changes

of the analyzed phenomena. Such signals are encountered in

the analysis of various physical environments using ultrasonic

or electric signals. Generally, the analysis of transient signals

addresses the issues of detection and characterization. While

detection of transient signals is the object of major contribu-

tions in signal processing [1] [2] [3] [4] [5], characterization

of transients, e.g. for classification purposes, is a topic of

growing importance in many fields such as biomedical, ultra-

sonic, seismic, etc [6].

In this context, this paper proposes a new representation

space of transient phenomena, defined by the multi-lag phase

space analysis. We show that by exploiting the multi-lag

diversity of the phase diagram [7], it is possible to define

a discriminant description of the transients, useful for iden-

tification or classification purposes. The actual multi-lag

definition of space diagrams relies on the analysis of the

signal at different scales, but this analysis is data-driven

and no scale function definition is necessary. That is, the

proposed concept might be interpreted as a non-parametric

multi-resolution analysis. The results on simulated near sim-

ilar transients prove the efficiency of the proposed concept in

terms of transient characterization.

Section 2 recalls the concept of phase space recurrence for

a given time delay. Then, Section 3 introduces the concept of

multi-lag phase space representation and its use for the char-

acterization of the transient signals. The example illustrated

in the Section 4 shows the interest of the proposed concept.

Finally, Section 5 ends this paper with some conclusions and

perspectives.

2. PHASE SPACE RECURRENCE

Phase space recurrence comes from dynamical systems the-

ory [7], [8] and takes advantage of a system’s ability to re-

turn to a previously visited state. The concept enables to find

out recurrence patterns that could happen in a time series. It

is possible to distinguish between two different signals with

similar spectra and histograms thanks to the study of those re-

currence patterns. To do so, the analyzed signal s (t) is first
turned into a phase space trajectory −→v [s, τ ] by regrouping

samples as vectors: this is the time-delay embedding process.

The phase space trajectory at instant t corresponds to a set of

m signal values chosen at different time instant:

−→vt [s, τ ] =
[
st, st+τ , st+2τ , ..., st+(m−1)τ

]
(1)

with m the embedding dimension (i.e. the dimension of the

phase space), τ the time delay (or lag when dealing with sam-

ples) between successive components, and st the value of

s (t) at instant t. Once the trajectory is drawn, a recurrence is
enlightened each time the trajectory intersects itself.

While it is possible to perform the phase space representa-

tion with whatever wanted embedding dimension, we restrain

ourselves to the study of 2-dimension phase space vectors in

order to facilitate the visualization and interpration of our re-

sults, i.e. the study will be performed with:

−→vt [s, τ ] = (st, st+τ ) (2)



The following notation is also set down :

{
yi = s (i + τ)
xi = s (i)

(3)

where i represents the i-th sample of the time series s (n) and
τ the lag.

Let us now consider three signals s1 (t), s2 (t) and s3 (t)
related such that:

s2 (t) = s1 (t+ δ) (4)

s3 (t) = αs1 (t) (5)

where δ is a time delay and α a constant that modifies s1 (t)’s
amplitude.

By performing the time-delay embedding process, the fol-

lowing properties can be noted:

−→vt [s2, τ ] =
−−→vt+δ [s1, τ ] (6)

−→vt [s3, τ ] = α−→vt [s1, τ ] (7)

The time-delay embedding process offers interesting proper-

ties under scaling transform [9] that will be usefull to high-

light similarities between signals such as time translation and

amplitudes changes.

For a given time delay, a unique phase space representa-

tion is obtained that would be different if the time delay dif-

fers [10], and it is not yet possible to know which τ would be

the most appropriate to study a given signal. This is why an

automatic method needs to be elaborated to select this param-

eter. Next Section is dedicated to the study of a complete set

of phase space representations.

3. MULTI-LAG PHASE SPACE REPRESENTATION

Multi-lag phase space representation (MLPS) is the combina-

tion of different phase space trajectories obtained for different

lag values:

MLPS [s,Γ] = {−→vt [s, τk]}k∈[1,...,N ] (8)

where Γ, the set of lags used to perform the MLPS, is defined

as follows:

Γ = {τk}k∈[1,...,N ] (9)

with N the cardinal of Γ.
The MLPS can be performed with any time-embedding

dimension wanted, although, our study is performed consid-

ering a two dimension time-delay embedding process (i.e.

m = 2) in order to simplify the results’s interpretation. Stud-
ied signals are defined as follows:

s (t) =

{
cos (2πft)h (t) for t ∈ ∆
0 otherwise

(10)

with h (t) an arbitrary short-time window function (in the

present case, a Hamming window is considered but this study
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Fig. 1. This Figure displays two phase space trajectories using

a given lag τ = 12. The continous and dash-dotted lines

respectively represent a sinusoid and a transient (defined as

in Equation 10). It is obvious that even if the two signals

have a similarity in common, their trajectories are completely

different and allow an easy discrimination.

is general for any other type of window), ∆ a time interval

and f a given frequency.

