
Project Summary

Integrating information from the fossil record with data collected from extant taxa
to infer phylogeny is a prime challenge in biology. Fossils are often our only direct ob-
servation of past biodiversity, and for the inference of dated phylogenetic trees, may be
the only source of information that can be used to establish an evolutionary time scale.
Newer methods for inferring dated phylogenetic trees, such as the fossilized birth-death
model (FBD) model the extant and extinct data together as part of the same process of
diversification. These methods typically implemented as hierarchical Bayesian models
involving a model molecular and morphological character evolution, a model describing
how rates of evolution are distributed across the tree, and a model of how diversification
has proceeded in the focal taxa. I will explore the use of posterior predictive methods
for assessing which models are most appropriate for a particular dataset. This work will
provide practical guidance and research software tools for researchers to perform more
complex model assessment in systematic biology.

The educational aims of this project are intended to illuminate how to incorporate
computation into biology education, while improving the retention of diverse students.
In this project, I will study how faculty can incorporate computation in a code-to-learn
framework, in which biological information is discovered via hands-on computational
and data analytic exercises. I intend to formally study if teaching lower division course-
work using code-to-learn principles causes students to learn less biology. I also propose
to study if early exposure to computation in the classroom can lead to improved student
retention by helping students develop important research skills early in their careers.
Intellectual Merit

In the big data era, it is often possible to tease out any desired result from a dataset,
depending on the assumptions used to model the data. This is true of the phylogeny of
many clades. In particular, in the ants [Formicidae], a host of different phylogenies can
be obtained from a joint molecular-morphological dataset depending on the assumptions
made about evolution in the group. The work in this proposal will provide tools and
recommendations for researchers to find models that are the best fit for their data. The
results will also provide methods for researchers to figure out which assumptions of a
given model may be especially bad for their data, which will provide helpful information
for future methods development. My educational aims will also address key gaps in
the literature on student retention and curriculum design. In particular, I will use paired-
design studies to compare skills gain in students who have early exposure to computation
in their studies and those who do not.
Broader Impacts

Retention of underrepresented minority students (URM) is at the heart of my educa-
tional plan. As faculty at a public institution in a poor state, I observe very clearly the
issues with retention of vulnerable students. I propose to leverage existing recruitment
networks for vulnerable students to identify students who are interested in scientific com-
puting. These students a research stipend year-round to help them remain in school and
do productive research with a faculty mentor. I will also study the retention of URM
students as a function if they receive early exposure to important research skills, such as
computational data analysis.
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Results from Prior NSF Support
Co-PI Wright: PI on NSF Award 1612858, $136,000, July 1, 2016 - July 1, 2017. Postdoctoral
Research Fellowship in Biology. Intellectual Merit: The project explored the use of mor-
phological data in divergence time estimations. This included both the production of sci-
entific software for phylogenetic estimation and theoretical work to understand the role of
incomplete lineage sampling in fossil-based phylogenetic work. Publications produced:
Barido-Sottani J, Justison J, Wright AM, Warnock RCM, Pett WC, Heath TA (2020), Wright
AM (2019), Lanfear, R, Wright AM, Fransden PB, Senfeld T, Calcott B. (2017), Matzke NJ,
Wright AM (2016), Bapst DW, Wright AM Lloyd GT, Matzke NJ (2016). One additional
manuscript is accepted. Talks on this work were also presented at the Evolution Meetings
in 2017, the Systematic Biology meetings in 2017, and the Entomological Society Meetings
in 2018.

1 Introduction

The term ‘big data’ is often used to refer to the volume of data brought to bear on an an-
alytical problem. However, the big data era poses challenges in integrating various data
sources to answer questions. One field in which this is true is phylogenetics, and partic-
ularly the estimation of dated phylogenetic trees. Dated phylogenetic trees have branch
lengths in absolute time, such as years or millions of years (Zuckerkandl and Pauling,
1965), as opposed to relative rates of evolution. In inferring dated phylogenetic trees,
researchers typically include molecular data (amino acid or nucleotide), morphological
character data, especially from fossils, and fossil occurrence time data (Heath et al., 2014;
Warnock and Wright, 2020). Each of these data sources has its own sources of error and
uncertainty (Barido-Sottani et al., 2019). I propose several research and education aims
for estimating joint molecular-morphological timetrees, evaluating model adequacy for
working with large and varied datasets, and training a diverse scientific workforce able
to do quantitative work with complex biological data.

Without occurrence time information, either in the form of fossils or other information,
a phylogenetic tree cannot be scaled to absolute time without making extremely strong as-
sumptions about evolutionary rate (Harvey et al., 1994; Zuckerkandl and Pauling, 1962).
Historically, fossil data have been incorporated through what are termed node-calibration
methods (Heath et al., 2014). Fossils aren’t truly data under these methods. Instead, fos-
sils are used to constrain (or calibrate) the potential ages of nodes. For example, a fossil
that is known to be a member of a clade can be used to tell how old that clade must min-
imally be. If the fossil exists, so must have the clade to which it belongs. However, the
researcher must fix that fossil to be part of a specific clade, a placement which is assumed
to be known without error (Donoghue and Benton, 2007). Additionally, only the oldest
fossil in a clade may be used (Yang and Rannala, 2006).

