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Parallelized Structures for MIMO FBMC under Strong
Channel Frequency Selectivity

Xavier Mestre, David Gregoratti

Abstract—A novel architecture for MIMO transmission and reception
of filterbank multicarrier (FBMC) modulated signals under strong fre-
quency selectivity is presented. The proposed system seeks to approximate
an ideal frequency-selective precoder and linear receiver by Taylor expan-
sion, exploiting the structure of the analysis and synthesis filterbanks. The
resulting architecture is implemented by linearly combining conventional
MIMO linear transceivers, which are applied to sequential derivatives
of the original filterbank. The classical per-subcarrier precoding/linear
receiver configuration is obtained as a special case of this architecture,
when only one stage is fixed at both transmitter and receiver. An
asymptotic expression for the resulting intersymbol/intercarrier (ISI/ICI)
distortion is derived assuming that the number of subcarriers grows
large. This expression can in practice be used in order to determine the
number of parallel stages that need to be implemented in the proposed
architecture. Performance evaluation studies confirm the substantial
advantage of the proposed scheme in practical frequency-selective MIMO
scenarios.

Index Terms—Filter-bank multi-carrier modulation, MIMO

I. INTRODUCTION

The increasing demand for high data rate wireless services has
recently motivated a renewed interest in spectrally efficient signalling
methodologies in order to overcome the current spectrum scarcity.
In this context, filterbank multicarrier (FBMC) modulations have
become very strong candidates to guarantee an optimum spectrum
usage while maintaining the nice processing properties of multicarrier
signals, such as reduced complexity equalization. Unlike cyclic-prefix
OFDM (CP-OFDM), FBMC modulations do not require the use
of a cyclic prefix and can be constructed via spectrally contained
pulse shaping architectures. This significantly increases the spectral
efficiency of the system, improves the spectral localization of the
transmitted signal and reduces the need for guard bands. FBMC
modulations can be combined with multi-antenna MIMO technology
in order to boost the link system capacity, leading to an extremely
high spectral efficiency.
Even though several alternative FBMC modulation formats have

been proposed over the last few years, the most interesting one from
the point of view of spectral efficiency remains to be FBMC based on
offset QAM (FBMC/OQAM) [1], [2]. This modulation is constructed
via a critically sampled uniformly spaced filterbanks modulated by
real-valued symbols. Given the fact that there is no CP and since the
filterbanks are critically sampled, FBMC/OQAM achieves the largest
possible spectral efficiency in the whole class of FBMC modulations.
Furthermore, by conveniently selecting the prototype filters at the
transmit and receive side, one can perfectly recover the transmitted
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symbols at the receiver in the presence of a noiseless frequency flat
channel. For this reason, this modulation is widely considered as the
most prominent FBMC modulation.
A second important class of FBMC modulations are typically

referred to as Filtered Multi Tone (FMT) or FBMC/QAM [3], [4].
The idea behind these modulations consists in directly modulating
complex QAM symbols instead of real-valued ones, avoiding again
the introduction of a CP. The approach is clearly more versatile
than FBMC/OQAM and since the signalling is carried out on
complex symbols, the modulation operative becomes very similar to
classical CP-OFDM. However, it can be seen that if the filterbank
is critically sampled it is not possible to perfectly recover the
transmitted symbols, even in the presence of a noiseless frequency
flat channel. For this reason, FBMC/QAM is typically implemented
using oversampled filterbanks1, which clearly reduce the spectral
efficiency of the system. As a consequence of using oversampled
filterbanks, the different constituent filters have little overlap in the
frequency domain, which minimizes potential problems in terms of
inter-carrier interference (ICI) with respect to FBMC/OQAM. For all
these reasons, FBMC/QAM is today a valid alternative employed in
commercial systems such as the professional mobile radio system
TETRA Enhanced Data System (TEDS) [6]. However, due to the
introduction of redundancy (oversampling) in the transmit/receive
filterbanks, FBMC/QAM can only achieve a portion of the spectral
efficiency of a classical FBMC/OQAM modulation.
Several other alternative FBMC modulations have been proposed

in the literature, although they typically rely on the introduction
of CP, which simplifies the equalization but clearly incurs in a
significant spectral loss. This CP is not needed in FBMC modu-
lations, because under relatively mild channel frequency selectivity
the channel response can be assumed to be approximately flat within
each subcarrier band. Hence, a single-tap per-subcarrier weighting
is in principle sufficient to equalize the system, as it is the case
in CP-OFDM. Unfortunately, in the presence of strong channel
frequency selectivity, the channel can no longer be approximated as
flat within each subcarrier pass band, and FBMC modulations require
more sophisticated equalization systems (see e.g. [7] and references
therein for a review of FBMC equalization techniques). In practical
terms, if the receiver keeps using a single-tap per-subcarrier equalizer
in the presence of a highly frequency-selective channel, its output
will appear contaminated by a residual distortion superposed to the
background noise. In FBMC/QAM modulations, this distortion will
eminently be related to the inter-symbol-interference (ISI) caused by
the channel within each subband. In FBMC/OQAM modulations, the
strong overlap between the different subband filters will result in both
ICI and ISI at the output in the presence of a frequency-selective
channel. Consequently, the effect of channel frequency selectivity

1By critical sampling we mean that the signals at the input of the synthesis
filterbank is interpolated by a factor that is equal to the number of subcarriers.
When the interpolation factor is higher than the number of subcarriers, we
say that the filterbank is oversampled (also overinterpolated). FBMC/QAM
typically uses oversampling ratios between 5/4 and 3/2 [5], [3], which may
be comparable to the efficiency loss in CP-OFDM due to the insertion of the
cyclic prefix.
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becomes more problematic in FBMC/OQAM modulations, a fact that
has prevented a more widespread acceptance of this modulation in
spite of its clear superiority in terms of spectral efficiency.
This residual distortion under channel frequency selectivity is

much more devastating in MIMO transmissions, basically due to
a superposition effect of the multiple parallel antennas/streams [8],
[9], [10]. This incremental distortion effect in MIMO contexts has
traditionally been mitigated using complex receiver strategies, such as
sophisticated equalization architectures [11], [12], [13], or algorithms
based on successive interference cancellation [14], [15], [13]. More
recent approaches have additionally considered the optimization
of the transmitter architecture in order to mitigate the effect of
the channel frequency selectivity. For example, [16] considers the
optimization of the precoder/linear receiver pair in order to achieve
spatial diversity while minimizing the residual distortion at the output
of the receiver. A related approach can be found in [17], [18], where a
polynomial-based (multi-tap) SVD precoder is applied together with
an equivalent multi-tap equalizer at the receiver.
Here we take an approach similar to the one in [19] and propose

a general architecture that can be used to implement multiple MIMO
transceivers (precoder plus linear receiver) in highly frequency-
selective channels. Our approach is substantially different from the
one in [16], [17], [18], because rather than focusing on a particu-
lar objective to optimize the transceiver, the proposed architecture
provides a general framework that can be used to construct a
variety of MIMO transceivers. On the other hand, the results in
this paper generalize [19] in several important aspects, even under
the SISO configuration. First, the approach in [19] considers the
specific case where the transmitter does not apply any precoding/pre-
equalization processing, while the receiver performs direct channel
inversion. Here, we consider a much more general setting with
a generic precoder/pre-equalizer at the transmitter together with
the corresponding equalizer at the receiver. Second, the asymptotic
performance analysis in [19] is based on the assumption that the
prototype pulses are perfect reconstruction (PR) filters. Here, the
analysis is generalized to the case where the prototypes are not
necessarily PR, which is typically the case in practice. Finally, the
analysis in [19] is only valid for finite impulse response (FIR) channel
models. Here, the analysis is generalized to more general channel
forms, not necessarily having finite impulse response.
Before going into the technical development, it is worth pointing

out that the present study assumes linear, time invariant and perfectly
estimated channel responses. These assumptions are not perfectly
met in a practical situation, mainly because of the presence of
amplifier nonlinearities, Doppler effects and the use of finite training
sequences. Still, we assume that all these imperfections are negligible
for the sake of analytical tractability. The detrimental effect of these
nonidealities could in principle be reduced by increasing the cost
of the power amplifier and by employing channel estimates are
refreshed frequently enough and obtained with a sufficiently large
training sequence. However, in practice these ideal conditions do not
hold, and therefore some degradation in the performance should be
expected. Previous analyses establish that the negative effect of these
non-idealities in FBMC is similar to the one in CP-OFDM [20],
[21], [22], which leads us to believe that the associated performance
degradation will not be dramatic.
The rest of the paper is organized as follows. Section II presents

the general MIMO signal model and the ideal frequency-selective
transceiver that is considered in this paper and Section III presents the
proposed parallel multi-stage approach for general FBMC systems.
The asymptotic performance of the proposed MIMO architecture
is analyzed in Section IV for general FBMC/OQAM modulations
under the assumption that the number of subcarriers grows large.