It is obvious that two different signals have different phase

space diagrams. Figure 1 presents the diagrams of two sig-

nals having a similarity: the first one is a transient defined as

in Equation 10 and the other one is a sinusoid built with the

same frequency. By using any lag, the phase space diagram

enables one to discriminate the two signals. However those

two signals have a similarity in common, is it possible to find

a way to enlight this similarity?

For a given lag τk, a single phase space trajectory
−→v [s, τk]

is obtained which can be analyzed as a scatterplot Ck . The

set of data is centered around the zero value and presents a

trend which can be modeled by a polynomial. According to

τk, it tends towards rotating around the central value of the

distribution. The scatterplot’s trend is then modeled as a third

degree polynomial in order to quantify the rotation and other

specificities of the trend:

ŷ (t) = âx3 (t) + b̂x2 (t) + ĉx (t) + d̂ (11)

A least squares fitting estimation is chosen to model it.

This is performed by minimizing the following sum:

Argmin
â,̂b,ĉ,d̂

N∑

i=1

(yi − ŷi)
2

(12)

At this point of the study, Ck’s trend has been modeled

by 4 parameters âk, b̂k, ĉk and d̂k. Because the studied sig-

nals have a zero mean, the parameter d̂k is also equal to zero.

Moreover, scatterplots present a symmetry point which can-

cels the parameter b̂k. As a matter of consequence,Ck is now

only modeled by the two remaining parameters.
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Fig. 2. This Figure represents the three studied signals. (a)

represents s1 (t), (b) its dilated version s2 (t) and (c) is s3 (t)
created after a high pass filtering and a non-uniform ampli-

tude modification of s1 (t)

Seeing that a scatterplotCk corresponds to a given lag τk,

the evolution of the parameters âk and ĉk can be observed

according to the evolution of the lag values. The multi-lag

trajectory, denoted asMLT [s,Γ], is then defined as follows:

MLT [s,Γ] =
[
Â, Ĉ,Γ

]
(13)

with: {
Â = {âk}k∈[1,...,N ]

Ĉ = {ĉk}k∈[1,...,N ]

(14)

This trajectory MLT enables to discriminate two tran-

sients as it can be studied on three different plans: (â, ĉ),
(â,Γ) and (ĉ,Γ) plans. Next Section is dedicated to the study
of an example.

4. TRANSIENTS CHARACTERIZATION

Let consider three signals :

• s1 (t) is defined as in Equation 10

• s2 (t) is a dilated version of s1 (t) with a dilatation co-
efficient α = 1.8

• s3 (t) is the result of a non-uniform amplitude modifi-

cation and high pass filtering successively applied on

s1 (t) .

The temporal data is presented in Figure 2. By observing

the signals, it can be noticed that while s1 (t) and s2 (t) have
the same amplitude, their frequencies are proportional. In the

same way, s1 (t) and s3 (t) share close frequency contents

but s3 (t)’s amplitude has been distorted. Signals s2 (t) and
s3 (t) have both features in common with s1 (t). The object
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Fig. 3. This Figure represents the three MLT represented in

different systems of observation. The black continuous line

stands for MLT [s1], the black dash-dotted line MLT [s2]
and MLT [s3] is represented by the dashed line. One can

observe the scatterplots through 4 different perspectives: in

three dimension in (a), in the (â, ĉ) plan (b), in the (â,Γ) plan
(c) and in the (ĉ,Γ) plan (d).

of the present study is to show that it is possible to extract

those features and be able to compare them to characterize

transients.

The multi-lag phase space recurrence is performed using

lags varying from 1 to 20 samples (in this example the in-

terval ∆ covers about 65 samples, meaning that performing

the samples embedding process with more than 20 samples

would not be significant) for the three signals. The sets of

parameters Âi and Ĉi (i ∈ 1, ..., 3) are then extracted from
the three trajectories modeling. The 3-dimensionalMLT are

presented in Figure 3.

