Published June 30, 2016 | Version v1
Thesis Open

Sustainability of CAPS Social Network: a Network Analysis Approach using Agent-Based Simulation

  • 1. Utrecht University

Contributors

  • 1. Hogeschool van Arnhem en Nijmegen
  • 2. University of Amsterdam

Description

This paper focuses on analyzing the structure of several egocentric networks of collective awareness platforms for sustainable innovation (CAPS). It answers the question whether the network structure is determinative for the sustainability of the created awareness. Based on a thorough literature review a model is developed explaining and operationalizing the concept of sustainability of a social network in terms of importance, effectiveness and robustness. By developing an agent-based model, the expected outcomes after the dissolution of the CAPS are predicted and compared with the results of a network with the same participants but with different ties. Twitter data from different CAPS is collected and used to feed the simulation. The results show that the structure of the network is of key importance for its sustainability. With this knowledge and the ability to simulate the results after network changes have taken place, CAPS can assess the sustainability of their legacy and actively steer towards a longer lasting potential for social innovation. The retrieved knowledge urges organizations like the European Commission to adopt a more blended approach focusing not only on solving societal issues but on building a community to sustain the initiated development.

Files

20160630_Final_MscThesis_Gerbrands.pdf

Files (1.6 MB)

Name Size Download all
md5:0f005e9ada874a172e318d2ef89fcffb
1.6 MB Preview Download

