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Abstract

The design of linear precoders or decoders for multi-user (MU) multiple-input multiple-output (MIMO) filterbank

multicarrier (FBMC) modulations in the case of strong channel frequency selectivity is presented. The users and the

base station (BS) communicate using space division multiple access (SDMA). The low complexity proposed solution

is based on a single tap per-subcarrier precoding/decoding matrix at the base station (BS) in the downlink/uplink.

As opposed to classical approaches that assume flat channel frequency selectivity at the subcarrier level, the BS

does not make this assumption and takes into account the distortion caused by channel frequency selectivity. The

expression of the FBMC asymptotic mean squared error (MSE) in the case of strong channel selectivity derived in

earlier works is developed and extended. The linear precoders and decoders are found by optimizing the MSE formula

under two design criteria, namely zero forcing (ZF) or minimum mean squared error (MMSE). Finally, simulation

results demonstrate the performance of the optimized design. As long as the number of BS antennas is larger than

the number of users, it is shown that those extra degrees of freedom can be used to compensate for the channel

frequency selectivity.

Index Terms

FBMC, frequency selective channel, MU MIMO.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the most popular multicarrier modulation scheme nowa-

days. It is used for instance in systems such as WiFi, long term evolution (LTE) or digital video broadcasting

(DVB). OFDM has been very attractive mainly because of its low complexity of implementation. The introduction

of the cyclic prefix (CP) in OFDM allows for easy channel equalization. Extension to multiple-input multiple-output
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Fig. 1. Multi-user MIMO scenario: NU single-antenna users and one base station with N antennas communicate simultaneously in UL and

DL using space division multiple access.

(MIMO) scenarios is straightforward thanks to the OFDM orthogonality ensured in the complex domain. At the

same time, due to the rectangular pulse shaping of the fast Fourier transform (FFT) filters, OFDM systems exhibit

very high frequency leakage and poor stopband attenuation. Furthermore, the use of the CP in OFDM significantly

reduces the spectral efficiency of the system.

In the light of the shortcomings of OFDM, Offset-QAM-based filterbank multicarrier (FBMC-OQAM) modulation

has been regarded as an attractive alternative. Rather than using a rectangle pulse in time, FBMC-OQAM uses a pulse

shape which is more spread out in time and has much larger stopband attenuation [1]. This in turn translates into

higher spectral efficiency and relaxed synchronization constraints [2]. Moreover, it does not require CP overhead,

which allows for a larger spectral efficiency. These advantages come at the expense of an increase in the system

implementation complexity.

Under frequency selective channels, single tap equalization is sufficient in OFDM to restore the system orthog-

onality. The same result occurs in FBMC if the assumption of a frequency flat channel at the subcarrier level is

made, which is typically verified for mildly frequency selective channels. However, as the selectivity of the channel

increases, FBMC begins to suffer from inter-symbol interference (ISI) and inter-carrier interference (ICI) and the

orthogonality is progressively destroyed [3], [4]. Many works in the literature have investigated this problem in

the SISO case [4]–[7] and later on for the MIMO case, see [8] for recent review paper on the subject. Most of

the approaches to mitigate channel frequency selectivity are based on the design of multi-tap fractionally spaced

equalizers. For instance, in [9], the authors designed multi-tap decoding matrices following a frequency sampling

design, i.e., they compute the time domain equalizer coefficients so that its frequency response passes through

some well chosen target frequency points. On the other hand, [10] proposes a multi-tap filtering solution at both

transmit and receive sides. This problem has also been analyzed in the MU MIMO context in several works. In

[11], the authors extend the block diagonalization technique to FBMC systems. Through an iterative algorithm, the

work of [12] alleviates the dimensionality constraint of [11] by allowing designs where the total number of receive

antennas of the users exceeds the number of transmit antennas at the base station. In [13], [14], multi-tap precoders

and decoders are iteratively and jointly designed. Moreover, the work originally devised for the SISO case in [3]

and later extended for the MIMO case in [15], [16] proposes instead a parallel multi-stage processing architecture
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Fig. 2. Per-subcarrier precoding at the transmitter.

at both sides of the communication link. One should however note that iterative designs, multi-tap filtering and

multi-stage processing increase the complexity of the system.

In this paper, in contrast to most of the proposed approaches to deal with channel frequency selectivity, we

consider the classical low complexity approach based on one tap per-subcarrier precoding and decoding matrices.

However, the assumption of a frequency flat channel at the subcarrier level is not made. A first order approximation

of the per-subcarrier MSE for a general MIMO FBMC-OQAM system, including the effects of noise, multi-stream

interference (MSI), ISI and ICI, is proposed, relying not only on the channel frequency response evaluated at this

subcarrier but also on its derivatives. This approximation generalizes the one given in [16] that is valid only for the

ZF case.

Furthermore, we optimize the MSE formula to design precoders and decoders in a MU MIMO context. As shown

in Fig. 1, we consider a MU MIMO system with one base station (BS) and multiple single-antenna users that are

not able to cooperate with each other1. The users and the BS are assumed to use SDMA [17, Chap. 10], i.e., they

communicate simultaneously using the same time and frequency resources. Taking into account at the same time

the MSI, ISI and ICI caused by channel frequency selectivity during the optimization procedure, we show that even

with the very simple chosen structure, one can exploit the degrees of freedom offered by the extra BS antennas

to compensate for the distortion due to frequency selectivity. In both the uplink (UL) and downlink (DL) cases,

two design criteria are considered, namely zero forcing (ZF) or minimum mean squared error (MMSE). From the

asymptotic study at high signal-to-noise ratio (SNR), it is shown that the first order approximation of the distortion

can be completely removed as soon as the number of BS antennas is twice as large as the number of users.

The rest of this paper is structured as follows. Section II details the data model for a general FBMC-OQAM

MIMO transceiver and proposes an approximation of the mean squared error (MSE) of the system under strong

1Note that one could straightforwardly apply the results of this paper to a point-to-point (PTP) communication link transmitting with pure

spatial multiplexing.
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Fig. 3. Per-subcarrier decoding at the receiver.

channel frequency selectivity. Section III optimizes the previously derived MSE formula for a MU MIMO scenario

as a function of the linear precoder or decoder and under a ZF or a minimum mean squared error (MMSE) criterion.

Section IV validates the accuracy of MSE approximation and the performance of the linear precoder and decoder

through simulations. Finally, Section V concludes the paper and appendixes contain the mathematical proof of

previous sections.

A. Notations

Vectors and matrices are denoted by bold lowercase and uppercase letters, respectively. Superscripts ∗, T and H

stand for conjugate, transpose and Hermitian operators. tr, E, = and < denote the trace, expectation, imaginary and

real parts respectively. Symbol O
(
M−`

)
denotes a matrix of possibly increasing dimensions whose entries decay

to zero faster than M−`.

II. MSE FORMULATION FOR GENERAL MIMO FBMC-OQAM SYSTEM UNDER STRONG CHANNEL

FREQUENCY SELECTIVITY

We will first introduce the system model for a general MIMO FBMC-OQAM transmission and then give an

approximation of the MSE at the output of the transceiver chain.

A. General MIMO FBMC-OQAM transmission

Let us consider a MIMO FBMC-OQAM system with NT and NR antennas at the transmit and receive sides,

respectively. The number of real-valued multicarrier symbols is denoted by 2Ns and the number of streams by S.