Finally, Section V provides a numerical evaluation of the multi-
stage technique and Section VI concludes the paper. All technical
derivations have been relegated to the appendices.

II. SIGNAL MODEL

We consider a MIMO system with  transmit and  receive
antennas. Let H() denote an  ×  matrix containing the
frequency response of the MIMO channels, so that the ( )th
entry of H() contains the frequency response between the th
transmit and the th receive antennas. We assume that the MIMO
system is used for the transmission of  parallel signal streams,
1 ≤  ≤ min { }, which correspond to FBMC modulated
signals. More specifically, we will denote by s() an ×1 column
vector that contains the frequency response of the signal transmitted
at each of the  parallel streams. Hence, each entry of the vector
s() is the Fourier transform of a FBMC modulated symbol stream.
Let us assume that the transmitter applies a frequency-dependent

linear precoder, which will be denoted by the  ×  matrix
A(). The signal transmitted through the  transmit antennas can
be expressed as

x() = A()s() (1)

where x() is an  × 1 column vector containing the frequency
response of the transmitted signal. On the other hand, let y() denote
an  × 1 column vector containing the frequency response of the
received signals in noise, namely

y() = H()x() + n()

where n() is the additive Gaussian white noise. We assume that the
receiver estimates the transmitted symbols by linearly transforming
the received signal vector y(). More specifically, we consider a
certain  ×  receive matrix B() so that the symbols are
estimated by

ŝ() = B

()y()

The whole ideal frequency-selective transceiver chain is implemented
in Fig. 1 for a FBMC-modulated system. The number of subcarriers
is fixed to be even, and will be denoted by 2 .
The main problem with the MIMO architecture presented in Fig.

1 comes from the fact that, in practice, the frequency-dependent
matrices A() B() need to be implemented using real filters.
However, these filters have very large (or even infinite) impulse
responses, which may be difficult to implement in practice. This
can partly be solved in multicarrier modulations, as long as it can
be assumed that the frequency selectivity is not severe, so that
the channel response is approximately flat at on each subcarrier
pass band. When this is the case, one can construct the MIMO
precoder/receiver operations by applying the matricesA()B()
to each subcarrier stream, where here  denotes the central fre-
quency associated with the th subcarrier. This is further illustrated
in Fig. 2 for the particular case of  =  = 2 antennas in a
FBMC modulation transmission. Observe that the traditional (per-
subcarrier) implementation in Fig. 2 is the result of changing the
position of the precoder/linear receiver with respect to the FBMC
modulator/demodulator in the ideal implementation.
As pointed out above, the traditional solution essentially relies

on the fact that the channel frequency selectivity is mild enough
to guarantee that each sub-carrier observes a frequency non-selective
channel. However, under severe frequency selectivity, the system will
suffer from a non-negligible distortion that will critically impair the
performance of the MIMO system. This will be confirmed below,
both analytically and via simulations. Next, we propose an alternative
solution that tries to overcome this effect.
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Fig. 1. Ideal implementation of a frequency selective precoder A() and a linear receiver B() in a FBMC modulation system with 2 subcarriers.
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Fig. 2. Traditional implementation of the frequecy-selective linear MIMO transmitter and receiver in multicarrier modulations, for the specific case of  = 2
transmit antennas,  = 2 receive antennas and 2 subcarriers.

III. PROPOSED APPROACH

In this section we propose an alternative solution that, with some
additional complexity, significantly mitigates the distortion caused by
the channel frequency selectivity. We assume that the transmit and
receive filterbanks are constructed by modulating a given prototype
filter, which may be different at the transmit and receive sides. We
will denote as [] and [] the real-valued impulse responses of
the transmit and receive prototype pulses, with Fourier transforms
respectively denoted by  () and  (),  ∈ R2Z. Hence,
the frequency response of the th filter in the transmit filterbank
is assumed to be equal to  ( − ) where 1     2 denote
the subcarrier frequencies, assumed to be equispaced along the trans-
mitted bandwidth, namely  = 2 ( − 1)  (2). The following
approach could also be applied to the situation where  () is
different at each subcarrier, as well as in situations where these
subcarriers are not equispaced. However we prefer to concentrate
on the simpler case of uniform filterbanks to simplify the exposition.
Let us consider the combination of the FBMC transmission

scheme with the frequency-selective MIMO precoder A(). More
specifically, consider the th subcarrier associated with the  th
MIMO signal stream that is sent through the  th transmit antenna.
Assuming that the ideal frequency-selective precoder matrix A() is
implemented (Fig. 1), this stream will effectively go through a trans-
mit linear system with equivalent frequency response proportional
to

 ( − ) {A()}  
The traditional (per-subcarrier) implementation of this precoder is
based on the assumption thatA() is almost flat along the bandwidth
of  ( − ) so that we can approximate

 ( − ) {A()}  '  ( − ) {A()}   (2)

In this situation, we can apply a constant precoder A() to all the
symbols that go through the th subcarrier, which means that we
can in practice change the order of precoder and FBMC modulator
with respect to the ideal implementation (cf. Fig. 2). Under strong

frequency selectivity of the ideal precoder A(), the approximation
in (2) does not hold anymore and a more accurate description of
A() around  is needed.
Assume that the entries of the precoding matrix A() are analytic

functions of , so that they are expressible as their Taylor series
development around , namely

A() =

∞X
=0

1

!
A
()
() ( − )



where A()() denotes the th derivative of A() evaluated at  =
. The idea behind the classical precoder implementation in (2) and
in Fig. 2 is to truncate this Taylor series development and to consider
only its first term ( = 0). Here, we suggest to go a bit further and
consider the truncation of the above series representation to include
its first  terms ( denoting transmit side), so that the transmitter
filter has an effective frequency response equal to

A() '
−1X
=0

1

!
( − )


A
()
() (3)

for  sufficiently close to . The main advantage of extending this
truncation to the case   1 comes from the fact that one can
effectively implement the above filter by using parallel polyphase
FBMC modulators corresponding to the  sums in (3), so that
each of the parallel precoders consists of single-tap per-subcarrier
implementations. To see this, assume that the prototype pulse []
is a sampled version of an original analog waveform () and define
as ()[] a sampled version of ()(), namely the th derivative of
the analog waveform (). These definitions will be more formally
presented in Section IV. Then, under certain regularity conditions on
the waveform (), the Fourier transform of the sequence ()[] can
be approximated for large  as


()
() ' (2)


 ()  (4)
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Hence, by conveniently rewriting (3), we see that we can approximate

 ( − )A() '

'
−1X
=0

1

!

µ −
2

¶

()
( − )A

()
() (5)

Now, observe that each term of the above sum has exactly the
same form as the first order (single-tap per-subcarrier) precoder
 ( − )A(), replacing the actual precoder matrix A()
and the original prototype pulse  () by their derivative-associated
counterparts A()(),  () (). From all this, we can conclude that
the  -term truncation of the ideal transmit precoder frequency
response can be generated by combining a set of  parallel
conventional precoders. This is further illustrated in Fig. 3, where
we represent the suggested implementation of the transmit precoder
when the number of parallel stages was fixed to  = 2 and the
number of transmit antennas to  = 2. We have represented in
red the additional stage that needs to be superposed to the original
one (in black), which is the same as in Fig. 2

...
...