Additional details

References

  • Agresti, A., & Agresti, B. F. (1978). Statistical Analysis of Qualitative Variation. In Sociological Methodology (Vol. 9, pp. 204–237).
  • Aizstrauta, D., Ginters, E., & Eroles, M.-A. P. (2015). Applying Theory of Diffusion of Innovations to Evaluate Technology Acceptance and Sustainability. Procedia Computer Science, 43(0), 69–77. http://doi.org/http://dx.doi.org/10.1016/j.procs.2014.12.010
  • Alhabash, S., & McAlister, a. R. (2014). Redefining virality in less broad strokes: Predicting viral behavioral intentions from motivations and uses of Facebook and Twitter. New Media & Society, 1–23. http://doi.org/10.1177/1461444814523726
  • Anand, S., & Sen, A. (2000). Human development and economic sustainability. World Development, 28(12), 2029–2049. http://doi.org/10.1016/S0305-750X(00)00071-1
  • Arniani, M., Badii, A., Liddo, A. De, Georgi, S., Passani, A., Piccolo, L. S. G., & Teli, M. (2014). Collective Awareness Platform for Sustainability and Social Innovation: An Introduction. Retrieved from http://booksprints-for-ict-research.eu/wp-content/uploads/2014/07/BS5-CAPS-FIN-003.pdf
  • Bajpai, K. (2011). A Framework for Analyzing Collective Action Events on Twitter. The 8th International ISCRAM Conference, (May).
  • Barabasi, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512. http://doi.org/DOI 10.1126/science.286.5439.509
  • Barabási, A.-L., & Bonabeau, E. (2003). Scale-Free Networks. Scientific American, (May), 50–59.
  • Baraglia, R., Dazzi, P., Mordacchini, M., & Ricci, L. (2013). A peer-to-peer recommender system for self-emerging user communities based on gossip overlays. Journal of Computer and System Sciences, 79(2), 291–308. http://doi.org/10.1016/j.jcss.2012.05.011
  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008(10), 6. http://doi.org/10.1088/1742-5468/2008/10/P10008
  • Borodin, A., Filmus, Y., & Oren, J. (2010). Threshold Models for Competitive Influence in Social Networks. Science, 1–15.
  • Boudin, L., Salvarani, F., Boudin, L., & Salvarani, F. (2015). Opinion dynamics : kinetic modelling with mass media , application to the Scottish independence referendum. Physica A, 444, 448–457. http://doi.org/10.1016/j.physa.2015.10.014
  • Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of Mathematical Sociology, 25(2), 163–177. http://doi.org/10.1080/0022250X.2001.9990249
  • Centola, D. (2013). A Simple Model of Stability in Critical Mass Dynamics. Journal of Statistical Physics, 151(1-2), 238–253. http://doi.org/10.1007/s10955-012-0679-3
  • Chang, C. (2015). Self-construal and Facebook activities: Exploring differences in social interaction orientation. Computers in Human Behavior, 53, 91–101. http://doi.org/10.1016/j.chb.2015.06.049
  • Christensen, C. (2011). Twitter Revolutions? Addressing Social Media and Dissent. The Communication Review, 14(3), 155–157. http://doi.org/10.1080/10714421.2011.597235
  • Cohen, R., Erez, K., Ben-Avraham, D., & Havlin, S. (2000). Resilience of the Internet to random breakdowns. Physical Review Letters, 85(21), 4626–4628. http://doi.org/10.1103/PhysRevLett.85.4626
  • Couture-Beil, A. (2014). rjson: JSON for R. Retrieved from https://cran.r-project.org/package=rjson
  • Davis, F. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of ManMachine Studies. http://doi.org/10.1006/imms.1993.1022
  • DeGroot, M. H. (1974). Reaching a Consensus. Journal of American Statistical Association, 69(345), 118–121.
  • Diaz-aviles, E., Lam, H. T., Pinelli, F., Braghin, S., Gkoufas, Y., Berlingerio, M., & Calabrese, F. (2014). Predicting User Engagement in Twitter with Collaborative Ranking. Proceedings of the 2014 Recommender Systems Challenge on - RecSysChallenge '14, 41–46. http://doi.org/10.1145/2668067.2668072
  • Doong, S. H. (2016). Predicting Twitter Hashtags Popularity Level. Proceedings of 49th Hawaii International Conference on System Sciences, 1959–1968. http://doi.org/10.1109/HICSS.2016.247
  • Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469–493. http://doi.org/10.1016/0047-2484(92)90081-J
  • Fan, L., & Suh, Y. H. (2014). Why do users switch to a disruptive technology? An empirical study based on expectation-disconfirmation theory. Information and Management, 51(2), 240–248. http://doi.org/10.1016/j.im.2013.12.004