Multicarrier modulations divide the transmission band into multiple narrow bands. If the number of subcarriers,

denoted by 2M , is large enough with respect to (w.r.t.) the channel delay spread, a common assumption is to

assume that the channel is approximately frequency flat inside each sub-band so that precoding (pre-equalization) and

decoding (equalization) operations can be performed at the subcarrier level. The block diagrams of the transmitter and
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receiver are depicted in Fig. 2 and Fig. 3. At the transmitter, the precoding matrix at the m-th subcarrier is denoted

by A(ωm) ∈ CNT×S . At the receiver, the decoding matrix at the m-th subcarrier is denoted by B(ωm) ∈ CS×NR .

The real-valued transmitted symbols denoted by dl,m ∈ RS×1 are first precoded and then FBMC-OQAM

modulated using a prototype pulse p[n] of length Lp. The transmitted signal at the different transmit antennas,

denoted by s[n] ∈ CNT×1, is given by

s[n] =

2Ns−1∑
l=0

2M−1∑
m=0

A(ωm)dl,mpl,m[n]

where pl,m[n] = jl+m

M p[n− lM ]ej
2π
2Mm(n−Lp−1

2 ). We denote by H(ω) ∈ CNR×NT the channel frequency response

matrix. The signal at the different receive antennas, denoted by r[n] ∈ CNR×1, is given by

r[n] =

+∞∑
b=−∞

H[b]s[n− b] + w[n]

where H[b] = 1
2π

∫ 2π

0
H(ω)ejωbdω is the channel impulse response which is assumed not to change over the frame

time duration. The column vector w[n] contains the additive white Gaussian noise samples. The received signal is

FBMC-OQAM demodulated using prototype pulse q[n] of length Lq . The signal after demodulation and decoding

(equalization), at subcarrier l0 and multicarrier symbol m0, denoted by xl0,m0
∈ CS×1, may be written as

xl0,m0
= B(ωm0

)

Lq−1∑
n=0

r[n]q∗l0,m0
[n]

where ql0,m0 [n] = jl0+m0

M q̃[n−l0M ]ej
2π
2Mm0(n−

Lq−1

2 ) and where q̃[n] is the reversed version of the receive prototype,

namely q̃[n] = q[Lq − 1 − n]. Finally the estimated symbols are obtained by taking the real part, i.e., d̂l0,m0
=

<{xl0,m0
}.

B. MSE formulation

We define the MSE at the output of the transceiver chain corresponding to all streams as2

MSE(m) = 2E
(
‖d̂l,m − dl,m‖2

)
= Pd(m) +N0tr

[
B(ωm)B(ωm)H

]
(1)

where N0 is the noise power and the expectation is taken over transmitted symbols and noise. Since noise and

symbols are uncorrelated, their effect can be separated in the two terms of (1). The term Pd(m) corresponds to the

distortion due to MSI, ISI and ICI. The designs of Fig. 2 and Fig. 3 usually rely on channel frequency flatness at

the subcarrier level. When the variation of the channel becomes non-negligible, this assumption becomes inaccurate

and distortion will increase with the appearance of MSI, ISI and ICI (, i.e., the term Pd(m) increases). To be able

to give an analytical expression of Pd(m), we make the following assumptions:

(As1) The actual precoding and decoding matrices implemented at the m-th subcarrier result from the evaluation

of the functions A(ω) and B(ω) at frequency ωm = 2π(m−1)
2M . The precoder, decoder and channel frequency

2Observe that we introduce the factor 2 in order to consider the distortion of the complex symbols, and not the real ones.
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response matrices, A(ω) ∈ CNT×S , B(ω) ∈ CS×NR and H(ω) ∈ CNR×NT , are twice differentiable functions of

the frequency ω on the torus R/2πZ.

(As2) The prototype pulse p[n] is assumed identical at transmit and receive sides, so that p[n] = q[n]. It is

either symmetric or anti-symmetric in the time domain and it meets the perfect reconstruction (PR) conditions. It

has length 2Mκ, where κ is the overlapping factor. Furthermore, p[n] is obtained by discretization of a smooth

real-valued analog waveform p(t), which is a C∞ ([−Tsκ/2, Tsκ/2]) function, so that

p[n] = p

((
n− 2Mκ+ 1

2

)
Ts

2M

)
, n = 1, . . . , 2Mκ

where Ts is the multicarrier symbol period. Furthermore, the pulse p(t) and its derivatives are null at the end-points

of the support, namely at t = ±Tsκ/2.

Thanks to the above assumption, we can define p(r)[n] as the sampled version of the r-th derivative of p(t), that

is

p(r)[n] = T rs p
(r)

((
n− 2Mκ+ 1

2

)
Ts

2M

)
, n = 1, . . . , 2Mκ.

(As3) The real-valued symbols dl,m are independent, identically distributed bounded random variables with zero

mean and variance Ps/2.

We are now in a position to introduce the main result of this section.

Theorem II.1. Under (As1)− (As3), the MSE of the complex symbols at the m-th subcarrier can be expressed

as

Pd(m) = Pstr
[
(BHA− I) (BHA− I)

H
]

+
2η

(+,−)
1010

(2M)
2 tr

[(
BH′A

) (
BH′A

)H]
+

2η
(+,−)
1010

(2M)
2 <tr

[
(BHA− I)

(
BH′′A

)H]

+
4
(
η
(+,−)
1010 + η

(−,+)
0011

)
(2M)

2 tr
[
= (BHA− I)=T

(
B
(
HA′

)′)]

+
4
(
η
(+,−)
1010 + η

(−,+)
0011

)
(2M)

2 tr
[
=
(
BHA′

)
=T
(
B (HA)

′)]
+O

(
M−2

)
, (2)

where η(+,−)1010 and η(−,+)
0011 are pulse-related quantities defined in Appendix A, ′ and ′′ refer to the first and second

derivatives and where all frequency-depending matrices are evaluated at ω = ωm, e.g. A = A(ωm), H′ =

H′(ωm)...

Proof: See Appendix A.

Comments: equations (1) and (2) show that the MSE expression is composed of many terms including the effects

of noise, MSI, ISI and ICI. One may recognize some usual terms, i.e., the noise term in (1) or the first term of
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TABLE I

SUMMARY OF THE DIFFERENT DESIGNS UNDER CONSIDERATION AND THEIR RESPECTIVE ASSUMPTIONS.

Decoder (Uplink, MAC channel) Precoder (Downlink, BC channel)

AUL = ξULINU , HUL ∈ CN×NU BDL = ξDLINU ,HDL ∈ CNU×N

ZF (BHA = INU ) ξZFUL independent of ω ξZFDL depends on ω

MMSE (BHA 6= INU ) ξMMSE
UL independent of ω ξMMSE

DL depends on ω

(2) related to the fact that the channel is not perfectly inverted (BHA 6= IS). Those two terms would be the only

ones remaining if the channel was frequency flat (H′ = 0) and the precoder non-frequency selective (A′ = 0).

Those are also the two only terms of distortion in an OFDM system if the cyclic prefix is longer than the channel

length and the system well synchronized. Furthermore, the dependence of (2) on H′ and H′′ comes directly from

the fact that the channel variation breaks the FBMC-OQAM orthogonality while the dependence in the derivatives

of the precoder A′ and A′′ shows that the precoding operations on adjacent subcarriers may influence the MSE

at the current subcarrier. Notice that this effect, also known as intrinsic interference, also occurs if the channel is

non-varying (H′ = 0) but the precoder varies over the subcarriers (A′ 6= 0).