Recent methods that more completely model the processes that generate fossil data
have provided new ways to incorporate fossils. Fossilized birth-death (FBD) methods
(Stadler, 2010; Heath et al., 2014) model the process of speciation, extinction, and sam-
pling that leads to what is termed the ’observed tree.’ The observed tree is the portion
of the true tree (the true tree is unobservable due to patchy sampling in both the present
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and past) that we can estimate from our data. FBD can be used to estimate the phy-
logeny, node ages on that phylogeny, and other macroevolutionary parameters given a
set of character data (molecular and/or morphological) and occurrence times (the ages
of fossils). The way fossils are treated in FBD models is vastly different than under
calibration methods. Under the FBD, fossils can be placed via morphological charac-
ter information, or their placement may be integrated out analytically if no character
data exist (Gavryushkina et al., 2017). Multiple fossils can be used per clade, as well
(Matzke and Wright, 2016; Warnock et al., 2020). Due to these differences, the FBD frame-
work may be expected to give more robust estimates of topology and divergence times.
However, FBD increases the complexity of the overall phylogenetic model. The FBD is
often implemented in a tripartite framework, in which there is a model of character evo-
lution (molecular of morphological character change), a clock model (describing the dis-
tribution of evolutionary rates over the tree) and the FBD model, describing the process of
diversification and sampling leading to the tree. This tripartite model is typically imple-
mented as a Bayesian model, in which samples of plausible parameters will be estimated
for each parameter (Warnock and Wright, 2020).

The character change model describes how likely to change from one state to an-
other a character is. Molecular character change models are fairly well-developed. As
early as the late 1960s researchers began to catalog the biochemical properties of amino
acids and nucleotides (Eck and Dayhoff, 1966). The first molecular sequence models
(Jukes and Cantor, 1969) made fairly restrictive assumptions: that every nucleotide state
is equally likely to transition to any other nucleotide state, and that character change is
instantaneous along a branch. Bolstered by carefully observation of molecular evolution
more complex models that describe realistic evolutionary scenarios are now available
(Kimura, 1980; Felsenstein, 1981; Tavaré, 1986; Lartillot, 2006). Morphological character
change models are considerably underdeveloped relative to molecular models and are
roughly equivalent to the earliest nucleotide models (Lewis, 2001). Most molecular se-
quence models assume a nucleotide will have the same properties wherever it occurs in a
sequence. This allows for a model to be applied across the entirety of a sequence. This is
not true for morphological data. In discrete character data, ‘0‘ often refers to the absence
of a character. That absence may be due to the character never having evolved in the
clade or due to loss of that character. Characters also vary widely in their complexity, and
the number of genetic changes required to generate that character state. When including
morphological and molecular data together in one analysis, there is an asymmetry in how
well we can model the two types of evolution (Wright et al., 2016; Wright, 2019).

In order to make full use of the tripartite model, expanded toolkits are needed to
understand the adequacy of each component of the components of the hierarchical model.
In the ant group (Formicidae), using a tripartite model can yield any of the topologies
and overall clade ages obtained by previous methods, depending on the precise model
assumptions made (see Preliminary Work). In this work, I would like to apply and
further develop a set of methods referred to as posterior predictive model adequacy
testing (Lewis et al., 2014; Brown, 2014; Slater and Pennell, 2014; Duchêne et al., 2015;
Hoehna et al., 2017) to both solve an empirical challenge, the phylogeny of ants, and to
more broadly assess how well FBD methods are performing in empirical data.
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(a) Topology estimate from morphology

(b) Rabeling et al. 2008 molecular phylogeny

(c) Kuck et al. 2011 molecular phylogeny

(d) Boroweic et al 2019 molecular phylogeny

Figure 1: Molecular trees show four mono-
phyletic clades of ants, while those esti-
mated from morphology often do not. Pre-
liminary analyses using the FBD with a joint
molecular-morphological dataset uncovered
support for all four trees, depending on as-
sumptions made about diversification.

This work has implications far beyond
phylogenetics. In nearly every field where
large datasets and multiple lines of evi-
dence have been brought to bear, the dif-
ficulty of adequate modeling looms large.
I work at a primarily undergraduate in-
stitution, and have been actively develop-
ing coursework involving quantitative and
statistical thinking in biology students.
This learning takes place in many of my
courses, from introductory biology, to ge-
netics, to upper division courses. My ed-
ucational components for this project fo-
cus on the evaluation of the coursework I
have developed. I am interested in eval-
uating if early involvement in compu-
tational learning and research helps to
retain students from vulnerable popula-
tions in STEM research. I am also propos-
ing to investigate if computation can be
integrated in lower-level biology course-
work without losing domain knowledge.

2 Preliminary Work

My preliminary work on this question can
be split into three components: data col-
lection, theoretical and software tools, and
education.

I am using previously published data
for this research. The DNA data come from
Blanchard and Moreau (2017), and com-
prise 9 nuclear and mitochondrial mark-
ers. Because errors in homology assign-
ment have been shown to impact down-
stream phylogenetic estimation, I worked
with an undergraduate assistant to use the
software PASTA (Mirarab et al., 2015) to
improve the DNA sequence alignments,
yielding higher-quality alignments. Addi-
tionally, I have assembled a large morpho-
logical matrix from several sources (Keller,
2011; Barden and Grimaldi, 2016). I have
also worked with two undergraduate as-
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sistants to develop a pipeline for accessing and reproducibly cleaning fossil occurrence
time data from the Paleobiology Database.

I have also made strides on the application of the FBD model to these data, as well
as more broadly. As shown in Figure 1, I, along with a team of 6 undergraduate re-
searchers, have estimated several dated phylogenetic trees using different parameteriza-
tions of the FBD and its component models. As can be seen in the figure, these have
resulted in different topologies and ages. In order to better visualize uncertainty in topo-
logical estimations, I have also been applying treespace visualization tools to morpholog-
ical datasets (Wright and Lloyd, 2020). This analysis has been underused, historically, but
allows researchers to visually explore the distribution of solutions in their datasets. In
the initial application of this technique, I used treespace visualizations (Hillis et al., 2005;
Warren et al., 2016) to look at how well various solutions in the Bayesian posterior sample
fit fossil record data independent to those used to estimate the tree. These initial explo-
rations showed that this can be a promising method to understand model performance. I
intend to strengthen these approaches in this proposal.