As a matter of fact, the three MLT are different but in

Figure 3 (b) which shows the (â, ĉ) plan, it can be seen that
s1 (t) and s2 (t)’s MLT somehow overlap which indicates

that those trajectories have similarities: for lags that are dif-

ferent, their scatterplot’s trends can be modeled by the same

third degree polynomial. This is explained by the fact that one

of the signal is the dilated version of the other.

In order to compare the similarity between those scatter-

plots, the loops that overlap are modeled by an ellipse(Figure

4). To do so, the main loops coordinates are first extracted

(the longest one in term of samples) in the (â, ĉ) plan and

are then modeled. They are now resumed by only four pa-

rameters: their center coordinates and two integers: da and

db respectively representing the semi-major and semi-minor

axis.
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Fig. 4. This Figure represents the three MLT sketched in

the (â, ĉ) plan. The crosses and the continuous line are for

MLT [s1], the circles and dash-dotted line forMLT [s2] and
the asterisks and dashed line for MLT [s3]. The lines cor-

respond the selected loops which enable the comparison be-

tween signals.

An ellipse centered around 0 which major axis is parallel

to the x axis can be modeled as follows:

F (x, y) = 0
with F (x, y) = Γx2 + Λy2 − 1

(15)

with Γ = 1
d2
a

, Λ = 1
d2

b

and da > db > 0.

To estimate da and db, a least square estimation is per-

formed by minimizing the following sum:

Argmin
Γ,Λ

M∑

i=1

F 2 (x, y) (16)

with M the cardinal of samples used to perform the least

square fitting (number of samples selected in the loop).

In the present study, the loops are not zero centered and

their major axis is not parallel to the â axis. The data is first

centered and rotated, then a least square estimation is per-

formed for the three signals. The results are shown in Figure

5. The ellipse models obtained for s1 (t) and s2 (t) are almost
identical: their centers are really close, as their semi-major

and semi-minor axis and their major axis inclination. On the

contrary, the ellipse model obtained for s3 (t) is very differ-
ent. Experiment results are described in Figure 6. They do

not have close centers, the representative axis are not of the

same length and their major axis are different. As a way of

conclusion, method has been able to enlight the fact that there

exists a close relationship between s1 (t) and s2 (t).
In order to provide a comparison with a method of ref-

erence, a wavelet decomposition of the three signals is per-

formed using ’Morlet’ wavelet. The results are presented in

Figure 7. As there is no doubt that s2 (t) is different from

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

a

c

Fig. 5. This Figure represents the three MLT sketched in

the (â, ĉ) plan. The crosses are for MLT [s1], the circles-
for MLT [s2] and the asterisks for MLT [s3]. The ellipses

represent the modeling of the selected loops.

Signal Distance center da diff db diff angle

s2 1.7e-4 2.38% 1.01% 0.68%

s3 9e-3 13.18% 202.42% 167.25%

Fig. 6. This table presents the results obtained for s2 (t) and
s3 (t) in regards of those obtained for s1 (t). The first col-

umn displays the euclidian distance between the scatterplots

centers. The second and third columns display the percent-

age difference between the semi-major and semi-minor axis

obtained with the least square estimation. The fourth column

represents the percentage difference between the inclinations

of the ellipses major axis.

the other two, the results for s1 (t) and s3 (t) are really sim-
ilar and it is difficult to say at first look that they are very

different. The wavelet decomposition does not allow to dis-

criminate transients as well as the multi-lag representation.

5. PERSPECTIVES AND CONCLUSION

The problem of transient detection has already been well cov-

ered by the literature and in particular by using phase space

diagrams. Indeed those diagrams enable the extraction of pat-

tern reccurences which can be assimilated to transients occur-

ing in time serie (for example, electric arcing). In relation to

previous work, it can be noted that Birleanu et al. have devel-

opped VeSP (vector samples processing) based tools which

revealed to be very useful for transient detection, noise reduc-

tion and fundamental frequency estimation [10]. They also

showed that it was possible to analyze attenuations and dilata-

tions happening in signals thanks to recurrence plot analysis.

This paper extended the phase space representation con-
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Fig. 7. This Figure represents the wavelet transform of s1 (t)
(a), s2 (t) (b) and s3 (t) (c). While the discriminate between

s1 (t) and s2 (t) is quite obvious, it is not that simple to differ-
entiate s3 (t) from s1 (t) which share a close frequency con-
tent.

cept by combining representations obtained with different lag

values and proposed a method to extract features from the sig-

nals enabling the discrimination or the connection of two near

similar transients. Future works will propose a method to find

out more features to extract and also works on real world sig-

nals.
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