  • Geddes, C. (2011). Achieving critical mass in social networks. Journal of Database Marketing & Customer Strategy Management, 18(2), 123–128. http://doi.org/10.1057/dbm.2011.14
  • Gentry, J. (2015). twitteR: R Based Twitter Client. Retrieved from https://cran.r-project.org/package=twitteR
  • Go, E., & You, K. H. (2016). But not all social media are the same: Analyzing organizations' social media usage patterns. Telematics and Informatics, 33(1), 176–186. http://doi.org/10.1016/j.tele.2015.06.016
  • Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling users' activity on twitter networks: Validation of Dunbar's number. PLoS ONE, 6(8). http://doi.org/10.1371/journal.pone.0022656
  • Gruzd, a., Wellman, B., & Takhteyev, Y. (2011). Imagining Twitter as an imagined community. American Behavioral Scientist, 55(10), 1294–1318. http://doi.org/10.1177/0002764211409378
  • Harris, G. P. (2007). Seeking Sustainability in an Age of Complexity. Cambridge: Cambridge University Press.
  • Hollenbaugh, E. E., & Ferris, A. L. (2014). Facebook self-disclosure: Examining the role of traits, social cohesion, and motives. Computers in Human Behavior, 30, 50–58. http://doi.org/10.1016/j.chb.2013.07.055
  • Jackson, M. O. (2008). Social and Economic Networks. Princeton, NJ: Princeton University Press.
  • Jalili, M. (2012). Social power and opinion formation in complex networks. Physica A, 392(4), 1–8. http://doi.org/10.1016/j.physa.2012.10.013
  • Kim, H., & Bearman, P. S. (1997). The Structure and Dynamics of Movement Participation. American Sociological Review, 62(1), 70–93. http://doi.org/10.2307/2657453
  • Kindler, A., Solomon, S., & Stauffer, D. (2013). Peer-to-peer and mass communication effect on opinion shifts. Physica A: Statistical Mechanics and Its Applications, 392(4), 785–796. http://doi.org/10.1016/j.physa.2012.10.038
  • Knoke, D., & Yang, S. (2008). Social Network Analysis (Second Edi). Thousand Oaks, CA: SAGE Publications.
  • Lee, Y., Lee, J., & Hwang, Y. (2015). Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Computers in Human Behavior, 51, 418–428. http://doi.org/10.1016/j.chb.2015.05.021
  • Li, C. Y. (2013). Persuasive messages on information system acceptance: A theoretical extension of elaboration likelihood model and social influence theory. Computers in Human Behavior, 29(1), 264–275. http://doi.org/10.1016/j.chb.2012.09.003
  • Lu, Y., Zhang, P., Cao, Y., Hu, Y., & Guo, L. (2014). On the frequency distribution of retweets. Procedia Computer Science, 31, 747–753. http://doi.org/10.1016/j.procs.2014.05.323
  • Ma, Z., Sun, A., & Cong, G. (2013). On Predicting the Popularity of Newly Emerging Hashtags in Twotter. Journal of the American Society for Information Science and Technology, 64(7), 1399–1410. http://doi.org/10.1002/asi
  • Marwell, G., Oliver, P., & Prahl, R. (1988). Social Networks and Collective Action: A Theory of Critical Mass III.pdf. American Journal of Sociology, 94(3), 502–534.
  • Mcpherson, M., Smith-lovin, L., & Cook, J. M. (2016). BIRDS OF A FEATHER : Homophily in Social Networks, 27(2001), 415–444.
  • Men, L. R., & Tsai, W.-H. S. (2015). Infusing social media with humanity: Corporate character, public engagement, and relational outcomes. Public Relations Review, 41(3), 395–403. http://doi.org/10.1016/j.pubrev.2015.02.005
  • Morozov, E. (2009). Iran: Downside to the "Twitter Revolution." Dissent, 56(4), 10–14. http://doi.org/10.1353/dss.0.0092
  • Mouakket, S. (2015). Factors influencing continuance intention to use social network sites: The Facebook case. Computers in Human Behavior, 53, 102–110. http://doi.org/10.1016/j.chb.2015.06.045
  • Mrvar, A., & Batagelj, V. (2016). Pajek / Pajek XXL. Ljubljana: University of Ljubljana. Retrieved from http://mrvar.fdv.uni-lj.si/pajek/
  • Newman, M. E. J. (2004). Detecting community structure in networks. European Physical Journal B, 38(2), 321–330. http://doi.org/10.1140/epjb/e2004-00124-y
  • Nguyen, H., & Zheng, R. (2014). A data-driven study of influences in Twitter communities. 2014 IEEE International Conference on Communications, ICC 2014, 3938–3944. http://doi.org/10.1109/ICC.2014.6883936
  • Nik-Bakht, M., & El-Diraby, T. E. (2015). Sus-tweet-ability: Exposing public community ׳s perspective on sustainability of urban infrastructure through online social media. International Journal of Human-Computer Studies, 1–19. http://doi.org/10.1016/j.ijhcs.2015.11.002