3 Proposed Work

Despite improving methods and more data, many nodes in the tree of life remain stub-
bornly unresolved, with different resolutions differing between trees. Some conflicts have
biological causes, such as incomplete lineage sorting (Maddison and Knowles, 2006). Other
sources of error can include mismatch of the phylogenetic model to the data used to gen-
erate the tree (Lemmon and Moriarty, 2004; Wright et al., 2016). Additionally, there can be
conflict between data types. For example, in the Formicidae, the molecular and morpho-
logical trees are quite different (see Fig. 1; Keller (2011); Rabeling et al. (2008); Kück et al.
(2011); Barden and Grimaldi (2016); Borowiec et al. (2019)). Using a joint molecular-morphological
dataset, I will explore the use of new model-fitting techniques to assess which models are
best capturing the generating processes that underlie the data.

This project will have three major components. The first aim is to develop biolog-
ical hypotheses for how the parameters of the fossilized birth-death process vary with
time, and to assess the fit of these models to the data using stepping-stone model selec-
tion (Xie et al., 2011). Stepping-stone model selection allows researchers to discriminate
among candidate models. It cannot tell you if a model is capturing the process that gen-
erated the data. Therefore, the second objective will be to use posterior predictive model
testing to determine if the chosen model is adequate (?Hoehna et al., 2017) for the data,
and to detect in what aspects of the tree we may see artifactual results due to inadequacy.
Lastly, I will expand on software toolkits for performing statistical model testing and as-
sessment. Existing tools to perform these analyses involve estimating phylogenetic trees
in one piece of software, and performing simulation in another. I’ve made preliminary
steps towards interoperability of these tools, and I will expand on this progress to make
these complex analyses more accessible to researchers.
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3.1 Research Objective 1: Identifying plausible hypotheses of diversi-

fication in Formicidae

As in many taxa, the relationships in the Formicidae are contentious. The group is very
large, with approaching 16,000 known species. Molecular data and morphological data
do not produce the same tree (Figure 1). Different molecular data sources do not produce
the same tree (Fig. 1). Our preliminary work shows that different hypotheses about
diversification result in different topologies being supported. Therefore, the first step in
this project must be to use model fitting approaches to discover the best-fit models for the
molecular data, the morphological data, the clock model, and the FBD tree model.

For this objective, I will use a hierarchical model-fitting approach that I have suc-
cessfully applied in other taxa (Wright, Wagner and Wright 2020). Using stepping-stone
model selection (Xie et al., 2011), I will optimize the character model for the molecular
data and the morphological data. Stepping stone model selection allows researchers to
quantify the goodness of fit of a Bayesian model to the data. Once each component data
source has a model, I will combine the data to fit an FBD model describing the process
of diversification that lead to the observed tree. As shown on Fig. 1, I have begun some
preliminary tests have yielded support for a range of topologies. Stepping-stone model
fitting will enable me to discriminate which of these results is best supported.

3.2 Research Objective 2: Using posterior predictive simulation to as-

sess adequacy of timetree models

Stepping-stone model fitting is an important first step for this project. This type of model
selection allows for a precise calculation of the marginal likelihood of the data (Xie et al.,
2011). It cannot, however, tell us if any of the models in our candidate set of models are
performing adequately. That is, are the models capturing crucial features of the generat-
ing process that lead to our data? Posterior predictive methods are a family of simulation-
based tests that use our actual computed posterior sample to seed simulations with plau-
sible values (Lewis et al., 2014; Hoehna et al., 2017). Summary statistics are then com-
puted from the simulated datasets, and compared with the actual data. If the summary
statistics are similar between the simulated and true data, this is evidence that the model
is describing the data well. In this project, I will use the posterior sample from the three
best models from Objective 1 to simulate timetrees, distributions of fossils, and lineage
through time plots to compare between the empirical and simulated samples. This will
enable me to both determine if the models we are using for these analyses are adequate,
and if there are features of topologies that may be diagnostic of model inadequacy.

3.3 Research Objective 3: Software solutions for complex model selec-

tion

Historically, model selection has been considered a crucial step for estimating phyloge-
netic trees from molecular sequence data. Partially constrained by the inavailability of
multiple models of morphological evolution, this has not been the case with paleontolog-
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Figure 2: Table of character evolution, clock, and diversification models that will be tested.

ical data. Due to the current novelty of the FBD model and its derivatives, model selection
has also not been common in these types of divergence time analyses. As a result, there
is currently a paucity of usable software to do complex posterior predictive model ad-
equacy testing, and little guidance on how to perform even stepping-stone analyses for
these complex, hierarchical models. Many phylogenetic posterior predictive pipelines,
for example, incorporate a piece of open-source software called RevBayes (Höhna, 2014;
Höhna et al., 2016) and the statistical programming language, R (R Core Team, 2013). The
final component of this project will be to develop new, robust and useful software tools,
and expand already available ones to increase interoperability.

4 Proposed Research Approach

4.1 Research Objective 1: Identifying plausible hypotheses of diversi-

fication in Formicidae

4.1.1 Data and Taxa

I will use ants as a focal taxon for this work. The Formicidae is a large family, with around
16,000 extant species. They also have a relatively rich fossil record, compared to many
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vertebrate groups. Because ants are of global interest due to their role in ecological inter-
actions, including being common agricultural pests, there is an abundance of molecular
and morphological data on this taxon. The ants are the nearly perfect group for the work
proposed. As seen in Figure 1, different data sources do not produce the same topology.
Different assumptions about evolution produce different topologies. Therefore, to tease
apart which models are best supported in this group and use that model to estimate a
robust phylogeny is still an open challenge.