III. LINEAR PRECODER AND DECODER DESIGN FOR A MU MIMO SYSTEM

The goal of this section is to optimize the general MSE formulation of (1), applied to a MU MIMO scenario,

as a function of the linear precoding or decoding matrices. As shown in Fig. 1, we consider a MU MIMO system

with one base station (BS) equipped with N antennas and NU users, each one equipped with a single antenna and

not able to cooperate with each other3. The users and the BS are assumed to use SDMA, i.e., they communicate

simultaneously using the same time and frequency resources. The number of streams is equal to S = NU with

N ≥ NU . The channel frequency response matrix H(ω) is assumed to be perfectly known by the BS. For the sake of

clarity, H(ω) is denoted by HDL(ω) ∈ CNU×N when referred to the specific DL scenario and HUL(ω) ∈ CN×NU

resp. in the UL case.

While optimizing the decoder in UL (resp. precoder in DL), the precoder (resp. decoder) at the other end is

fixed to a real positive power normalization scalar ξ(ω) since the users cannot collaborate. In the following, a

per-subcarrier total transmit power PT constraint is considered.

tr
[
AAH

]
= PT . (3)

Two design criteria will be investigated, namely the ZF criterion and the MMSE criterion. A summary of the

different designs under study with their corresponding assumptions is given in Table I. Note that in UL, the users

3Note that the approach could be generalized to the case where each user terminal is equipped with multiple antennas, although the extension

does not seem trivial.
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cannot not precode the streams, so that ξUL(ω) is frequency non-selective. Conversely, in the DL, the BS pre-

equalizes the channel at the subcarrier level. This processing depends on the channel frequency response at this

subcarrier and hence, the normalization factor ξDL(ω) will generally depend on frequency. Finally, the computation

complexity of the proposed designs will be studied.

A. Zero Forcing Design

For this design, a channel inverting constraint is considered, namely

BHA = INU . (4)

The channel matrix H is assumed full rank, which is a quite natural assumption in the considered MU MIMO

scenario. Using (4) and the fact that (BHA)′ = B(HA)′ + B′HA = 0, many terms of the distortion expression

of (2) vanish and the MSE in (1) simplifies to

MSE(m) = αtr
[
(BH′A) (BH′A)

H
]

− (2α+ 2β)tr
[
=(BHA′)=(B′HA)T

]
+N0tr

[
BBH

]
+O

(
2M−2

)
. (5)

where α =
2η

(+,−)
1010

(2M)2
, β =

2η
(−,+)
0011

(2M)2
.

1) Linear Decoder (Multiple Access Channel (MAC), Uplink): In the UL case, HUL and H′UL ∈ CN×NU

correspond to the tall channel frequency response matrix and its derivative evaluated at the subcarrier of interest.

From the power normalization (3) and channel inversion (4) constraints, the general solution of the problem can

be written in the following form

AZF
UL = ξZFULINU

BZF
UL =

1

ξZFUL

(
H† + B̃PUL

)
where H†UL = (HH

ULHUL)−1HH
UL, PUL = IN −HULH†UL, ξZFUL =

√
PT /NU and where B̃ is a NU ×N matrix

to be optimized. This shows that the decoder can be written as the left pseudo-inverse of the channel plus a matrix

lying on the left null space of HUL. In the trivial case N = NU , the decoder is the inverse of the channel since

there are no extra degrees of freedom. One can check that the second term of the distortion in (5) is null due to

the fact that =(BZF
ULHUL(AZF

UL)′) = =
(
(ξZFUL)′/ξZFUL

)
INU = 0 with ξZFUL purely real and frequency non-selective.

Therefore, the optimization problem can be turned into the minimization of a quadratic expression in B̃

min
B̃

α tr
[(

H†ULH′UL + B̃PULH′UL

)(
H†ULH′UL + B̃PULH′UL

)H]
+
N0NU
PT

tr
[(

HH
ULHUL

)−1
+ B̃PULB̃H

]
.

(6)

Setting the derivative of this expression with respect to B̃∗ to 0, we find that the optimum solution is such that

B̃ = −H†ULH′UL

(
H′HULPULH′UL +

N0NU
PTα

INU

)−1
H′HUL (7)

where we used the matrix inversion lemma.
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2) Linear Precoder (Broadcast Channel (BC), Downlink): In the DL case, HDL,H
′
DL ∈ CNU×N denote the fat

channel frequency response matrix and its derivative evaluated at the subcarrier of interest. From the constraints

(3) and (4), the general solution can be written as

AZF
DL =

1

ξZFDL

(
H†DL + PDLÃ

)
BZF

DL = ξZFDLINU

where H†DL = HH
DL(HDLHH

DL)−1, PDL = IN−H†DLHDL and ξZFDL =

√
tr
(

(HDLHH
DL)−1 + ÃHPDLÃ

)
/PT . As

in the decoder case, the second term of the distortion in (5) also disappears due to the fact that =((BZF
DL)′HDLAZF

DL) =

=((ξZFDL)′/ξZFDL)INU = 0 with ξ purely real. The optimization problem then simplifies to

min
Ã

α tr
[(

H′DLH†DL + H′DLPDLÃ
)(

H′DLH†DL + H′DLPDLÃ
)H]

+
N0NU
PT

tr
[
(HDLHH

DL)−1 + ÃHPDLÃ
]
,

the solution of which is, after applying matrix inversion lemma,

Ã = −H
′H
DL

(
H′DLPDLH

′H
DL +

N0NU
PTα

INU

)−1
H′DLH†DL.

One can check that the asymptotic MSE of the optimized precoder and decoder will be exactly the same if the

channels are the Hermitian of one another, i.e. HDL = HH
UL.

3) Asymptotic Study at Low and High SNR: We concentrate here on the behavior of the optimized linear decoder

in the UL (MAC) channel. Similar conclusions also hold for the precoder in the DL (BC) channel. We assume that

the number of users NU and the transmit power PT remain constant while we let N0 go to 0 or +∞ (high and

low SNR respectively). At low SNR (N0 → +∞), the expression in (7) tends to zero (B̃→ 0) and the optimized

decoder converges to

lim
N0→∞

BZF
UL =

1

ξZFUL

H†UL.

As one would expect, when noise power is large, the distortion caused by channel selectivity is comparatively

negligible. The best thing to do is to use the classical pseudo-inverse of the channel to combine the signals of each

antenna.

At high SNR, assuming that H′UL is of full rank NU , the decoder converges to a limit that depends on the rank

of PUL. Indeed, two cases must be considered depending on whether matrix H′HULPULH′UL is invertible or not.

One can rewrite PUL as a function of the singular value decomposition (SVD) of HUL

HUL =
[
U1 U2

] [
ΣNU×NU 0HN−NU×NU

]H
VH .

We then find PUL = U2U
H
2 where U2 is the N ×N −NU matrix composed of the N −NU left singular vectors

of HUL associated to its zero singular values. It is then straightforward to see that the rank of PUL is the dimension

of the left null space of HUL,i.e. N −NU . First, if N −NU ≥ NU , matrix H′HULPULH′UL is full rank and the limit

becomes

lim
N0→0

B̃ = −H†ULH′UL

(
H′HULPULH′UL

)−1
H′HUL.
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TABLE II

COMPLEXITY OF CALCULATING THE PROPOSED PRECODERS AND DECODERS.