...

...
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Fig. 3. Proposed implementation of the frequecy-selective precoder for the
specific case of  = 2 transmit antennas and  = 2 parallel stages.

We can follow the same approach in order to approximate the ideal
frequency-selective linear receiver matrix B() in combination with
the receive prototype pulse. Fig. 4 illustrates the proposed architecture
for the simple case of  = 2 receive antennas and  = 2

parallel stages. From all the above, we can conclude that we can
approximate the ideal frequency-selective precoder/linear receiver as
depicted in Fig. 1 by simply increasing the number of parallel stages
( , ) that are implemented at the transmitter and at the receiver.
In the following section we analyze the performance of the proposed
transceiver architecture in terms of the residual ISI/ICI distortion at
the output of the receiver.
Let us now provide a more formal description of the proposed

algorithm. Consider the transmission of  complex-valued (QAM)
multicarrier symbols through each of the MIMO streams. We will
denote by S,  = 1    , a 2× matrix that contains, at each
of its columns, the multicarrier symbols that are transmitted through
the th MIMO stream. Let Z,  = 1    , denote the 2 × ̃

matrix of received samples corresponding to the reception of the th
MIMO stream (see further Fig. 1), where ̃ is the total number of
non-zero received samples associated with the transmission of the 
multicarrier symbols (note that ̃ ≥  due to the memory of the
filterbank). Observe that Z will inherently have contributions from
all the symbol matrices S1    S .

Remark 1 In what follows, given a general frequency-
dependent quantity  = () we define Λ () =

 {(1)     (2)}, i.e. a diagonal matrix containing
the value of the function  at the points 1     2 . We will
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...
...

...
...

...
...

...

Fig. 4. Proposed implementation of the frequecy-selective linear receiver for
the specific case of  = 2 receive antennas and  = 2 parallel stages.

also write  = {H ()}


, ()
 

= 
()
 

() =n
A()()

o
 

and 
()
 = 

()
() =

n
B()()

o


.

We will sometimes omit the dependence on  in several frequency-
dependent quantities when this fact is clear from the context.

Let us first provide a formal description of the receive signal
samples Z associated with the th MIMO symbol stream under the
traditional per-subcarrier design in Figure 2. The  th symbol stream
matrix S is precoded as Λ

¡
 

¢
S for each of the transmit

antennas  = 1     and FBMC-modulated. The signal that is
transmitted through the  antenna goes through the channel

and is received by the  th antenna and FBMC-demodulated. We will
denote by

Z


¡
Λ
¡
 

¢
S

¢
(6)

the 2 × ̃ matrix of received samples at the output of the
corresponding FBMC demodulator, where   are the prototype
filters used at the transmitter and the receiver respectively. In order to
recover the original symbols associated with the th MIMO stream,
a multiplicative coefficient is finally applied at this signal at the per-
subcarrier level, so that the matrix in (6) is left multiplied by the
diagonal Λ

¡
∗

¢
. The total received signal associated with the

th MIMO stream contains the contribution of all transmit streams,
all transmit and all receive antennas, so that it can be expressed as

Z =
X
=1

X
=1

X
=1

Λ
¡

∗


¢Z


¡
Λ
¡
 

¢
S

¢
(7)

plus some additive noise that we omit in this discussion. Now, if
the channel and the precoder are sufficiently flat in the frequency
domain, one may approximate (see Appendix A for a more formal
exposition)

Z


¡
Λ
¡
 

¢
S

¢ ' Λ
¡
 

¢Y (S )
(8)

where Y (S ) = Z1
 (S ) is the matrix of FBMC-

demodulated samples under an ideal SISO channel. Inserting this
approximation into (7) we see that

Z '
X

=1

Λ

µn
B

HA

o


¶
Y (S ) 
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If, additionally we force BHA = I , we will approximately
have Z ' Y (S) which will be a close approximation of the
transmitted symbols S if the prototype pulses are well designed.
Next, let us formulate the signal model under the proposed parallel

multi-stage architecture, assuming that the number of parallel stages
is  at the transmit side and  at the receive side. In order
to define the derivatives of the prototype pulses of (4) in a formal
manner, we make the following assumption:
(As1) The transmit and receive prototype pulses [], []

have length 2, where  is the overlapping factor. Further-
more, these pulses are obtained by discretization of smooth real-
valued analog waveforms (), (), which are smooth functions
C+1 ([−2 2]),  ≥  +, so that

[] = 

µµ
− 2+ 1

2

¶


2

¶
  = 1     2

and equivalently for [], where  is the multicarrier symbol
period. Furthermore, the pulses (), () and their +1 sequential
derivatives are null at the end-points of their support, namely at
 = ±2.
Thanks to the above assumption, we can define () and () as the

sampled version of the th derivative of () and () respectively,
that is


()
[] = 


 

()

µµ
− 2+ 1

2

¶


2

¶
  = 1     2

and equivalently for (). In order to construct the proposed multi-
stage equalization system, we will assume that all quantities are
sufficiently smooth in the frequency domain, namely:
(As2) The frequency-depending quantities A()B() and

H() are C0+1 (R2Z) functions, where 0  (2+ 1) (+ 1).
Furthermore2, these matrices are constructed so that
B()H()A() = I .
Having established the definition of the time-domain derivative

of the prototype pulses and the smoothness conditions on precoder
and channel, we can now formulate the received signal model under
the proposed parallel multi-stage precoding/receiving architecture.
Let Z(12)

 be defined as the 2 × ̃ received signal matrix
(equivalent to Z), when transmitter and receiver employ the 1th
and 2th parallel stages respectively. Keeping in mind that the th
parallel stage is constructed by replacing the prototype pulse and the
precoder/decoder by their corresponding th order derivatives, we can
write

Z(12)
 =

=

X


=1

X
=1

X
=1

Λ
³

(2)∗


´
Z

(1)(2)

³
Λ
³

(1)
 

´
S

´
which is basically the same equation as (7), but replacing {A}
by
n
(1)A(1)

o
and {B} by

n
(2)B(2)

o
. The total received

signal is therefore described by the linear combination of the signals
that are transmitted and received by the multiple parallel stages, using
the coefficients established in (5), namely

Z =
−1X
1=0

−1X
2=0

(−)1+2
1!2! (2)

1+2
Z(12)
  (9)

We claim that, assuming that precoder/receiver are constructed so
that B()H()A()= I , the above signal model is a very
good approximation of the multicarrier signal that would be received

2The following results can easily be generalized to the case where
B()H()A() is not necessarily equal to the identity. However, we keep
this assumption in order to simplify the exposition.

under frequency flat conditions, namely Y (S). This will be more
formally established in Section IV, where we provide an asymptotic
characterization of the resulting distortion error. In order to provide
these asymptotic results, we specifically focus on FBMC/OQAM
modulations, which allow perfect orthogonality conditions under an
ideal channel.