The dataset I will be using to test methods and develop software has three compo-
nents. The first is a set of molecular loci from Blandchard and Moreau (2017). This dataset
has 666 species and 11 loci. The second component is a morphological data matrix. I re-
coded several characters from Barden and Grimaldi (2016) and Keller (2011) to synchro-
nize characters between these two datasets and maximize both paleo- and neontological
diversity in this matrix. These first two components are used to esimtate the phylogenetic
relationships and evolutionary rates. The final component is a set of nearly 500 fossil oc-
currence times for ants that I have curated. These are used to estimate divergence times
and macroevolutionary parameters under the FBD.

4.2 Hierarchical testing of character evolution models

Many researchers have estimated dated phylogenetic trees of ants, and have found a
range of phylogenetic resolutions and ages on nodes (Moreau et al., 2006; Rabeling et al.,
2008; Kück et al., 2011; Borowiec et al., 2019). Many of these estimations have been per-
formed in a node calibration framework, which does not completely leverage the fossil
information in this clade. Recent FBD analyses have also not used fossil morphology
in estimation (Borowiec et al., 2019). I have implemented a mixture model for allowing
character change asymmetry in morphological characters in the software RevBayes. The
most commonly used character models assume that a character is as likely to be gained
as lost. My model allows for characters to be gained and lost at different rates.

FBD analyses also require a clock model that describes how evolutionary rates are
distributed across the tree. With morphological character information, it is common to use
a strict clock (which implies a constant rate of evolution) or an uncorrelated clock (which
implies the rate of evolution of one branch may be very different than its descendants).
Very rarely is actual model fitting applied to understand which model actually is the best.

I have already performed model-fitting for the molecular sequence data. Therefore,
I will use a hierarchical model fitting approach, following Wright, Wagner, and Wright
(2020). First, I will use stepping stone model fitting in RevBayes to assess the best fit
model for the character data in an undated phylogentic analysis. This step must come
first in order to be able to generate a phylogeny. Then, I will test several clock models
(Table 1) against one another. Stepping-stone model fitting calculates the precise marginal
likelihood, allowing me to choose the best combination of character change and clock
models.
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4.2.1 Testing competing models for diversification in ants

Once the sequence and clock model are fit, the tree model can be fit. The tree model
describes the distribution of speciation, extinction, and sampling events that generate
the phylogeny. Each different tree model can be thought of as a hypothesis about how
diversification happened in the ant clade. The FBD model is most commonly applied
as a time-homogeneous process. However, most estimates put the clade at at least 120
million years old. Over that time, the rise of flowering plants, with which ants have
mutualisms, occurred. There were ice ages, and sea level changes. The distribution of soil
types and biomes has changed dramatically. It may be reasonable to expect that we could
see differences in diversification rates over time associate with any one of these factors.

I have outlined the candidate diversifiction models on Fig. 2. These models describe
a range of scenarios. In some, only specific parameters of the model vary. For example,
the fossilization parameter, Psi, may vary more than others. This is because the rate of
fossilization is heavily dependent on the presence of plants that generate sap, which crys-
tallizes as amber. Therefore, there are periods in the ants’ evolutionary history with no
fossils, and some with many. Included in the models that will be competed are models
that allow the rates of diversification and sampling to vary over time, as well as those
which allow the rate of diversifcation and sampling to vary among clades of ants. I will
use the best-fit character change models and clock models for all estimations. Using log
Bayes Factors, I will choose the five best models for further testing in Objective 2.

4.3 Research Objective 2: Using posterior predictive simulation to as-

sess the adequacy of timetree models

Model selection methods can tell us which of a candidate set of models fits our data best.
But the true model may not be in our candidate set, or even proposed yet. Posterior pre-
dictive model adequacy testing, however, can tell researchers if the model is capturing
key facets of the process that generated the data. In this approach, a Bayesian phylo-
genetic tree is estimated. Then, parameter values are chosen from the posterior sample
and used to simulate new datasets. The degree of similarity between the empirical data
and the simulated datasets is then quantified. A model that is capturing the generating
process adequately will simulate datasets that are similar to the empirical dataset.

These methods have been applied to non-dated phylogenetic estimates (Hoehna et al.,
2017). In these cases, they are typically used to generate nucelotide alignments, which are
then compared to the empirical nucleotide alignment from which the tree was estimated.
These comparisons normally focus on easy-to-calculate quantities, such as the proportion
of different nucleotide bases, number of gaps, etc. In the case of the timetree model,
however, we are interested in if the trees themselves are representative of the empirical
patterns of diversification. Using the posterior samples of trees estimated in Objective
1, I will sample 1000 sets of speciation, extinction and sampling parameters for each of
the five best diversification models. Using the R package ‘FossilSim‘, I will then simulate
1000 timetrees for each of the sampled sets of parameters. ‘FossilSim‘ is quite flexible, and
implements most of the models listed on Fig. 2.

From each replicate, I will collect summary statistics. These summary statistics will
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include the total age of the ant group (the origin time), the number of extant ants, the
number of fossils and the distribution of fossils through time. I will then plot these sum-
mary statistics against the empirical data to assess how closely the simulated data are
tracking the empirical data. Because all parameter values are logged in a Bayesian analy-
sis, I can perform reciprocal posterior predictive simulation. As outlined above, the origin
time can be a summary statistic calculated. But this is also a parameter that is fit in the
Bayesian analysis. I will also simulate timetrees from the origin time and diversification
parameters to see if the produced sampling rates on that tree are reasonable, as well. Like-
wise, I will simulate timetrees from the origin time and sampling parameters to see if the
produced diversification rates match the empirical rates. Posterior predictive analyses al-
low researchers to detect if models are adequate. This reciprocal experimental design will
allow me to detect if specific parameters or sets of parameters are the source of any inad-
equacy. This will ultimately be a very useful contribution not just to phylogenetics, but
more broadly to other types of biological data, as discovery of incorrect of inappropriate
assumptions in models is problematic across all disciplines.