Decoder (Uplink, MAC channel) Precoder (Downlink, BC channel)

Classical ZF O(2NN2
U +N3

U ) O(3NN2
U +N3

U )

Opt. ZF O(4NN2
U + 4N2NU + 2N3

U ) O(5NN2
U + 4N2NU + 2N3

U )

Classical MMSE O(2N2NU +N3) O(2N2NU +NN2
U +N3)

Opt. MMSE O(5N2NU +N3) O(6N2NU + 3NN2
U + 2N3

U +N3)

Replacing this expression of B̃ into (6), it can be seen that the limit of the asymptotic MSE at high SNR will tend

to zero. This means that for twice as many antennas as the number of served users, we can completely remove the

first order approximation of the distortion caused by channel frequency selectivity.

As for the case N −NU < NU , using the fact that PUL = U2U
H
2 , one can reapply the matrix inversion lemma

on B̃PUL in order to show that the limit becomes

lim
N0→0

B̃PUL = −H†ULH′ULH′HULU2

(
UH

2 H′ULH′HULU2

)−1
UH

2 .

In this case, the noise term of the MSE will tend to zero but the first order approximation of the distortion will

only be partially compensated for.

We can conclude that the optimized ZF decoder and precoder can be written in a compact expression as the

pseudo-inverse of the channel plus a matrix lying on the null space of the channel. This design can compensate for

the degradation due to channel frequency selectivity and even completely remove the first order approximation of

the distortion for twice as many BS antennas as the number of served users.

B. Minimum Mean Squared Error Design

The previous designs rely on a ZF criterion which restricts the solution domain. In the following, we do not

make this assumption and we look at the general MMSE design which will achieve an optimized performance.

Indeed, for low SNR situations or highly selective subchannels, inverting the channel might strongly degrade the

performance. Furthermore, the channel matrix H does not generally need to be full rank.

1) Linear Decoder (Multiple Access Channel, Uplink): For the decoder case, due to the power normalization

constraint (3), we impose

AMMSE
UL = ξMMSE

UL INU

BMMSE
UL =

1

ξMMSE
UL

B̂

where ξMMSE
UL =

√
PT
NU

and B̂ = ξMMSE
UL BMMSE

UL is defined to clarify the following expressions by suppressing the

dependence in ξMMSE
UL . Hence, the imaginary terms of the distortion in (2) again disappear due to (AMMSE

UL )′ = 0
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(the precoder is frequency independent) and the optimization problem takes the following quadratic form in B̂

min
B̂

MSE(m) = tr
[
(B̂HUL − I)(B̂HUL − I)H

]
+ αtr

[(
B̂H′UL

)(
B̂H′UL

)H]
+ α<tr

[
(B̂HUL − I)(B̂H′′UL)H

]
+
N0NU
PT

tr
[
B̂B̂H

]
.

Setting the derivative of this expression with respect to B̂∗ to 0 yields the MMSE decoder given by,

B̂ =
(
HH

UL +
α

2
H′′HUL

)(
HULHH

UL + αH′ULH′HUL +
α

2

(
HULH′′HUL + H′′ULHH

UL

)
+
N0NU
PT

IN

)−1
(8)

2) Linear Precoder (Broadcast Channel, Downlink): In the precoder case, due to the normalization constraint,

we have

AMMSE
DL =

1

ξMMSE
DL

Â

BMMSE
DL = ξMMSE

DL INU

with ξMMSE
DL =

√
tr[ÂÂH ]
PT

. As opposed to all of the previous designs, the imaginary terms of the distortion in

(2) do not cancel out. The optimization of those two terms is difficult due to the dependence in (AMMSE
DL )′. The

derivative implies that the optimization of the precoder of one subcarrier depends on the neighboring subcarriers

and the optimization can no longer be done locally at the subcarrier level, which increases the problem complexity

and is not comparable to the other designs. Hence, we propose to impose an additional constraint which cancels the

imaginary terms of (2), i.e., =(HDLAMMSE
DL ) = 0. This somehow means that we have a ZF design on the imaginary

part of HDLAMMSE
DL and a MMSE design on its real part. We then have to minimize the following Lagrangian

formulation including the constraint (via the Lagrange multiplier Ψ)

min
Â

L = tr
[
(HDLÂ− I)(HDLÂ− I)H

]
+ αtr

[(
H′DLÂ

)(
H′DLÂ

)H]
+ α<tr

[
(HDLÂ− I)(H

′′

DLÂ)H
]

+
N0NU
PT

tr
[
ÂÂH

]
+ jtr

[
ΨT (HDLÂ−H∗DLÂ∗)

]
.

Setting the derivative of L with respect to Â to 0 yields

Â =

(
HH

DLHDL + αH′HDLH′DL +
α

2

(
HH

DLH′′DL + H′′HDLHDL

)
+
N0NU
PT

IN

)−1 (
jHH

DLΨ + HH
DL +

α

2
H′′HDL

)
,

(9)
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where the value of Ψ is fixed thanks to the constraint =(HDLA) = 0. Denoting X = HH
DLHDL+α

2

[
HH

DLH′′DL + H′′HDLHDL

]
+

αH′HDLH′DL + N0NU
PT

IN , we find

Ψ = −
(
<
(
HDLX−1HH

DL

))−1=(HDLX−1(HH
DL +

α

2
H′′HDL )).

C. Complexity of computation of the proposed precoders and decoders

Table II gives an order of complexity of computing the proposed optimized designs with respect to classical

designs. By classical designs, we mean precoders and decoders that rely on the hypothesis of channel frequency

flatness at the subcarrier level, i.e., H′(ωm) = H′′(ωm) = 0. For the calculation, only matrix multiplications and

inversions are taken into account given that they are the most complex operations. It is assumed that for general

matrices D ∈ Cl×m,E ∈ Cm×n,F ∈ Cm×m, performing matrix multiplication DE has complexity O(lmn) and

matrix inversion F−1 has complexity O(m3). One can check that the calculation complexity of the optimized

designs remains similar to the classical. Note that the designs in DL are more complex since they require one more

matrix multiplication for the calculation of ξDL. Furthermore, the opt. MMSE precoder is slightly more complex

than the opt. MMSE decoder due to the required calculation of Ψ.

IV. SIMULATION RESULTS

The following simulations first aim at demonstrating the accuracy of the derived asymptotic MSE expression in

practical situations. Secondly, they validate the performance of the optimized precoders and decoders w.r.t. classical

precoder and decoder designs. A FBMC-OQAM system is considered with 2M = 128 subcarriers and subcarrier

spacing 15kHz as in LTE. The channels are randomly drawn from the ITU Vehicular A or B channel model, i.e.

a mildly or highly frequency selective channel respectively. Furthermore, they remain constant during the frame

transmission (quasi-static assumption). The Phydyas prototype pulse with overlapping factor κ = 4 is used in the

simulations [18]. This pulse does not fully satisfy the PR constraints but is of the near-perfect-reconstruction (NPR)

type. Given that it almost fulfills PR constraints, the derived MSE expression (1) remains a very good approximation

of the distortion, as will be shown in the following.

Fig. 4 shows the MSE of the classical and optimized MMSE decoders for a specific channel realization. The

channel model simulated is the Vehicular B channel. The BS is assumed to have N = 4 antennas serving NU = 2

users and the SNR of the system is 25dB. One can first check that the simulated MSE (in cross markers) perfectly

matches the theoretical approximation (in solid line) of (1). Furthermore, in the high SNR regime considered here,

the classical MMSE decoder is limited by the distortion induced by the channel frequency selectivity. On the other

hand, the optimized MMSE decoder uses the two extra antennas to cancel the distortion, giving a clear gain of

performance.