A. Specificities of the FBMC/OQAM signal model

The conceptual form of the FBMC/OQAM modulator and demod-
ulator is illustrated in Fig. 5. As mentioned above, this modulation is
widely considered in the literature, thanks to the higher spectral effi-
ciency with respect to other filterbank multicarrier modulations and
the possibility of achieving perfect reconstruction of the transmitted
symbols under perfect channel conditions [2]. It can be described as a
uniform, critically sampled FBMC modulation scheme with different
prototype pulses as the transmitter () and the receiver (), where
the transmitted symbols are drawn from a QAM modulation and
staggered into an offset QAM (OQAM) format.
As in the general description above, we consider that a total of

 complex QAM multicarrier symbols (2 real-valued symbols)
are sequentially transmitted through the th stream, and let S
denote a 2 ×  matrix that contains the original QAM symbols
before the staggering operation (see Fig. 5). Each column of S
corresponds to a multicarrier symbol, and will be denoted by s(),
 = 1     . We will write B = S and C = S, and
we will equivalently define the column vectors b() and c(), so
that s() = b() + c(). The signal matrix Z in (9) gathers
the samples of the received signal associated with the th MIMO
substream before the de-staggering operation (see Fig. 5).
Following the notation in (8), under an ideal SISO channel and

in the absence of precoder/receiver, the received samples matrix
Z corresponding to the complex symbols S will be denoted
by Y (S). It can be seen [19] that matrix Y (S) can be
constrained to have dimensions 2 × (2 + 2). The number of
columns of this matrix corresponds to twice the number of transmitted
multicarrier symbols (2) plus some additional columns (2) that
account for the tail effects of the prototypes  . From Y (S),
we can construct two matrices Yodd (S), Yeven (S) which contain
its even- and odd-numbered columns, so that

Y (S) = Yodd (S)⊗ [0 1] + Yeven (S)⊗ [1 0] (10)

where ⊗ is the Kronecker product. According to the FBMC/OQAM
modulation, the original multicarrier symbols are retrieved by taking
the real/imaginary parts of the appropriate columns of Yodd ( ) and
Yeven ( ), that is via a de-staggering operation

ŝ() = 
n
Yodd (S)

o
:+−1

+ 
©Yeven (S)

ª
:+

. (11)

A exact expression of Yodd (S) and Yeven (S) can be found in [19,
(3)-(4)], see further (30) in Appendix A.
It is well known [2] that one can choose   to meet some

“bi-orthogonality” or perfect reconstruction (PR) conditions, which
guarantee that ŝ () = s () in (11). In order to formulate these
conditions, let P and Q denote two 2 ×  matrices obtained
by arranging the original prototype pulse samples in columns. In
other words, the th row of P (resp. Q) contains the th polyphase
component of the original pulse  (resp. ). Next, consider two
2 × (2− 1) matrices R ( ) and S ( ) obtained as

R ( ) = P~ J2Q (12)

S ( ) = (J2 ⊗ I )P~ J2Q (13)
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Fig. 5. Basic form of a FBMC/OQAM modulator and demodulator. Here,  () and () are the transmit and receive prototype pulses, and  =

e−(+1)(−1)(2)

where ~ indicates row-wise convolution between matrices and J2
is the anti-identity matrix of size 2 . It is well known that one can
impose PR conditions on the pulses  and  by imposing [19]

U
+R ( ) = I U

−S ( ) = 0 (14)

whereU+ = I2⊗(I + J ),U− = I2⊗(I − J ), and where I
is a 2× (2− 1) matrix with ones in its central column and zeros
elsewhere. The above PR conditions can be significantly simplified
when  =  and assuming that the prototype pulses are symmetric
or anti-symmetric in the time domain [2].

IV. PERFORMANCE ANALYSIS UNDER FBMC/OQAM

Ideally, one would like to have Z as similar as possible to the
signal of the output of the decimators in the FBMC demodulators
when the ideal frequency-selective precoder and linear receiver are
used (Fig. 1). In practice, however this only holds approximately, in
the sense that Z in (9) can be written as

Z = Y (S) + E (S) (15)

for some error E (S). More specifically, decomposing Z into
Zodd and Zeven as in (10), one would estimate the th multicarrier
symbol as

ŝ() = 
n
Zodd

o
:+−1

+  {Zeven }:+ . (16)

Two different sources of error will be present in this estimation of
the symbols: an implementation error due to the frequency selectivity
of the system, namely E (S ), plus a representation error which
arises from the fact that the PR conditions in (14) may not hold. In
this section, we characterize the behavior of the total resulting error
by assuming that the number of subcarriers is asymptotically large
( →∞). The following additional assumptions will be needed in
order to provide the corresponding result:
(As3) The transmitted complex symbols are drawn from a

bounded constellation.
(As4) The real and imaginary parts of the transmitted symbols

are independent, identically distributed random variables with zero
mean and power 2.
Under these assumptions, it is possible to characterize the behavior

of the residual distortion at the output of the receiver, assuming that
the number of subcarriers is asymptotically high ( → ∞). In
order to formulate the result, we need some additional definitions,

that are presented next. Given four integers 0 0, we define

(+−)
(00) as the following pulse-specific quantity:


(+−)
(00) =



2


"
R
³

()

 
()
´
R

³

(0)

 
(0)
´
U
+

+ S
³

()

 
()
´
S

³

(0)

 
(0)
´
U
−
#

where R(··) and S(··) are defined in (12)-(13). The quantity (−+)
()

is equivalently defined, but swapping U+ and U− in the above
equation. Let Ψ(+−)

 denote a 2× 2 matrix constructed as

Ψ
(+−)
 =

"

(+−)
(00)

I{=} 
(+−)
(00)

I{= }

(+−)
(00)

I{= } 
(+−)
(00)

I{=}

#
(17)

where I{·} is the indicator function. Let Ψ
(−+)
 be constructed

as Ψ(+−)
 but changing all instances of (+−) for (−+). The

following quantities will take into account the fact that PR conditions
may not hold

 =


2


"µ
R ( )− 1

2
I
¶µ

R ( )− 1

2
I
¶

U
+

+ S ( )S ( )U−
#

() =


2


"µ
R ( )− 1

2
I
¶
R

³

()

 
()
´
U
+

+ S ( )S
³

()

 
()
´
U
−
#

̃
()

()
=

X
=

(−1)+
Ã




!Ã
 − 1
 − 1

!
(−)

Indeed, observe that these two quantities are zero under the PR
conditions in (14): clearly U−S ( ) = 0 whereas

U
+

µ
R ( )− 1

2
I
¶
= U

+R ( )− I = 0
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We will additionally need some channel-specific functions

()
 (), 

()


() and  (), defined as


()


=

√
2 (−)
!

Ã




!½³
B

H
´(−)

A
()

¾


(18)


()


=

√
2 (−)
!

Ã




!n
B
()

(HA)
(−)

o


(19)

 =

√
2 (−)+

 !!

n
B
()HA

( )
o


 (20)

where we have omitted the dependence of all quantities on  to ease
the notation and where  ≤ . We have now all the ingredients
to characterize the asymptotic distortion power associated with the
th parallel symbol stream observed at the th subcarrier output of
the FBMC/OQAM demodulator, which will be denoted by  ( ),
1 ≤  ≤ 2 , 1 ≤  ≤  .

Theorem 1 Consider the linear parallelized MIMO FBMC system
presented above, with  ≥ 1 parallel stages at the transmitter and
 ≥ 1 parallel stages at the receiver. Let ŝ () be as defined
in (16), i.e. as the estimate of s (), the th column vector of the
complex-valued symbol matrix. Assume that (As1)− (As4) hold
and let  = min ( ). Then for any  ∈ {     − } one
can write

E
h¯̄
{ŝ ()} − {s ()}

¯̄2i
=  ( ) + 

³

−2

´
as  → ∞. The term  ( ) can be decomposed in two terms,
namely  ( ) = 1 ( ) + 2 ( ), with

1 ( ) = 2

−
2X

=

2
√
2

(2)


X
=

(0)
³

()


´
−

2X
=

2
√
2

(2)


X
=

̃
( )

()

³

()


´
+

2
√
2

(2)
2

()I{= }

and

2 ( ) =
1

(2)
2

X


=1



h

()


i
Ψ
(+−)
 

h

()


i

+
1

(2)
2

X


=1



h

()


i
Ψ
(−+)
 

h

()


i
where ()

() =
h

()
 ()  ()


()
i
and where all the

frequency-dependent quantities (()
  

()


 ) are evaluated
at  = .