4.4 Software solutions for complex model selection

The proposed work outlined above has steps in both RevBayes (Höhna, 2014; ?) and R
(R Core Team, 2013). RevBayes is used for estimating phylogenetic trees and associated
model parameters. The R steps above involve using specific packages to simulate trees,
calculate summary statistics and visualize results. R is a general-purpose computing lan-
guage that is quite popular in biology, particularly comparative and population biology.
RevBayes has a built-in R-like language, called Rev, that is used to construct phylogenetic
models. I, and a co-author have done initial explorations into making RevBayes and R
work better together. Called RevKnitR, this R package adapts the popular R document
preparation package KnitR to produce interactive reports and tutorials that include both
R and Rev code. However, the two languages (R and Rev) do not talk to each other di-
rectly. Developing statistical intuition and computational competence in biologists poses
many challenges (see Education Plan), and phylogenetics is an inherently statistical and
computational field. Being able to leverage the advanced statistical and graphical capa-
bilities of R to understand models in RevBayes would be very powerful for many users.

Therefore, the third aim of this proposal is to better integrate R and RevBayes. I would
like to build on my preliminary work to improve passing of objects between the two
pieces of software. At the present, Rev can be used in the R interface RevKnitR, which
works by passing Rev code to RevBayes using the R core command ‘system’. The code
is then run in RevBayes, and standard output to the command line is echoed back into
the RStudio (a graphical user interface for R) console. At the present, it is not possible to
pass an object, such as a model or dataset, between R and RevBayes. RevBayes outputs,
such as posterior samples and trees, can be imported to R. When a researcher is setting
up an analysis, they might want to visualize the uncertainty in a parameter. RevBayes
doesn’t have the ability to do this, as it has no graphics engine. Ideally, if a researcher was
working in RStudio’s interface, they could set their prior, then use R’s core graphics to
view that uncertainty. Other languages, such as Stan and Python, have R interfaces. I’d
like to adapt the framework these two languages use for their interfaces by creating a cus-
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tom RevBayesR class that can interact with the compiled RevBayes code. In my existing
RevKnitR codebase, I will add functions to translate different types of RevBayes objects
(distributions, delimited data matrices, trees, and posterior traces) into the R equivalents
of those objects. This will allow researchers full control of manipulation over their created
Rev objects in both languages.

In the case of the posterior predictive analysis (as decribed in Objective 2), this would
allow me to run the posterior predictive simulations as the posterior sample is being
generated, effectively checking model adequacy as the analysis is in progress. For a re-
searcher performing an empirical analysis, this would provide the researcher with real-
time feedback about the quality of their results, as opposed to only being able to obtain
that data after the time- and compute-intensive MCMC analysis has completed. This
would represent a major streamlining of the posterior predictive pipeline, and could lead
adoption of these sorts of methods more broadly.

5 Education Plan

From genomes to ecology, large datasets are now the norm in biology. Many of these
datasets are too large to work with tractably via graphical user interface software (such
as Excel). Combining datasets, and multiple data layers is also becoming more normal.
Scientific software is also most often not created by large corporations, but by other sci-
entists, who may have little or no formal software training. As such, many cutting-edge
analyses are performed at the command line, or in languages such as R or Python. As a
consequence, researchers need to have biological knowledge of their datasets, the sources
of uncertainty and biases in each component of their datasets, and an understanding
of how to work computationally with bare-bones software. And yet, undergraduates
often have little computational training (Barone et al., 2017; Wilson Sayres et al., 2018;
Goldman and Fee, 2017). This has several negative impacts for students: visibility of
careers in computational biology may be low (Bares et al., 2018), students may not be
well-prepared for graduate or industry work (De Veaux et al., 2017), and faculty super-
vising research students may absorb more training burden than if computation was well-
integrated in the curriculum. I aim to carry out several aims to improve the intercolation
of computation into the biology curriculum at Southeastern, and to assess these activities
to understand if they can be used to increase student participation in computation.

My goal in this proposal is to expand and evaluate offering early computational biol-
ogy research training for undergraduate students. Prior research indicates that consistent
exposure to computation reinforces learning (Mendez et al., 2016; Behringer and Engelhardt,
2017; De Veaux et al., 2017; Bares et al., 2018). We should integrate computation at all lev-
els so students learn computation as a core tool for solving modern biological problems.
Still, major gaps exist in the literature about how to perform this integration, and these
gaps can cause faculty to be unsure about introducing computation (Brownell and Tanner,
2012; Williams et al., 2017). I would like to assess if including computation in course work
requires biology subject matter to be lost. I will also evaluate if introducing computation
into the lower levels of courses increases student awareness of computational careers, and
increases the recruitment and representation of underrepresented students in computa-
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tion. Lastly, I intend to expand retention programs for cross-disciplinary undergraduate
scholars working with computation.

5.1 Preliminary Work

Since beginning as an assistant professor in 2017, I have added 5 classes to Southeastern’s
course catalog that have computational components. The most obvious of these is my
Biological Data Analysis class, which is a mixed upper division undergraduate and Mas-
ter’s course on performing data analysis reproducibly with R. This course also covers
other components of literate programming, such as use of a revision management sys-
tem, documenting code, and use of high-performance cluster computing. This class has
been a success on paper. Enrollments and student evaluations are strong. But the class is
substantially less diverse than our undergraduate population, with only one-fifth of the
students being of color, compared to about a third of the general student population. This
lead me to be dissatisfied with my general approach.

In order to serve the broader student population, I began teaching a section of intro-
ductory biology with an integrated R component. Every week, students do an in-class
activity aimed at analysing data in R to learn about a biological principle. For example,
one week, we learned about how organisms’ physical features constrain where they live.
That week, we did a computational investigation into Bergmann’s rule and animal body
size. Additionally, I trained another faculty member in the use of R to be able to teach
another section of this course. I have also added computational exercises to my genet-
ics class, and in Fall 2020 have added a computational genetics lab to the course catalog.
Other offerings, such as my applied systematics lab, also broaden computational training.