In Fig. 5 and Fig. 6, the symbol error rate (SER) for the classical and optimized decoders are plotted for a

fixed number of users NU = 3 and different number of BS antennas N . The signal constellation is a 16-QAM.
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In Fig. 5, the Veh. A channel model is considered and the classical decoders can achieve the same performance

as the optimized ones. This comes from the fact that the assumption of an approximately flat channel inside each

subchannel is accurate. On the other hand, in Fig. 6, the Veh. B channel model is considered, i.e., a highly selective

channel. The SER saturates very quickly with a classical decoder while the optimized ZF or MMSE decoder can

compensate for the distortion as the number of BS antennas N grows and the SER therefore saturates at higher

SNR. In the case NU = 3, N = 6, the SER does not even saturate in the considered SNR range since the BS

has twice as many antennas and can completely remove the first order approximation of the distortion. This is in

accordance with the asymptotic study at high SNR conducted in Section III-A3. As expected, the MMSE designs

outperform the ZF designs, and this gain is larger for a small number of BS antennas. Indeed, as the number of

BS antennas increases, the interference can be better handled and the regularization gain of the MMSE decoder is

reduced.

In Fig. 7, a 4-QAM constellation and the Veh. B channel model are considered in the UL. The proposed decoder

designs are compared with a 3-tap frequency sampling equalizer that follows the design of [9] with target frequency

points chosen according to a ZF criterion. One can check that the 3-tap equalizer has a gain of performance relative

to the proposed designs for the same antenna configuration. Note however that the multi-tap design has a much

larger complexity in terms of hardware implementation and calculation of the equalizer coefficients. Moreover, it

adds a reconstruction delay to the demodulation chain.

Fig. 4. The optimized MMSE decoder clearly outperforms the classical MMSE decoder. The asymptotic approximation of the MSE represented

in a solid line matches perfectly the simulated MSE in crosses.
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Fig. 5. SER of the optimized and classical ZF/MMSE decoders and Veh. A channel model.

Fig. 6. SER of the optimized and classical ZF/MMSE decoder and Veh. B channel model

Fig. 8 has exactly the same simulation parameters as Fig. 7 but for the DL. One can check that the performance

of the ZF precoder in DL is similar to the decoder one in UL. Note that the SER performances of the precoder

and decoder might differ. Indeed, even though the MSE expression is dual in UL and in DL, the distribution of the
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Fig. 7. SER of the optimized and classical ZF/MMSE decoder and a 3-tap frequency sampling equalizer.

Fig. 8. SER of the optimized, classical ZF/MMSE precoder.

per-stream SER might differ due to the correlation of the noise arising in UL but not in DL. Moreover, due to the

ZF constraint on =(HDLAMMSE
DL ) = 0, the optimized MMSE precoder performs slightly worse than the classical
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MMSE precoder at low SNR.

V. CONCLUSION

This paper investigated the design of optimized FBMC-OQAM precoders and decoders for a MU MIMO scenario

highly selective channel. The asymptotic expression of the MSE of a FBMC transceiver was recalled, simplified and

generalized. Optimizing the MSE expression, expressions of the optimized linear precoder and decoder were found

under either a ZF criterion or a MMSE criterion. As soon as the BS has more antennas than the number of users,

the optimized structures use those extra degrees of freedom to compensate for the distortion induced by channel

frequency selectivity. From an asymptotic study at high SNR, it was shown that the first order approximation of the

distortion can even be completely removed if the BS has at least twice as many antennas as the number of users.

Simulation results have demonstrated the accuracy of the new asymptotic expression of the distortion as well as

the performance of the optimized precoders and decoders.

APPENDIX A

DISTORTION EXPRESSION

In this appendix, we are interested only in the intrinsic distortion caused by the FBMC signal itself in the presence

of channel frequency selectivity. Since the additive noise samples are assumed to be uncorrelated with the signal

of interest, we will assume a noise-free received signal. In order to derive the distortion expression, we will first

define different notations and recall one Lemma of [16].

We define yp,ql0,m0
∈ CS×1 as

yp,ql0,m0
=

2Ns−1∑
l=0

2M−1∑
m=0

dl,m

Lq−1∑
n=0

pl,m[n]q∗l0,m0
[n].

The symbols yp,ql0,m0
can be seen as the complex demodulated samples at subcarrier m0 and multicarrier symbol

l0, before de-staggering, if the real-valued symbols streams dl,m are FBMC/OQAM modulated using a prototype

pulse p[n] and demodulated using a prototype pulse q[n] and for an ideal channel, i.e., H(ω) = IS . Moreover, if

p and q are perfect reconstruction (bi-orthogonal) pulses, one will have dl0,m0 = <(yp,ql0,m0
).

As detailed in Section II-A, to compensate for the effect of the channel, a single-tap precoding matrix A(ω)

and decoding matrix B (ω) are used, operating at the per-subcarrier level. At the transmitter, the symbols dl,m are

precoded by matrix A(ωm). At the receiver, the equalized symbols are denoted by xp,ql0,m0
= B(ωm0)zp,ql0,m0

where

zp,ql0,m0
are the demodulated symbols at the receiver before decoding, i.e.,

zp,ql0,m0
=

Lq−1∑
n=0

r[n]q∗l0,m0
[n].

Note that one does not necessarily have <(xp,ql0,m0
) = dl0,m0

even if B (ω) H (ω) A (ω) = IS (and if no additive

noise is present) due to the fact that the FBMC-OQAM orthogonality does not hold anymore if the channel is not

exactly flat. However, this will hold approximately if all frequency-depending quantities, B (ω) ,H (ω) ,A (ω), are

sufficiently flat as functions of ω provided that B (ω) H (ω) A (ω) = IS . Our objective is to find an approximate
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expression for the associated error. This was already done in [16] but for the special case of ZF (channel inversion),

i.e.,

B (ω) H (ω) A (ω) = IS .

We here extend and greatly simplify the formula derived in [16] to the general case of non channel inversion, i.e.,

B (ω) H (ω) A (ω) 6= IS .

To derive the result of Theorem II.1, we will use the following result, proven in [16]. We will basically assume

that all frequency depending quantities are smooth functions of ω and that the prototype pulses are sampled versions

of smooth analog waveforms, namely, (As1)-(As3).

Lemma 1. Under assumptions (As1)-(As3), we have

zp,ql0,m0

=

R∑
k=0

R−k∑
k′=0

(−j)k+k′

(2M)k+k′k!k′!
H(k)A(k′)yp,q

(k)

l0,m0
(k′) +O(M−R)

where

yp,q
(k)

l0,m0
(k′) =

k′∑
r=0

k′!

r!(k′ − r)!
(−1)ryp

(r),q(k+k
′−r)

l0,m0

and where p(r), q(r) are the sampled versions of the r-th time domain derivatives of the original prototype pulses.

Superscript (k) denotes the m-th order derivative of the corresponding frequency dependent quantity, which always

is evaluated at subcarrier m0 (here and in the following of the appendix).