Proof: See Appendix A.
According to the above result, the inherent distortion of the

FBMC/OQAM modulation can be asymptotically decomposed into
two terms, 1 ( ) and 2 ( ). The first term basically
accounts for the fact that the prototype pulses   need not have
PR conditions. It can readily be observed that this term is identically
zero when the conditions in (14) hold. The second term 2 ( )

inherently describes the effect of the residual distortion caused by
the channel frequency selectivity, even when PR conditions hold.
This term essentially decays as 

¡
−2¢ when  → ∞, where

 is the minimum between transmit and receive parallel stages. This
means that if both the transmit and the receive processing matrices

are frequency-selective, it does not make much sense to increase
the number of parallel stages at one side of the communications
link beyond the number of stages at the other, since the asymptotic
behavior will ultimately be dictated by the minimum between the two.
The situation is different when only one of the matrices (either A()
orB()) is frequency-selective. In this case, the frequency flat matrix
can be seen as its exact representation in Taylor series, which is
equivalent to stating that the matrix is approximated using an infinite
number of terms (most of which are zero), i.e. =∞ or =∞.
In this situation, increasing the number of stages that implement the
frequency-selective matrix will always have a beneficial effect.
On the other hand, one should also observe from the expression

of  ( ) that the total residual distortion power that is observed
at the th receive symbol stream is an additive combination of the
distortion associated with each of the transmit symbol streams (note
the sum from  = 1 to  in the asymptotic expression for
2 ( )). This justifies the claim that general MIMO processing
is very vulnerable to the presence of highly frequency-selective
channels, since the higher the number of parallel streams, the higher
the residual distortion power that will be observed at the output
of the receiver. Furthermore, the expression of  ( ) provides
a very convenient way of fixing the number of parallel stages at the
transmitter and receiver () in order to guarantee a certain degree of
performance. Given a triplet of channel, precoder and linear receiver
(A(), H() and B()) one only needs to evaluate  ( ) in
order to obtain the minimum  that guarantees a sufficiently low
distortion power.
Finally, it is worth pointing out that the asymptotic residual distor-

tion expression presented in Theorem 1 generalizes the one obtained
in [19] for SISO channels in different important aspects. Here,
both transmit and receive frequency-selective processing structures
are considered, whereas only receive processing (equalization) was
assumed in [19]. Furthermore, the above expression of  ( )
above does not assume PR conditions on the prototype pulses, which
was not the case in [19]. Section V shows that this asymptotic
expression provides an extremely accurate description of the system
behavior under severe channel frequency selectivity.

A. Computational Complexity and Latency

Contrary to multi-tap filter-based solutions that process the signal
per subcarrier using a finite impulse response (FIR) filter, the pro-
posed parallel multi-stage architecture incurs in no additional penalty
in terms of latency. This is because all the constituent stages can
be implemented in parallel, avoiding all the unnecessary delays of
other multi-tap based filtering approaches. Note that the insertion of
a multi-tap processor per subcarrier will generally incur in a latency
increase proportional to the product between the number of taps and
the number of subcarriers, which may not be tolerable in delay-critical
applications.
As for the associated complexity of the proposed multi-stage

architecture, we can evaluate it in terms of the total number of real-
valued multiplications and sums. We will consider a transmit/receive
filterbank implementation using an FFT-based polyphase architecture
[2], assuming that the number of subcarriers is a power of 2 and
that the prototype pulses are symmetric in the time domain. Using
the split-radix algorithm, one can implement an FFT by only using
2 (log2 − 1)+4 real-valued multiplications and 6 log2+4

real valued sums [23]. Using this together with the fact that the
prototype pulse is real-valued and that each complex product can
be implemented with 3 real-valued multiplication plus 5 real-valued
sums, we can establish the total number of real-valued sums and
multiplications of the multi-stage architecture given in Table I. In this
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Algorithm Real-valued products
Multi-stage (TX) 2 [ log2 + (+ 2) + 2 ]
Multi-stage (RX) 2 [ log2 + (+ 2) + 3 ]
Multi-tap (RX) 2 [ log2 + (+ 2) + 3 ( + 1)]

Algorithm Real-valued sums
Multi-stage (TX) 2 [3 log2 + (2+ 1) + 2 ]

Multi-stage (RX) 2 [3 log2 + (2+ 3) + (7 − 2) ]

Multi-tap (RX) 2 [3 log2 + (2+ 3) + (7 − 2)

+((7 − 5) − 2) ]
TABLE I

TOTAL NUMBER OF REAL-VALUED SUMS AND MULTIPLICATIONS
ASSOCIATED WITH THE PARALLEL MULTI-STAGE ARCHITECTURE AND A
MULTI-TAP MIMO EQUALIZER WITH  MATRIX COEFFICIENTS.

table, we have disregarded the terms of order () and have also
introduced the complexity of a MIMO multi-tap equalizer [12] for
comparison purposes. These numbers will be used in the numerical
analysis of the following section.

V. NUMERICAL ANALYSIS

In this section, we analyze the performance of the proposed
precoding/linear receiver architectures in an LTE-like FBMC/OQAM
system with an intercarrier separation of 15kHz and QPSK modulated
symbols. We will assume that the channel state information is
perfectly known at the receiver, and also at the transmitter whenever
the use of frequency-selective processing is considered. As for the
actual FBMC modulation, we consider the PHYDYAS non-perfect
reconstruction (NPR) prototype pulse [24], [25] with overlapping
factor equal to  = 3. The same prototype pulse is used at both
transmitter and receiver. All MIMO channels were simulated as
independent, static and frequency-selective with a power delay profile
given by the ITU Extended Vehicular A (EVA) and Extended Typical
Urban (ETU) models [26].

A. Validation of the asymptotic ICI/ISI distortion expressions

In order to validate the expressions for the residual ICI/ISI dis-
tortion provided in Theorem 1, we considered a noiseless scenario
with 512 subcarriers and two fixed channel impulse responses drawn
from the EVA and the ETU channel models. The number of antennas
was fixed to 2 at both the transmitter and the receiver, namely
 =  = 2, and two different symbol streams were transmitted
 = 2. Fig. 6 shows the eigenvalues of the simulated channel
in the frequency domain. A set of 10000 multicarrier symbols was
randomly drawn from a QPSK modulation and the corresponding
signal to distortion power ratio was measured at the output of the
receiver. The simulated transceiver consisted of an eigenvector-based
precoder, where A() was selected as the dominant eigenvectors of
H()H() and where B() inverted the resulting channel.
Figs. 7 and 8 compare the simulated and asymptotic performance as

predicted by Theorem 1 for different values of the number of parallel
stages at the transmitter/receiver, i.e.  , . In these two figures,
solid lines represent the theoretical performance as described by
 ( ) whereas cross markers are simulated performance values.
Observe that there is a perfect match between them, and the simulated
results are virtually indistinguishable from the theoretical ones, even
for relatively moderate values of  . The only rare differences
between simulated and asymptotic performance become apparent in
situations where the coefficient of the second order term becomes
substantially high and the first order characterization so that the first
order fails to capture the actual distortion behavior.
As for the actual performance of the multi-stage transceiver ar-

chitecture, it is clearly seen that substantial gains can be achieved
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Fig. 6. Eigenvalues of the MIMO channels used in the first part of the
simulations, drawn from the EVA and ETU channel models.
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Fig. 7. Signal to distortion power ratio measured at the output of the receiver
when the transmitter uses SVD-type precoding and the receiver performs
channel inversion. The simulated channel was the one represented in the upper
plot of Fig. 6.

in terms of residual ICI/ISI reduction by simply implementing a
second parallel stage at the transmitter/receiver. On the other hand,
simulations confirm the fact that the performance is roughly dictated
by the minimum number of parallel stages used at the transmit and
receive sides, that is the minimum between  and  . In other
words, when using frequency-selective processing at both transmitter
and receiver, the most important gains can be obtained by considering
the proposed architecture at both sides of the communications link,
but using the same number of parallel stages.

B. Performance under general frequency-selective channels

In this subsection, we evaluate the performance under background
noise and under a large set of randomly drawn channel frequency
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Fig. 8. Signal to distortion power ratio measured at the output of the receiver
when the transmitter uses SVD-type precoding and the receiver performs
channel inversion. The simulated channel was the one represented in the lower
plot of Fig. 6.

responses. The total number of subcarriers was set to 1024 and the
number of antennas was fixed to  = 2 and  = 4, and two
different symbol streams were transmitted  = 2. The transmitter
was fixed to A() = I (pure spatial multiplexing) whereas a
LMMSE processor was considered at the receiver, i.e.