In preparing for these courses, I have done extensive research into how to teach these
courses equitably. Being in a low-income region of a historically low-income state means
that many students don’t have home computers. Some work extensive hours outside
school, or may have to work on a computer that doesn’t belong to them while on a mil-
itary deployment. Because of this, I have adopted the use of RStudio Server, which en-
ables me to set up a central computational instance to which students connect to do their
coursework. Students can connect to this via the internet, on any type of internet-enabled
device. A student who does their homework in the library, where they don’t have in-
stall permissions, can then do their homework as well as a student with a new laptop.
Ultimately, these experiences lead to a collaboration with other instructors of computa-
tional biology to write a manuscript sharing information on how to use open technology
to increase the equity of computing education (Wright et al., 2019).

5.2 Education Objective One: Addressing faculty concerns learning in

the computational classroom

Wilson-Sayres et al. (2018) highlighted a number of concerns about teaching computa-
tional biology. Among them were concerns about fitting computation into stuffed curric-
ula. Also expressed are concerns that teaching computation via active learning may lead
to negative student evaluations of teaching (Potvin and Hazari, 2016), a core component
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of promotion and tenure packets. A final is simply lacking the expertise. My first edu-
cational aim will be to address these concerns through faculty mentoring networks, and
through assessment of student learning in coursework with computational components.

5.2.1 Surveying skill gains in students

A common concern when it comes to computation in biology is where to fit this type of
instruction in the curriculum. One way in which this is addressed is through the ’code-
to-learn’ framework (Resnick, 2013), in which students learn to code through domain-
specific exercises that emphasize biology knowledge alongside coding concepts. I have
adopted this framework for my introductory biology class. Each week, I have the stu-
dents work in pairs on an R exercise intended to emphasize a concept or concepts from
lecture. However, devoting this time may still lead to less time for other concepts.

I will formally study if students learn less biology domain knowledge in courses with
a computational component. I’d like to do this via a paired study design, in which I will
pair with two other instructors. First, all the instructors will establish a common set of
learning objectives for the course, and will design a pre- and post-test assessment to mea-
sure student skills on entrance into the course and after the course (Dugard and Todman,
1995; Lazarowitz and Lieb, 2006; Schiekirka et al., 2013). I will teach my version of the
course with an R component. The other instructor will teach the course without the R
component. The third instructor will teach one section of each type. Then we will com-
pare post-test scores, and net gain of biological knowledge between the four sections.

5.2.2 Faculty mentorship

When I developed my biology courses, I developed them as R packages, so they can be
easily installed and deployed (including a course website) by other instructors. How-
ever, having materials is different than having the confidence to teach from them. Many
faculty don’t have formal training in computation and may need more mentoring to feel
comfortable teaching that topic. I have directly mentored other instructors at my home
university. I will scale up these activities via a QUBES Faculty Mentoring Network.

Along with a collaborator, I have begun work on an FMN aimed at assisting faculty
with adopting computation. At this mentoring network, faculty can sign up in cohorts,
each beginning at the start of a semester, based on the type of class they’re teaching. To
get them started, faculty can adopt a few modules from other QUBES communities. By
the end of the semester, though, they will write three code-to-learn computation activi-
ties. Each faculty member will host a discussion before teaching the materials with their
fellow faculty to spot issues with the lesson and evaluation session. Based on student
performance, and feedback of their fellow faculty, they will revise the lesson. If they have
made all the revisions, their community mentor will write a letter for their tenure packet
attesting to the educator’s use of good educational practices and reviewing the literature
showing that some students react negatively to this type of instruction. For faculty con-
cerned that incorporating computation will lead to a drop in their student evaluations,
this could alleviate those fears and drive adoption of active learning and computation.
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5.3 Education Objective Two: Creation of a learning community cen-

tered on computation

I will create a learning community in computational science. The learning community
model has been popularized at Iowa State University. This model uses research-based
principles (Gregerman et al., 1998; Kosoko-Lasaki et al., 2006; Kobulnicky and Dale, 2016)
to establish groups of students take similar coursework and meet together in structured
discussion sections. These communities may be especially important for underrepre-
sented minority students (URM) studying at primarily white institutions, who often re-
port feeling alienated or discriminated against by majority students and faculty (Chang et al.,
2009; Romero, 2018; Thompson et al., 2019). I work at a regional public institution in a
poor state. Student retention is a serious problem, particularly for students from under-
represented backgrounds. At Southeastern, degree completion for URM students is 10%
lower than for white students. I hypothesize that helping students establish community
on campus will improve retention (?Newhall et al., 2014).

I am requesting funds for research stipends for 5 local URM students interested in the
intersection of biology and computational science annually. Students will receive a $500
monthly stipend during the school year and $1000 a month in the summer to conduct
research with a faculty mentor beginning the summer after their freshman year. Research
supports financial reasons being a primary cause of dropout (Whittaker et al., 2015); most
students at Southeastern work more than 20 hours a week outside school, and many
report significant difficulty balancing work and school. Therefore, we might expect that
students who develop expertise via active learning, join a mentoring group, and receive
a stipend to engage in research might have better outcomes in terms of retention and
degree completion (McCavit and Zellner, 2016; Gregerman et al., 1998). All non-transfer
Southeastern students take a first year course called ’Southeastern 101‘, which covers
study skills, communicating with professors, financial aid and other life skills. Sections
have been piloted that are designed for local URM students, and taught by URM faculty.
These five students will be assured entry into these sections to build community among
students facing similar challenges.