  • Oh, H. J., Ozkaya, E., & LaRose, R. (2014). How does online social networking enhance life satisfaction? The relationships among online supportive interaction, affect, perceived social support, sense of community, and life satisfaction. Computers in Human Behavior, 30, 69–78. http://doi.org/10.1016/j.chb.2013.07.053
  • Oliver, P., Marwell, G., & Teixeira, R. (1985). A Theory of the Critical Mass. I. Interdependence, Group Heterogeneity, and the Production of Collective Action. American Journal of Sociology, 91(3), 522. http://doi.org/10.1086/228313
  • Olson, M. (1965). The Logic of Collective Action: Public Goods and the Theory of Groups. Cambridge: Harvard University Press.
  • Purves, D. (2008). Principles of cognitive neuroscience. Sunderland, MA: Sinauer Associates Inc.
  • R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
  • Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6–30. http://doi.org/10.1108/JEIM-04-2012-0011
  • Robson, C. (2011). Real World Research 3e. Wiley. Wiley. Retrieved from http://www.amazon.co.uk/Real-World-Research-Colin-Robson/dp/1405182407
  • Rogers, E. M. (1995). Diffusion of innovations. Newyork Free Press. http://doi.org/citeulike-article-id:126680
  • Romm, C., Pliskin, N., & Clarke, R. (1997). Virtual communities and society: Toward an integrative three phase model. International Journal of Information Management, 17(4), 261–270. http://doi.org/10.1016/S0268-4012(97)00004-2
  • Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. Geneseo: Open SUNY Textbooks.
  • Segerberg, A., & Bennett, W. L. (2011). Social Media and the Organization of Collective Action: Using Twitter to Explore the Ecologies of Two Climate Change Protests. The Communication Review, 14(3), 197–215. http://doi.org/10.1080/10714421.2011.597250
  • Shapiro, C., & Varian, H. R. (1999). Information rules: A Strategic Guide to the Networked Economy. ACM SIGMOD Record (Vol. 32). Boston, MA: Harvard Business School Press. http://doi.org/10.1145/776985.776997
  • Smith, B. G. ., & Gallicano, T. D. . (2015). Terms of engagement: Analyzing public engagement with organizations through social media. Computers in Human Behavior, 53, 82–90. http://doi.org/10.1016/j.chb.2015.05.060
  • Social Media Research Foundation. (2014). NodeXL; Network Overview, Discovery and Exploration for Excel. Retrieved from http://nodexl.codeplex.com/Wikipage?ProjectName=nodexl\nhttp://nodexl.codeplex.com/
  • Venkatesh, V., & Davis, F. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. http://doi.org/10.1287/mnsc.46.2.186.11926
  • Vogler, R. (2014). RTwitterAPI: Facilitates GET requests to Twitter API. Retrieved from https://github.com/joyofdata/RTwitterAPI
  • Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635. http://doi.org/10.1016/j.joi.2010.07.002
  • Wang, B., Tang, H., Guo, C., & Xiu, Z. (2005). Entropy Optimization of Scale-Free Networks Robustness to Random Failures, (February 2008). http://doi.org/10.1016/j.physa.2005.08.025
  • Wang, G., Liu, Y., Li, J., Tang, X., & Wang, H. (2015). Superedge coupling algorithm and its application in coupling mechanism analysis of online public opinion supernetwork. Expert Systems with Applications, 42(5), 2808–2823. http://doi.org/10.1016/j.eswa.2014.11.026
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Chemistry & …, 825. http://doi.org/10.1017/CBO9780511815478
  • Wilensky, U. (1999). NetLogo 5.3.1. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Retrieved from http://ccl.northwestern.edu/netlogo/
  • Wilensky, U., & Rand, W. (2015). An Introduction to Agent-Base Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. Cambridge: The MIT Press.
  • Xu, W. W., Sang, Y., Blasiola, S., & Park, H. W. (2014). Predicting Opinion Leaders in Twitter Activism Networks: The Case of the Wisconsin Recall Election. American Behavioral Scientist, 0002764214527091–. http://doi.org/10.1177/0002764214527091
  • Yu, X., & Xie, J. Q. (2014). Modeling Mutual Influence Between Social Actions and Social Ties. The 25th International Conference on Computational Linguistics, 848–859.
  • Zhang, P., Wang, X., & Li, B. (2013). On predicting Twitter trend: factors and models. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 1427–1429. http://doi.org/10.1145/2492517.2492576