B() =H()
³
H


()H() + 

2
I

´−1


Figs. 9 and 10 represent the cumulative distribution function of the
measured mutual information per stream corresponding to 100 real-
izations of EVA and ETU channel models respectively, for different
values of the signal to noise power ratio. These mutual informations
were estimated assuming Gaussian signaling and disregarding the
statistical dependence between distortion and information symbols.
Apart from the performance of the proposed receiver with multiple
parallel stages, we also represent the performance of the multi-
tap MIMO equalizer in [12], based on the frequency sampling
technique, as well as the optimum performance under frequency flat
equivalent channels. In the legend of the figures, we represent the
percentage of increase of the corresponding technique in terms of
real-valued multiplications (M%) and additions (A%) with respect to
the traditional single tap per-subcarrier channel inversion (obtained
as  = 1). Observe that the parallel multi-stage architecture with
 = 2 presents a computational complexity that is comparable to
a multi-tap processor with  = 3, but achieves a much better
output SNDR, especially at low values of the background noise.
In terms of the global SNDR distribution, two parallel stages are
sufficient to provide a performance comparable to a multi-tap filter
with  = 7 taps at a much lower computational complexity.
Next, we considered a scenario with  = 4 and  = 2

where the precoder used the two left singular vectors associated
with the largest singular values of the channel matrix. The linear
filter at the receiver was fixed in order to invert the resulting channel
matrix. Figs. 11 to 12 show the distribution of the estimated mutual
information obtained with 100 random realizations of the EVA and
the ETU channel models respectively and for different values of the
background noise power. Here again, we observe that high gains can
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Fig. 9. Mutual information distribution (bits per stream) for different levels
of the background noise with  = 2,  = 4 and spatial multiplexing
(EVA channel model).
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Fig. 10. Mutual information distribution (bits per stream) for different levels
of the background noise with  = 2,  = 4 and spatial multiplexing
(ETU channel model).

be obtained with the proposed multi-stage MIMO architecture using
only two stages at the transmitter and at the receiver.

VI. CONCLUSIONS

A novel parallel multi-stage MIMO architecture for FBMC trans-
missions under strong frequency selectivity has been presented. The
rationale behind the approach consists in implementing a Taylor
expansion of the ideal precoder and linear receiver at the central
frequency of each subband. By properly exploiting the filterbank
structure, it has been shown that the global system can be imple-
mented using conventional per-subcarrier precoders/linear receivers
in combination with parallel filterbanks constructed from sequential
derivatives of an original prototype pulse. For the specific case
of FBMC/OQAM, an asymptotic expression for the ICI/ISI distor-
tion power has been obtained. It has been shown that the global
performance of the system essentially depends on the minimum
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Fig. 11. Mutual information distribution (bits per stream) for different levels
of the background noise with  = 4,  = 2 and SVD-based precoding
(EVA channel model).
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Fig. 12. Mutual information distribution (bits per stream) for different levels
of the background noise with  = 4,  = 2 and SVD-based precoding
(ETU channel model).

between the number of parallel stages implemented at the transmitter
and the receiver. Finally, numerical evaluation studies indicate that
the asymptotic performance assessment provides a very accurate
approximation of the reality for moderate values of the number
of subcarriers, and that significant gains can be obtained using the
proposed architecture under strong frequency selectivity.

APPENDIX A
PROOF OF THEOREM 1

We begin the proof by introducing a technical result that will be
used throughout this appendix, which will be separately proven.

Proposition 1 Let Y (S) be the FBMC receive sample matrix
corresponding to the symbol matrix S when the channel is ideal
and the prototype pulses   are used at the transmit/receive sides

respectively. Let  () denote a C0+1 (R2Z) function for some
integer 0  (2+ 1) (+ 2), and let Z

 (S) denote the matrix
of received samples at the output of the decimators corresponding to
Y (S), when the signal goes through a channel with frequency
response  (). Under (As1) − (As3) for any integer   0 we
can write

Z
 (S) =

X
=0

(−)
! (2)

Λ
³

()
´
Y() (S) + 

³

−
´
(21)

=

X
=0

(−)
! (2)

Y()
³
Λ
³

()
´
S

´
+ 

³

−
´
(22)

where  () denotes the th order derivative of the function  and
where 

¡
−¢ for an integer  denotes a matrix of potentially

increasing dimensions whose entries decay to zero faster than−

when  → ∞. Furthermore, the above identities hold true also if
either  in (21) or  in (22) are replaced by () and () for any
integer  ≤ .

Proof: The identity in (21) is proven in [19, Proposition 1]
when  () is the Fourier transform of a finite length sequence. The
proof of the present result follows along the same lines, see further
Appendix B.

Corollary 1 Under the above conditions, let () denote another
C0+1 (R2Z) function. Then,

Z
 (S) =

X
=0

(−)
! (2)


Λ
³

()
´
Z

()
(S) + 

³

−
´

=

X
=0

(−)
! (2)


Z

()

³
Λ
³

()
´
S

´
+ 

³

−
´


Furthermore, the above identities also hold when the zeroth order
derivatives  and  are replaced by () and () for any integer
 ≤ .

Proof: We will only prove the first identity, the proof of second
one being completely equivalent. Noting that () ∈ C− and
replacing Z

()
(S) by the corresponding expression in (21), with

 replaced by −  and  replaced by (), we see that

X
=0

(−j)
! (2)


Λ
³

()
´
Z

()
(S)

=

X
=0

−X
=0

(−j)+
!! (2)

+
Λ
³

()

()
´
Y(+) (S)

+ 
³

−
´

(a)
=

X
=0

(−j)
! (2)

Λ
³
()

()
´
Y() (S) + 

³

−
´

(b)
= Z

 (S) + 
³

−
´

where in (a) we have replaced the index  by the index  =  + 

and swapped the two sums and in (b) we have used again (21) with
 replaced by .
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This corollary will be very useful in order to characterize the
asymptotic distortion error. Consider the expression of the received
signal matrix Z in (9), which can be expressed as

Z =
X



 

−1X
2=0

(−)2
2! (2)

2
Λ
³

(2)∗


´
×

×
−1X
1=0

(−)1
1! (2)

1
Z

(1)(2)

³
Λ
³

(1)
 

´
S

´
Applying Corollary 1 for  =  +, we can write

−1X
1=0

(−)1
1! (2)

1
Z

(1)(2)

³
Λ
³

(1)
 

´
S

´
= Z  

(2)
(S)

−
+X
1=

(−)1
1! (2)

1
Z

(1)(2)

³
Λ
³

(1)
 

´
S

´
+ 

³

−(+)

´
and therefore inserting this into the expression of Z above and
applying again Corollary 1 with respect to all the sums in the index
2, we obtain

Z =
X





∙
Z∗  
 (S ) + E  (S )

¸
where

E  (S )

= −
+X
2=

(−)2
2! (2)

2
Λ
³

(2)∗


´
Z  

(2)
(S )

−
+X
1=

(−)1
1! (2)

1
Z∗
(1)

³
Λ
³

(1)
 

´
S

´
+

(−)+

 !! (2)
+

Λ
³

()∗


´
×

×Z

( )()

³
Λ
³

( )
 

´
S

´
+ 

³

−(+)

´


Now, using the linearity of the transmission from different antennas
and the fact that B()H()A() = I we obtain

Z = Y (S) +
X
=1

X
=1

X


=1

E  (S )

Using now Proposition 1 and disregarding all terms of higher order,
we can readily see that (15) holds with

E (S) = E(1) (S)+E(2) (S)+E(3) (S)+ 
³

−(+)

´
(23)

where we have introduced the matrices

E(1) (S) = −
X



=1

Υ (24)

E(2) (S) = −
X



=1

+X
=

Λ

⎛⎝ X
2=


()


⎞⎠ Y()

¡
S



¢
√
2 (2)



(25)

E(3) (S) =

X


=1

Λ
¡


¢ Y( )() (S )√
2 (2)

+
(26)

where ()


and  are defined in (19) and (20) respectively,
and where

Υ =

+X
=

(−)
(2)


!