A direct application of the above lemma for R = 2 allows us to write

xp,ql0,m0
= BHAyl0,m0

− j

2M
ε1 −

1

2(2M)2
ε2 +O(M−2) (10)

where we have defined

ε1 = B (HA)
(1)

yp,q
(1)

l0,m0
−BHA(1)yp

(1),q
l0,m0

ε2 = B (HA)
(2)

yp,q
(2)

l0,m0
− 2B

(
HA(1)

)(1)
yp

(1),q(1)

l0,m0

+ BHA(2)yp
(2),q
l0,m0

At this point, force p = q so that the same prototype pulse is used at both transmitter and receiver. We define the

distortion error associated with the complex-valued symbols as4

Pd(m) = 2E
(
‖<(xp,ql0,m0

)− dl0,m0
‖2
)
. (11)

4Note that this definition is in accordance with equation (1) when noise is absent.
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We now need to define some pulse-related quantities. Given two generic pulses, p, q of length 2Mκ and let P

and Q denote two 2M × κ matrices obtained by arranging the samples of the respective pulses in columns from

left to right. We will define

R(p, q) = P ~ J2MQ

S(p, q) = (J2 ⊗ IM ) P ~ J2MQ

where ~ denotes row-wise convolution, ⊗ denotes Kronecker product, IM (resp. JM ) are the identity (resp.

exchange) matrices of order M . Given four generic pulses p, q, r, s, we define

η± (p, q, r, s)

=
1

2M
tr
[
U+R (p, q)RT (r, s) + U−S (p, q)ST (r, s)

]
η∓ (p, q, r, s)

=
1

2M
tr
[
U−R (p, q)RT (r, s) + U+S (p, q)ST (r, s)

]
where U± = I2 ⊗ (IM±JM ). In order to simplify the notations, given four integers m,n, r, s, we will define

η
(+,−)
mnrs = η±

(
p(m), p(n), p(r), p(s)

)
.

Assuming that the pulse has PR properties (As2) so that dl0,m0
= <(yp,ql0,m0

), we can obtain an asymptotic

expression for this distortion by simply inserting (10) in (11) for p = q and by using the fact that [3, Appendix B]

E
(
<(yp

(m),q(n)

l0,m0
)<T (yp

(r),q(s)

l0,m0
)
)

= η(+,−)mnrs IS

E
(
=(yp

(m),q(n)

l0,m0
)=T (yp

(r),q(s)

l0,m0
)
)

= η(−,+)
mnrs IS

E
(
<(yp

(m),q(n)

l0,m0
)=T (yp

(r),q(s)

l0,m0
)
)

= 0.

The resulting expression can be more compactly expressed by using the fact that η(+,−)mnrs = η
(+,−)
rsmn , η(+,−)mnrs = η

(+,−)
nmsr ,5

as established in Lemma 2 of Appendix B. Furthermore, if we assume that the prototype pulse is either symmetric

or anti-symmetric, one can establish that η(+,−)0000 = η
(−,+)
0000 , η(+,−)0001 = η

(−,+)
0001 , η(+,−)0101 = η

(−,+)
0101 and η(+,−)0020 = η

(−,+)
0020 ,

a fact that is proven in Lemma 3 of Appendix B. If, additionally, the prototype pulse meets the PR conditions, we

can guarantee that η(+,−)0001 = 0 as established in Lemma 4 of Appendix B.

Using all this, together with the fact that

tr
[
<(X)<T (Y) + =(X)=T (Y)

]
= <tr

[
XYH

]
tr
[
=(X)<T (Y)−<(X)=T (Y)

]
= =tr

[
XYH

]
for any complex valued matrices X, Y of appropriate dimensions, we see that

Pd(m) = 2ξ0,m +
2

(2M)
2 ξ2,m +O

(
M−2

)
(12)

5Obviously, the same identities hold if (+,−) is replaced by (−,+).
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where we have defined

ξ0,m = η
(+,−)
0000 tr

[
(BHA− I) (BHA− I)

H
]

ξ2,m = η
(+,−)
1010

(
tr
[
BHA(1)

(
BHA(1)

)H]
+ tr

[
B (HA)

(1)
(
B (HA)

(1)
)H])

− η(+,−)2000

(
<tr
[
(BHA− I)

(
BHA(2)

)H]
+ <tr

[
(BHA− I)

(
B (HA)

(2)
)H])

+ 2η
(+,−)
0011 tr

[
< [BHA− I]<T

[
B
(
HA(1)

)(1)]]
+ 2η

(−,+)
0011 tr

[
= [BHA− I]=T

[
B
(
HA(1)

)(1)]]
− 2η

(+,−)
1001 tr

[
=
[
B (HA)

(1)
]
=T
[
BHA(1)

]]
− 2η

(−,+)
1001 tr

[
<
[
B (HA)

(1)
]
<T
[
BHA(1)

]]
and where all frequency-depending matrices are evaluated at ω = ωm.

It is easy to see that, thanks to the PR property of the prototype pulse, we will have η(+,−)0000 = Ps/2, where

we recall that Ps is the power of the complex constellation symbols. Therefore, the asymptotic distortion power

depends on six different pulse-related quantities, which present some non-trivial interrelationships. To establish

these interrelationships, we invoke again Lemma 3 of Appendix B. In particular, the relationships in (17)-(18) allow

us to establish [
η
(+,−)
1001 − η

(−,+)
1001

]
−
[
η
(+,−)
0011 − η

(−,+)
0011

]
= 0 (13)

η
(+,−)
0011 + η

(+,−)
1010 = 0. (14)

We can find further equivalences between the different pulse quantities by considering here the asymptotic domain

as M →∞ together with the fact that the prototype pulse is, by assumption, a sampled version of a smooth analog

waveform.

Indeed, applying the result in Proposition B.1, Corollary 1 and Lemma 6 in Appendix B together with the fact

that the prototype pulse is symmetric and PR compliant, we obtain

η
(+,−)
2000 − η

(+,−)
0011 + η

(+,−)
1010 − η

(−,+)
1001 = O(M−1) (15)

η
(+,−)
0011 − η

(+,−)
2000 = O(M−2). (16)

We may consider the system of equations formed by (13),(14),(15) and (16). Denoting α = η
(+,−)
1010 and β = η

(−,+)
0011 ,

we can express the system of equations as
1 −1 −1 0

0 0 1 0

0 −1 −1 1

0 0 1 −1




η
(+,−)
1001

η
(−,+)
1001

η
(+,−)
0011

η
(+,−)
2000

 =


−β

−α

−α

0

+O(M−1)
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so that we can conclude that 
η
(+,−)
1001

η
(−,+)
1001

η
(+,−)
0011

η
(+,−)
2000

 =


−β

α

−α

−α

+O(M−1)

Using this in (12) we obtain (2).

APPENDIX B

SOME PROPERTIES OF THE QUANTITIES η
(+,−)
mnrs

In this appendix, we provide some identities on the quantities η(+,−)mnrs , η(−,+)
mnrs that will clearly simplify the

expression for the asymptotic distortion derived above. We will begin by presenting some properties that hold

exactly for all values of M .

A. Non-asymptotic properties

Let us begin with general properties that hold regardless of whether the pulses are symmetric or not.

Lemma 2. By the definition of the η± (p, q, r, s), and regardless of the pulse symmetries, we have

η± (p, q, r, s) = η± (r, s, p, q)

and

η± (p, q, r, s) = η± (q, p, s, r) .

The same identities hold if ± is replaced by ∓ everywhere.

Proof: Indeed, the first result is a consequence of the fact that

(
U±R (p, q)RT (r, s)

)T
= R (r, s)RT (p, q) U±(

U±S (p, q)ST (r, s)
)T

= S (r, s)ST (p, q) U±

whereas the second one follows from the identities

R (p, q)RT (r, s) = J2MR (q, p)RT (s, r) J2M ,

S (p, q)ST (r, s) = (I2 ⊗ JM )S (q, p)ST (s, r) (I2 ⊗ JM )

and the definition of U±.