I would like to use longitudinal surveys with these students, as well. In these sur-
veys, I would like to assess degree completion, time to degree completion, retention
in their major, and post-college plans. Students for the learning community will come
from local parish high schools. Southeastern has a well-developed Upward Bound pro-
gram. In collaboration with director Rob Abel, I will recruit students from this program
to begin the learning community in the summers after their first year. Southeastern also
has a STEM Cafe program, aimed at recruiting high schoolers in underserved Louisiana
parishes (counties). In collaboration with director Wendy Conarro, I will develop a set of
materials to recruit students. Each undergraduate paid on this project will be responsible
for presenting the materials at one STEM Cafe annually. Undergraduates in their junior
and senior years will also be allowed to use one hour of their weekly paid time to en-
gage in mentoring of freshmen students via Project Pull, Southeastern’s peer mentorship
program for URM students.
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6 Summary: Significance of proposed work

6.1 Intellectual Merit

Both the research and educational missions of this project will substantially improve their
respective fields. The research objectives of this proposal will inform researchers of how
to appropriately model complex and heterogeneous data in a hierarchical model. Cur-
rently, there has been much research into extensions of the FBD model, but little practical
guidance for empiricists on how to actually use and apply these models. With a variety
of different assumptions that can be made about the process of evolution that leads to the
observed data, it is possible to use a model that does not capture the generating process
that underlies the observed data. The proposed work will provide this type of guidance,
and will implement software to make these types of analyses more tractable to end users.

The educational components also address key gaps in the literature on how to in-
corporate computation in undergraduate biology education. In particular, code-to-learn
approaches are currently understudied in biology. The pervasive idea that material has
to be lost from the curriculum in order to include computation may be limiting the adop-
tion of these skills. Addressing this gap in the literature will have practical consequences
for educators and students. The literature on diversity and inclusion in undergraduate
education is very robust. But much of it comes from highly-resourced institutions in
highly-resourced states. At a public regional institution in a poor state, it isn’t necessar-
ily possible to add staff to manage more programs for student retention. Investigating
low-impact interventions, such as including computation in lower-division coursework
or providing cost-of-living payments for students could be a very important contribution
to the literature, as well as an important contribution for policy decisions.

6.2 Broader Impacts

6.2.1 Diversity and Inclusion

Retention of underrepresented students is a major facet of the educational aims of this
proposal. Southeastern’s student body make up is representative of the local area, ap-
proximately 33% African American. Southeastern has a number of recruitment efforts
targeted for URM students, low-income students, and first generation students. These
pathways will be leveraged to disseminate information about Education Objective Two.
However, these students are disproportionately lower-income and higher dropout risk.
Therefore, this project focuses less on recruitment of new diverse students, and more on
enabling the students we have to complete their education and enter the STEM work-
force. In particular, dropout is often associated not only with the cost of tuition, but the
opportunity cost of a degree: needing money for housing, food, and to assist in support-
ing family members. The work on this project is aimed at understanding this burden, and
attempting retention interventions to alleviate these costs.

The effect of underrepresentation does not end with students. The make-up of fac-
ulty is often disproportionately white and male relative to the workforce in a given do-
main, and to the make-up of the local community. Research consistently demonstrates
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that women faculty and faculty of color are less likely to receive faculty positions and
less likely to be awarded tenure once they have one. Student evaluation results are often
lower for women and non-majority faculty, as well. Therefore, Educational Aim One is
a faculty diversity retention aim. Because of the above factors, women and underrep-
resented faculty may be less likely to incorporate computation and active learning. The
faculty mentoring network is intended to provide support to faculty to mitigate the effects
of the above biases by helping faculty with the promotion and tenure process.

6.2.2 Disseminating results and software

Software associated with this work will be provided for free and hosted on GitHub. R
packages will be sent for review at ROpenSci, a non-profit that provides software peer re-
view for R packages. Tutorials associated with analyses in RevBayes will be made avail-
able via the RevBayes tutorial repository. Courses, including slides and code, will be
made available via my GitHub site. Significant course development will also be sent for
review at the Journal of Open Source Education (JOSE), which provides review of course
materials and assigns a stable DOI for every reviewed course.

Travel support is requested to send myself, a postdoc and students to present at (1)
the Evolution annual meetings, (2) the Geological Society annual meetings, and (3) the
Society of Systematic Biology semi-annual meetings. These two meetings are the largest
meetings of experts in relevant fields. I also am the head of the iEvoBio organization,
which meets after Evolution. This organization hosts a meeting that consists of two sec-
tions: software development, and education. Education results will be disseminated here.
I have also requested funds for open access publishing. Much morphological work is con-
ducted in museums. Access issues between countries and types of institutions are often
difficult, so making results freely available on the internet will be important.

7 Timeline

Figure 3: Expected project timeline. Dark gray bars indicate tasks involving substantial
concentration and personnel effort. Light gray indicates ongoing tasks or periodic efforts.
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BUDGET JUSTIFICATION
Funding for a five-year project (start date approximately 08/01/2021) is requested.