X
=1

X
1=

Ã


1

!
×

×Λ
½³
B

H
´(−1)¾



Y
(1)(−1)

³
Λ
³

(1)
 

´
S

´


Next, we transform Υ into a linear combination of matrices of
the type Y()() (S ) for some integers  . The following lemma
will be instrumental in this objective.

Lemma 1 Under the assumptions of Proposition 1, we have

Y (Λ ( )S) =
X

=0

(−)
(2)


!

Λ
³

()
´
Y() (S)

+ 
³

−
´

where we have defined

Y() (S) =

X
=0

Ã




!
(−1) Y()(−) (S) 

Proof: For  = 0     , we consider the identities in (21)-(22)
in Proposition 1 with  and  replaced by () and  () respectively,
that is

−X
=0

(−j)+
! (2)

+
Y(+)

³
Λ
³

(+)

´
S

´
=

−X
=0

(−j)+
! (2)

+
Λ
³

(+)

´
Y()() (S) + 

³

−
´


This forms a system of +1 linear equations with +1 unknowns,
which can be expressed in matrix form as

Ax = y + 
³

−
´

where x = [0     ]
 , y = [0     ]

 ,

 =
(−j)
(2)

Y()
³
Λ
³

()
´
S

´
 =

−X
=0

(−j)+
! (2)

+
Λ
³

(+)

´
Y()() (S) (27)

and where A is an × upper triangular Toeplitz matrix with the
entries of the th upper diagonal fixed to 1!,  = 0     . We
are interested in obtaining the solution associated with the first entry
of x, so that we will be able to write

0 = Y (Λ ( )S) =
X
=0

 + 
³

−
´

(28)

where  are the entries of the upper row of A
−1
 . We can iteratively

obtain the solution to  by observing that we can partition this matrix
as

A =
∙
A−1 J−1a
0 1

¸
where a = [1     ]

 , so that

A−1 =

∙
A−1−1 −A−1−1J−1a
0 1

¸
and this basically implies that 0 = 1 and

 = −
−1X
=0

− = −
−1X
=0

1

(−)!
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We can solve this recurrence by noting that it can be rewritten as

! = −
−1X
=0

Ã




!
!

which basically implies that ! = (−1). Using this together
with the expression of  in (27) and swapping the two indexes we
obtain the result of the lemma.
Applying Lemma 1 we can rewrite Υ as

Υ =

+X
=

(−)
! (2)



X
=

X
1=

Ã




!Ã


1

!
×

× Λ

Ã½³
B

H
´(−1)

A
(1+−)

¾


!
Y(−)
(1)(−1)

(S )

+ 
³

−(+)

´
Using the fact thatÃ





!Ã


1

!
=

Ã


 − 1

!Ã
−  + 1

1

!
(29)

and with the appropriate change of indexes ( =  −  + 1), we
see that

Υ =

+X
=

1√
2 (2)


Λ

⎛⎝ X
=


()


⎞⎠×
×

X
=+−

Ã


− 

!
Y(−)
(−(−))(−) (S )+

³

−(+)

´
where ()

 is defined in (18). Finally, using the change of indexes
( =  − +  + ) together with (29), the additional change of
indexes  = ( +− )−  and the identity

−X
=0

(−1)
Ã




!
= (−1)−

Ã
 − 1
 −

!
we finally obtain

Υ =

+X
=

1√
2 (2)


Λ

⎛⎝ X
=


()


⎞⎠×
×

X
=

(−1)+

Ã




!Ã
 − 1
 − 1

!
Y()(−) (S )

+ 
³

−(+)

´
Inserting this into the expression of E(1) (S) in (24), we end up
with an expression of E (S) in (23) that is a linear combination
of matrices of the form Y()() (S ) for different integers .
Therefore, we can analyze the asymptotic distortion variance by
simply analyzing these terms. We provide more details in what
follows.
From the definition of the complex estimated symbols ŝ () in

(16), we see that this column vector is a function of two columns of
the matrix Z (S), namely

z
odd
 ( )


=
h
Zodd (S)

i
:+−1

z
even
 ( )


=
£Zeven (S)

¤
:+



Let us equivalently define yodd ( ) and y
even
 ( ) as above, replac-

ing Z by Y . We define the error associated to the estimation of the th

multicarrier symbol of the th stream as e ( ) = ŝ ()−s (),
so that

e ( ) = 
h
z
odd
 ( )

i
+ 

£
z
even
 ( )

¤− s ()
Now, from the asymptotic description provided above we have been
able to express Z ( ) as a function of matrices of the form
Y()() (S) when  → ∞ for several pairs of integers .
Consequently, ŝ () is asymptotically described as a weighted linear

combination of yodd
³
() ()

´
and yeven

³
() ()

´
for several

pairs of integers  . In order to analyze the structure of Y, let F
denote the 2 × 2 orthogonal Fourier matrix, and let F1 and F2
be the matrices formed by selecting the upper and lower rows of F
respectively. The expression of Yodd for FBMC/OQAM modulations
can be shown to be [19]

Yodd (S) = 2ΦF

([FΦ

∗
B00]~R ( ))

+ 2ΦF


µ∙
0F2Φ

∗C0

F1Φ
∗C00

¸
~ S ( )

¶
(30)

where R ( ), S ( ) are defined in (12)-(13), Φ is a diagonal
matrix with itsth diagonal entry equal to exp

¡−+1


(− 1)¢
and 0 is an all-zeros column vector of appropriate dimensions. A
similar expression can be given for Yeven , see further [19, eq. (4)].
Now, recalling that I is a 2 × (2− 1) matrix with ones in the

central column and zeros elsewhere, we observe that we are able to
write

b () =

½
2ΦF



µ
[FΦ

∗
B00]~

1

2
I
¶¾

:+−1
(31)

and this identity holds true if we replace the pair b (), B by
c (), C. Using (31) and replacing zodd ( ) by the asymptotic
expansion, we see that

z
odd
 ( )− b ()
= d

odd
 ( )

−
X



=1

+X
=

1√
2 (2)



X
=

Λ
³

()


´
×

×
X

=

(−1)−

Ã




!Ã
 − 1
 − 1

!
y
odd
 

³

()
 
(−)

´

−
X



=1

+X
=

1√
2 (2)


Λ
³

()


´
y
odd
 

³
 

()
´

+
1√

2 (2)
+

X


=1

Λ
¡


¢
y
odd
 

³

( ) 

()
´

+ 
³

−(+ )

´
where d(∗) ( ), (∗) ∈ {odd,even}, is defined as y(∗) ( ) by
simply replacing R ( ) with R ( )− 1

2
I in (30). An equivalent

expression can be derived for zeven ( )− c (), which is omitted
here due to space constraints. The expressions presented in Theorem
1 are obtained by computing the variance of {e ( )} and
disregarding the higher order terms. This can be easily done using
the following result, which can be proven as in [19, Appendix B].

Lemma 2 Consider now four generic prototype filters 1 1 2 2,
and denote R = R ( ) and S = S ( ),  = 1 2. Write for
compactness ȳ(∗) = ȳ

(∗)
 ( ) ,  = 1 2, (∗) ∈ {even,odd} and
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let  ∈ {     − }. Under (As4), and for the FBMC/OQAM
signal model we can write

E
h

n
y
odd
1

o


n
y
odd
2

o


i
= E

£


©
y
even
1

ª



©
y
even
2

ª


¤
= 

(+−)
³
R1R

2 S1S2
´

E
h


n
y
odd
1

o



n
y
odd
2

o


i
= E

£

©
y
even
1

ª


©
y
even
2

ª


¤
= 

(−+)
³
R1R

2 S1S2
´

E
h

n
y
odd
1

o



n
y
odd
2

o


i
= E

£

©
y
even
1

ª



©
y
even
2

ª


¤
= 0

where we have defined for 1 2 ∈ {+−},


(12)

³
R1R

2 S1S2
´
=



2

h
R1R

2U
1 + S1S2 U2

i


Furthermore, if y(∗) is replaced by d
(∗)
 = d

(∗)
 ( ) in any of

the above expressions, the same results hold replacingR byR− 1
2
I.

