Preprint Open Access

Fractional and Decimal Type Bordered Magic Squares With Magic Sum 2021

Inder Jeet Taneja

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Magic Squares, Bordered Magic Squares, Fractional Numbers</subfield>
  <controlfield tag="005">20201217002709.0</controlfield>
  <controlfield tag="001">4327333</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3261102</subfield>
    <subfield code="z">md5:d7db21960e6f944e33dad61a4df2eeb0</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-16</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Formarly, Professor of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil</subfield>
    <subfield code="a">Inder Jeet Taneja</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Fractional and Decimal Type Bordered Magic Squares With Magic Sum 2021</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The idea of &lt;strong&gt;bordered magic squares&lt;/strong&gt;&amp;nbsp;is well known in the literature. In this work, &lt;strong&gt;bordered magic squares&lt;/strong&gt;&amp;nbsp;are constructed in such a way that the final magic sum of each &lt;strong&gt;bordered magic square&lt;/strong&gt;&amp;nbsp;is 2021. The work is for the orders 3 to 26. The work include fractional and decimal numbers entries having positive and/or negative signs. In some cases, the sum-magic sums lead us to &lt;strong&gt;Pythagorean triples&lt;/strong&gt;. It happens with the even order magic squares starting from order 10, such as, orders 10, 12, ..., 24 and 26.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4327332</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4327333</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
All versions This version
Views 9191
Downloads 3030
Data volume 97.8 MB97.8 MB
Unique views 8787
Unique downloads 2525


Cite as