Sometimes, it is useful to consider a relationship between quantities of the type η± and η∓. In order to obtain

such relationships, we impose that the pulses are either symmetric or anti-symmetric in the time domain.
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Lemma 3. Assume that all the pulses p, q, r, s are either symmetric or anti-symmetric in the time domain. Let s(p)

be defined so that s(p) = 0 if the pulse p has even symmetry and s(p) = 1 if the pulse is anti-symmetric. Then, we

can write

(−1)
s(p) [

η±(p, q, r, s)− η∓(p, q, r, s)
]

+ (−1)
s(r) [

η±(r, q, p, s)− η∓(r, q, p, s)
]

= 0 (17)

and also

(−1)
s(p) [

η±(p, q, r, s) + η∓(p, q, r, s)
]

± (−1)
s(p) [

η±(p, q, s, r)− η∓(p, q, s, r)
]

= (−1)
s(s) [

η±(s, q, r, p) + η∓(s, q, r, p)
]

(18)

In particular, for the specific case where p = r we have

η±(p, q, p, s) = η∓(p, q, p, s).

Finally, if q = s and the pulses p and r have the same type of symmetry, we have

η±(p, q, r, q) = η∓(p, q, r, q).

Proof: Let us denote by R1(p, q) and R2(p, q) the upper and lower matrices of R(p, q), and equivalently for

S1(p, q) and S2(p, q). Let P denote a 2M × κ matrix obtained by arranging the pulse p[n] in columns, and let P1

and P2 respectively denote the matrices obtained by selecting the M upper and lower rows of P respectively. By

the symmetry of p[n], we know that

P1 = (−1)s(p)JMP2J2κ−1.

On the other hand, we can prove that, for any four matrices A,B,C and D of dimensions M × κ, the diagonal

entries of (A ~ BJκ) (C ~ DJκ)
T

JM are equal to the diagonal entries of JM (C ~ JMB) (A ~ JMD)
T . This

shows that, using pulse symmetry,

tr
[
R1 (p, q)RT1 (r, s) JM

]
= tr

[
JM (JMP1 ~ Q2) (JMR1 ~ S2)

T
]

= (−1)
s(p)+s(r) tr

[
(P2Jκ ~ Q2) (R2Jκ ~ S2)

T
JM

]
(∗)
= (−1)

s(p)+s(r) tr
[
JM (S2 ~ JMP2) (Q2 ~ JMR2)

T
]

= (−1)
s(p)+s(r) tr

[
JM (P2 ~ JMS2) (R2 ~ JMQ2)

T
]

= (−1)
s(p)+s(r) tr

[
JMS1 (p, s)ST1 (r, q)

]
= (−1)

s(p)+s(r) tr
[
JMS1 (r, q)ST1 (p, s)

]
(19)

where the identity in (∗) follows from the above convolution result. Equivalently, we will obviously have

tr
[
R2 (p, q)RT2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
JMS2 (r, q)ST2 (p, s)

]
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and the two above identities directly prove (17). Regarding the identity in (18), it follows easily from the above

identities together with the fact that JMRi (p, q) = R3−i (q, p), JMSi (p, q) = Si (q, p), i = 1, 2, and the fact that

tr
[
R1 (p, q)RT2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
R1 (r, q)RT2 (p, s) JM

]
tr
[
S1 (p, q)ST2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
S1 (r, q)ST2 (p, s) JM

]
which can be established following the same approach as in (19). The last two identities in the statement of the

lemma are obtained as special cases of (17).

We finalize the description of the non-asymptotic properties of the η±(p, q, r, s) with a result that will be useful

whenever two of the pulses meet the perfect reconstruction conditions.

Lemma 4. Assume that the two pulses p, q meet the perfect reconstruction conditions, and that r and s are either

symmetric or anti-symmetric in the time domain and have the opposite symmetry. Then η±(p, q, r, s) = 0.

Proof: Since p, q have PR conditions, we know that U−S (p, q) is an all-zero matrix whereas U+R (p, q) has

zeros everywhere except for the central column, which is filled with 1s. Therefore, we are able to write

η±(p, q, r, s) =
1

2M

2Mκ∑
n=1

r[n]s[2Mκ− n+ 1] = 0

where the last equality follows from the fact that r and s have the opposite symmetry.

B. Asymptotic properties

Let us now consider some properties of the η±(p, q, p, s) that are obtained by assuming that the pulses are

sampled versions of a smooth analog waveform. In other words, we assume that p[n], q[n], r[n] and s[n] are

sampled versions of the waveforms p(t), q(t), r(t) and s(t) respectively, according to the properties in (As2). This

means that we can express

p[n] = p

((
n− N + 1

2

)
Ts

2M

)
where p (t) has the usual properties in (As2). The same holds for the rest of the pulses.

Let us denote pm[n] the m-th polyphase component of p[n], which can be expressed as

pm[n] = pm

((
n− 1

2

)
Ts

2M

)
where pm(t) is the m-th section of p(t), namely

pm(t) = p
(
t−
(
m+

κ

2
− 1
)
Ts

)
which has support [0, Ts]. The definition of pm(t) is only valid for m = 1, . . . , κ, but we will consider pm(t) = 0

for values of m outside this range. The same definitions carry over to the other pulses, namely q, r and s.

With all these definitions, we are now in a position to establish the first asymptotic result associated with

η±(p, q, p, s). The following result asymptotically relates the original quantity η±(p, q, p, s) with an equivalent

definition that is constructed using the analog waveforms instead of the sampled ones.
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Lemma 5. Under the above assumptions, we can write

η±(p, q, r, s) = η̄±(p, q, r, s) +O(M−2)

where

η̄±(p, q, r, s) =

2κ−1∑
`=1

κ∑
m=1

κ∑
n=1

A(`,m,n) [p, q, r, s]±B(`,m,n) [p, q, r, s]

and where A(`,m,n) [p, q, r, s] and B(`,m,n) [p, q, r, s] are defined as:

A(`,m,n) [p, q, r, s] =
1

Ts

∫ Ts

0

pm(t)q`−m+1(Ts − t)rn(t)s`−n+1(Ts − t)dt

+
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(
Ts
2
− t)rn(t)s`−n+1(

Ts
2
− t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(
3Ts
2
− t)rn(t)s`−n+1(

3Ts
2
− t)dt

and

B(`,m,n) [p, q, r, s] =
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(Ts − t)rn(
Ts
2
− t)s`−n+1(

Ts
2

+ t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(Ts − t)rn(
3Ts
2
− t)s`−n+1(t− Ts

2
)dt

+
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(
Ts
2
− t)rn(

Ts
2
− t)s`−n+1(t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(
3Ts
2
− t)rn(

3Ts
2
− t)s`−n+1(t)dt.

Proof: The proof is a direct consequence of the definition of η±(p, q, r, s) and the Riemann integral. Details

are omitted due to the space constraints.

The above lemma allows us to express η±(p, q, r, s) as a function of integrals of the analog waveform sections

pm(t), qm(t), rm(t), sm(t). This turns out to be very convenient for the following result, which provides an

asymptotic relationship among different η±(p, q, r, s) with respect to the derivatives of the corresponding pulses.