APPENDIX B
PROOF OF PROPOSITION 1

Let Z
 ( ) denote the 2 × 2 ( + 2) matrix containing the

received samples at the output of the receive FFT corresponding to the
th transmit stream, assuming that the transmit and receive prototype
pulses are  and  respectively. For the rest of the proof, we will
drop the dependence on  in that matrix, and we will decompose
Z ( ) = Z

even ( )⊗ [1 0]+Z
odd ( )⊗ [0 1] . We will denote

by  [] the th coefficient of the Fourier series of  (), i.e.

 [] =
1

2

Z 2

0

 () 




Furthermore, in order to describe the effect of the frequency selec-
tivity of  (), we introduce the following pulse-specific matrices,
defined for any  ∈ Z such that −   ≤ ,

R ( ) = P~ J2Q() =
∙
P1 ~ JQ2()

P2 ~ JQ1()

¸
S ( ) =

∙
0P2 ~ JQ2()

P1 ~ JQ1()0

¸
where Q() is defined as

Q() =

∙
00 {Q}

2−+1:2:

0 {Q}1:2−: 0
¸
 0 ≤  ≤

Q() =

∙
0 {Q}−+1:2: 0

{Q}
1:−: 00

¸
 −    0

so that Q(0) = [0Q]. Furthermore, given a column vector of 2
entries u, we defineM(u) as the 2 × 2 matrix

M(u) = ΦF

 (FΦ

∗
u)

where F is the 2 Fourier matrix, {F} =

(2)
−12

2(−1)(−1)(2), 1 ≤   ≤ 2 , and
where Φ is a 2 × 2 diagonal matrix with entries
{Φ}


= −(+1)(−1)(2),  = 1     2 .

We will provide here the proof of (21), the proof of (22) following
the same line of reasoning. Furthermore, we will only show that (21)
holds for the odd columns of Z ( ), namely Z

odd ( ), since the

proof for Z
even ( ) is almost identical. Using the above definitions

and following [19, eq. (14)-(15)], we can write3n
Z
odd ( )

o
:
=

= 2

∞X
=−∞

X
=1

 []Θ


"
M(b)

©Rhi2 ( )
ª
:−−[]2+2

+M(c)
©Shi2 ( )ª:−−[]2+2

#
where Θ is a diagonal matrix with entries {Θ} = − ,  =
1     2 , []

2
returns the integer that is closest to (2) (with

the convention that [(2+ 1) ]2 =  when  ∈ Z) and where
hi2 = − []2 . Now, following the approach in [19], we see that
we can write(

Z
odd ( )−

X
=0

(−)
! (2)

Λ
³

()
´
Yodd

³
 

()
´)

:

= 2

∞X
=−∞

X
=1

 []Θ


"
M(b)

©E1hi2 

ª
:−−[]2+2

+M(c)
©E2hi2 

ª
:−−[]2+2

#
(32)

where we have defined, for −   ≤

E1 = R ( )−
X
=0

(−)
! (2)


R0

³
 

()
´

E2 = S ( )−
X
=0

(−)
! (2)


S0
³
 

()
´

and where we have used the fact that (using the integration by parts
formula)

1

2

Z 2

0



() 


 = 


(−)  []  0 ≤  ≤ 

Now, we separate the global sum in (32) into two terms, which will
be bounded in a different way. Consider a parameter  ∈ (0 1) and
divide the sum with respect to  in (32) in two terms, corresponding
to ||   and || ≥  . Let us denote by 1 and 2 these
two terms, so that (32) = 1 + 2, where 1 =

P
||≥ (·) and

2 =
P

||(·). These two terms will be bounded using different
methods, as it is described next.

A. Bounding the term 1

First observe that we can bound the ()th entry of E1 as¯̄̄©E1ª

¯̄̄
≤
¯̄̄
{R ( )}

¯̄̄
+

X
=0

1

!

¯̄̄̄


2

¯̄̄̄ ¯̄̄̄n
R0

³
 

()
´o



¯̄̄̄


Now, since the two pulses   and their derivatives are bounded
by assumption, the absolute value of the entries of R ( ) and

R0

³
 ()

´
are upper bounded by a positive constant independent

of , denoted here by . Therefore, since ||   in the definition
of E1,¯̄̄©E1ª

¯̄̄
≤  + 

X
=0

1

!

¯̄̄̄


2

¯̄̄̄
≤ 

Ã
1 +

X
=0

2−

!

!
3In the following expression, matrices indexed by values that are either

nonpositive or higher than the matrix dimension should be understood as
zero. Observe that the number of terms of the sum in  is, in fact, finite.
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which is bounded by a positive constant independent of . A similar
reasoning can be applied to show that

¯̄̄©E2ª ¯̄̄ has the same
property. Therefore, we see that (using the triangular and the Cauchy-
Schwarz inequality),¯̄̄

{1}
¯̄̄
≤ 2

X
||≥

| []|

X
=1

" °°°{M(b)}:
°°° °°°£E1()

¤
:−+[(2)]+2

°°°+
+
°°°{M(c)}:

°°° °°°£E2()

¤
:−+[(2)]+2

°°° #
≤ 1

√

³°°°{M(b)}:

°°°+ °°°{M(c)}:
°°°´ X

||≥

| []|

≤ 2

√


X
||≥

| []|

for some positive constants 12 independent of  , where in the
last equation we have used the fact that

°°°{M(u)}
:

°°° is bounded
above if the entries of u are bounded (see further [19, p.3604]).
Finally, we need the following result:

Lemma 3 If  ∈ C0+1 (R2Z), the th Fourier coefficient  []
can be bounded by

| []| ≤ 

||0+1
for some positive constant .

Proof: Applying the partial integration formula to the definition
 [] consecutively 0 + 1 times,

 [] =
(−1)0+1
2 (j)

0+1

Z 2

0

 (
0+1) () ej

and therefore the result follows by the triangular inequality for
integrals, taking  = sup∈R2Z

¯̄̄
0+1 ()

¯̄̄
.

Applying this lemma, we readily see that there exists some positive
constant  such that, for any   0,¯̄̄

{1}
¯̄̄
≤ 

√


X
≥

1


0+1 ≤

≤ 

(0−)−12
X
≥

1

1+
= 

³

−(0−)+12

´


B. Bounding the term 2

In order to analyze this term, we will use the following result,
which can be proven as in [19, Lemma 1].

Lemma 4 Let  ∈ Z be such that ||   . Then, under (As1),¯̄̄©E1ª

¯̄̄
≤ 

¯̄̄̄




¯̄̄̄+1
,
¯̄̄©E2ª

¯̄̄
≤ 

¯̄̄̄




¯̄̄̄+1
for some positive constant , independent of  and .

Using this, we readily see that, by the Cauchy-Schwarz inequality,¯̄̄
{2}

¯̄̄
≤ 2

X
||

| []| ×

X
=1

¯̄̄
{M(b)}:

£E1¤:−+2 ¯̄̄+ ¯̄̄{M(c)}:
£E2¤:−+2 ¯̄̄

≤ 
√


X
||

| []|
¯̄̄̄




¯̄̄̄+1
= 

³

−(1−)(+1)+12

´

for some positive constant .

C. Concluding the proof

With all the above, we have been able to show that the entries of
(32) are of the order (−), where

 = min
©
(1− ) (+ 1)  

¡

0 − 

¢ª− 12
for any  ∈ (0 1) and   0. As a function of , the maximum 

is obtained when

 =
(+ 1)

(0 − ++ 1)

and the corresponding exponent is given by

 =
(+ 1) (0 − )

(0 − ++ 1)
− 12

Now, if we require that 0  (2+ 1) (+ 1) and we fix  ∈
(0 0 − (2+ 1) (+ 1)), we have   , showing that (32) =

¡
−¢.
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