Proposition B.1. Under the above assumptions and definitions, we can write

η± (p′, q, r, s)− η± (p, q′, r, s) + η∓ (p, q, r′, s)− η∓ (p, q, r, s′) = −
[
U∓R (p, q)RT (r, s) U±

]
1,1

−
[
U∓R (p, q)RT (r, s) U±

]
M+1,M+1

−
[
U±S (p, q)ST (r, s) U∓

]
1,1

−
[
U±S (p, q)ST (r, s) U∓

]
M+1,M+1

+O(M−1)

(20)

Proof: Consider the definition of A(`,m,n) [p, q, r, s] and B(`,m,n) [p, q, r, s]. These terms consist of a number

of integrals of a differentiable function on a compact interval of the positive real axis. Hence, we can use the
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fundamental theorem of calculus to write

η̄± (p′, q, r, s)− η̄± (p, q′, r, s) + η̄∓ (p, q, r′, s)− η̄∓ (p, q, r, s′) =

2κ−1∑
`=1

φ`

where

φ` = µ` (Ts, 0) ξ` (Ts, 0)− µ` (0, Ts) ξ` (0, Ts)

± [µ` (Ts, 0)− µ` (0, Ts)] ξ` (Ts/2, Ts/2)

± µ` (Ts/2, Ts/2) [ξ` (0, Ts)− ξ` (Ts, 0)]

+ µ` (Ts/2, 0) ξ` (Ts/2, 0)− µ` (0, Ts/2) ξ` (0, Ts/2)

+ µ` (Ts, Ts/2) ξ` (Ts, Ts/2)− µ` (Ts/2, Ts) ξ` (Ts/2, Ts)

∓ µ` (Ts/2, 0) ξ` (0, Ts/2)± µ` (0, Ts/2) ξ` (Ts/2, 0)

∓ µ` (Ts, Ts/2) ξ` (Ts/2, Ts)± µ` (Ts/2, Ts) ξ` (Ts, Ts/2)

and where we have defined

µ` (t1, t2) =

κ∑
m=1

pm(t1)q`−m+1(t2)

ξ` (t1, t2) =

κ∑
m=1

rm(t1)s`−m+1(t2).

Now, according to Lemma 5 we can replace each term η̄± (p, q, r, s) by the corresponding η± (p, q, r, s) up to an error

of order O(M−2). Therefore, it suffices to prove that the right hand side of (20) is equal to
∑2κ−1
`=1 φ` +O(M−1).

But this follows directly from the fact that

µ` (Ts, 0) = [R2 (p, q)]M,` +O(M−1)

µ` (0, Ts) = [R1 (p, q)]1,` +O(M−1)

µ` (Ts/2, Ts/2) = [R1 (p, q)]M,` +O(M−1)

= [R2 (p, q)]1,` +O(M−1)

µ` (0, Ts/2) = [S2 (p, q)]1,` +O(M−1)

µ` (Ts/2, 0) = [S2 (p, q)]M,` +O(M−1)

µ` (Ts, Ts/2) = [S1 (p, q)]M,` +O(M−1)

µ` (Ts/2, Ts) = [S1 (p, q)]1,` +O(M−1)

and equivalently for ξ`, replacing p, q with r, s. This concludes the proof of the proposition.

The application of the above proposition may prove to be difficult due the presence of the term on the right hand

side of (20), which is difficult to interpret. The following corollary establishes that under PR conditions, this term

is zero.
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Corollary 1. Under the above assumptions and definitions, if (r, s) are PR-compliant and p, q are symmetric or

anti-symmetric but have the opposite symmetry, we can write

η+ (p′, q, r, s)− η+ (p, q′, r, s) + η− (p, q, r′, s)− η− (p, q, r, s′) = O(M−1).

Proof: It follows from the PR conditions that U−S (r, s) is an all-zero matrix, whereas U+R (r, s) contains

zeros everywhere except for the central column, which is filled with 1s. Proposition B.1 therefore establishes that

η+ (p′, q, r, s)− η+ (p, q′, r, s) + η− (p, q, r′, s)− η− (p, q, r, s′) = [R (p, q)]2M,κ − [R (p, q)]1,κ

+ [R (p, q)]M,κ − [R (p, q)]M+1,κ +O(M−1)

and the result follows from symmetry.

Before we conclude this appendix, we introduce another asymptotic result that will prove useful in the situation

where two of the pulses meet the PR conditions.

Lemma 6. Under the above definitions and hypotheses, assume additionally that p and q are perfect reconstruction

pulses and that the analog waveforms r, s and r′, s′ are zero at the extreme of their support. Then, we can write

η± (p, q, r′, s)− η± (p, q, r, s′) = O(M−2)

Proof: We know that U−S (p, q) is an all zero matrix whereas the entries of U+R (p, q) are all zero except

for the central column, which is filled with ones. This means that tr
[
U+S(p, q)S(r, s)T

]
= 0 and

1

2M
tr
[
U+R(p, q)R(r, s)T

]
=

1

2M

2Mκ∑
n=1

r[n]s[2Mκ− n+ 1]

=
1

Ts

∫ κTs

0

r(t)s(κTs − t)dt+O(M−2)

where the last identity follows from the Riemann integral definition. Therefore, since

1

Ts

∫ κTs

0

r′(t)s(κTs − t)dt−
1

Ts

∫ κTs

0

r(t)s′(κTs − t)dt = r(κTs)s(0)− r(κTs)s(0) = 0,

we obtain the result.

REFERENCES

[1] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.

[2] M. Tanda et al., “Deliverable 2.1, Data-aided synchronization and initialization (single antenna),” ICT-211887 PHYDYAS, Tech. Rep., July

2008.

[3] X. Mestre, M. Majoral, and S. Pfletschinger, “An asymptotic approach to parallel equalization of filter bank based multicarrier signals,”

IEEE Trans. Signal Process., vol. 61, no. 14, pp. 3592–3606, 2013.

[4] T. Ihalainen, T. H. Stitz, M. Rinne, and M. Renfors, “Channel equalization in filter bank based multicarrier modulation for wireless

communications,” EURASIP Journal on Applied Signal Processing, vol. 2007, no. 1, pp. 140–140, 2007.

[5] D. Waldhauser, L. Baltar, and J. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in IEEE 9th Workshop

on Signal Processing Advances in Wireless Communications, 2008. SPAWC 2008. IEEE, 2008, pp. 525–529.

[6] L. Baltar, D. Waldhauser, J. Nossek et al., “MMSE subchannel decision feedback equalization for filter bank based multicarrier systems,”

in IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009. IEEE, 2009, pp. 2802–2805.

November 9, 2016 DRAFT



26

[7] A. Ikhlef and J. Louveaux, “An enhanced MMSE per subchannel equalizer for highly frequency selective channels for FBMC/OQAM

systems,” in IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, 2009. SPAWC’09. IEEE, 2009, pp.

186–190.

[8] A. I. Prez-Neira, M. Caus, R. Zakaria, D. L. Ruyet, E. Kofidis, M. Haardt, X. Mestre, and Y. Cheng, “MIMO Signal Processing in

Offset-QAM Based Filter Bank Multicarrier Systems,” IEEE Trans. Signal Process., vol. 64, no. 21, pp. 5733–5762, Nov 2016.

[9] T. Ihalainen, A. Ikhlef, J. Louveaux, and M. Renfors, “Channel equalization for multi-antenna FBMC/OQAM receivers,” IEEE Trans. Veh.

Technol., vol. 60, no. 5, pp. 2070–2085, 2011.
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