A. Senior Personnel
Funds are requested to support 2 months of summer salary per year for 5 years for the PI.
The PI will be responsible for leading the project, including (1) directing, participating in,
and disseminating research, (2) leading computational training, developing coursework,
and disseminating tutorials, and (3) mentoring the postdoc and students participating in
the research and educational components of the grant. This calculation includes 4% cost
of living allowance In the event that Southeastern is able to provide such in accordance
with an approved raise plan. (11,733 year one, 12,202 y2, 12,672 y3, 13,141 y4, 13,610 y5,
63,358 for all five years)

B. Other Personnel
Funds are requested to support one postdoctoral researcher for each year of the grant
starting at $42,000 per year, increasing by 4% per year. Note that the individual occupy-
ing that position is expected to change at least once over the project, in anticipation of
the first post-doc moving onto a job elsewhere before the end of the grant. This calcula-
tion includes 4% cost of living allowance In the event that Southeastern is able to provide
such in accordance with an approved raise plan. (42,000 y1, 43,680 y2, 45428 y3, 47245
y4, 49134 y5, $227,488 total) Funds are requested for graduate student stipend per aca-
demic year for years 2-5 years ($12,000 per year $48,000 total), and in-state tuition (11915
y2, 12391 y3, 12887 y4, 13402 y5, $62051 total). Funding will support graduate students
assisting in the development of coursework, conducting research, collecting and manag-
ing assessment data, and mentoring laboratory undergraduates. Funds ($13860 annually
for five years, 69300 total) are also requested to support two undergraduate students con-
ducting research in the lab for 10 hours per week during the school year, full time during
the summer. These students will work closely with the postdoc and graduate students on
data collection and analysis.

C. Fringe Benefits
Fringe benefits are calculated and requested for the postdoc ($ 86,446 over five years) and
PI summer salary ($4013*5 = $26,429) at the current Southeastern percentage rate of 38%
of the salary (full family benefits, as per Southeastern policy).

D. Equipment
Funds are requested to purchase a small, networked data storage server (500). Funds are
also requested to purchase desktop computers in years 4 and 5 to replace aging desktops
in the lab ($10,000).

E. Travel
Domestic: Funds are requested for the postdoc, PI, and students to attend the annual
meeting of the Society for the Study of Evolution or the semi-annual meeting of the Soci-
ety of Systematic Biology (or similar meetings) to present on results in Years 1-5 (37,500).
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F. Participant Support Costs

To support educational aim three, funds are requested to pay students a research
stipend. The stipend will be $500 monthly during the academic year and $ 1000 monthly
in the summer. ($7000 per participant per year, 15 participants over 5 years, $337500 total).

G. Other Direct Costs

Computers: Because southeastern Louisiana is a historically impoverished area, funds
are requested to buy a laptop for each postdoc, Masters’ student, and undergraduate
student. These laptops will be returned on graduation from lab, and so fewer laptops are
requested than total personnel (18,000).

Publication Costs: $1,800 per year in Years 2-5 is requested to cover the cost of one
open-access publication per year in the journal Systematic Biology (or similar).

I. Indirect Costs
The indirect cost rate for Southeastern is 38.6% of the Modified Total Direct Costs ($647,505),
which include all direct costs with the exception of large equipment, any additional cost
of subawards above the first $25,000 (none in this proposal), participant costs, and tuition.
($ 249,937)

J. Total Direct and Indirect Costs
The total direct and indirect costs requested for the project period is $1,258,398.
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Facilities, Equipment and Other Resources
Facilities Physical spaces are available for all aspects of this project at Southeastern.

The Wright lab space is a large, open plan space with room for six researchers. This
space is located in the same building, Thelma Ryan Hall, as Dr. Wright’s personal office.
Graduate students also have cubicles available to them. Teaching computer lab space
will be used for the sections of introductory biology with integrated R components. The
postdoc will both have a private office at Southeastern, and desk space in the laboratory
of Dr. Jeremy Brown at Louisiana State University (see letter of collaboration from Dr.
Brown.

Equipment
The state of Louisiana operates the Louisiana Optical Network Infrastructure (LONI)

supercomputer. LONI is a 1.5 Petaflop high-performance compute cluster containing over
10,000 Intel Xeon processing cores. The nodes the Wright lab has typically been using for
computation have 64 GB RAM, and flexible walltime limits. There is an array of com-
putational software pre-installed on the cluster, as well as a standard set of compilers for
building custom software. The Wright Lab additionally has two lab servers, each with 64
GB of RAM, 254 GB solid state drives, and automated backups.

For use in the educational aims, the free educational service RStudio Cloud, will be
used.

Other Resources
Additional assistance recruiting students from federal student assistance pipelines

(TRiO, Upward Bound), will be provided by Mr. Ron Abels and Ms. Wendy Conarro
(see letters of commitment). Abels and Conarro each run a TRiO program for different
parts of Louisiana.
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Data Management Plan

Research data
New raw data will not be generated by this research. Biological data will be obtained
from public databases. Simulated data and estimated phylogenies will be deposited in
appropriate data repositories such as Dryad (at the time of peer review) and TreeBase. At
the time of publication, phylogenies will be added to the Open Tree of Life.

Research code and software
Code to replicate research findings will be stored on GitHub as part of the version

control pipeline. Upon review of any manuscripts from the project, the code will be de-
posited on data Dryad. Code will be annotated appropriately, and a small written manual
will be provided to facilitate reproducibility of results and appropriate use of the code.
An example of this structure from a recent paper from the Wright Lab can be seen here.

There is a moderate R package development component to this project. Upon com-
pletion, R packages will be sent to ROpenSci, a non-profit organization that provides
code and documentation review for research software written in R. When a package is
reviewed by ROpenSci, it is subsequently given a stable Digital Object Identifier (DOI)
and archived via the ROpenSci website. For an example of an R package from the PI’s lab
that is archived in ROpenSci, see here.

Educational materials
Tutorials for use in courses will be maintained on Github in the easy-to-use R Mark-

down format, and made available on the PI’s website. After several iterations of the
introductory biology course will be sent to the Journal of Open Source Education, a scien-
tific journal that does code review for educational materials that involve heavy computa-
tion components. These courses are then backed up in the journal’s Zeonodo repository,
providing a stable DOI for the materials. An example of a course the PI has had peer
reviewed at JOSE can be seen here.

Surveys are conducted to assess the impact of integrating computational skills in
coursework, the data will be collected anonymously and/or de-identified in accordance
with IRB protocols (see letter of support from IRB director Dr. Michelle Hall). Dr. Hall
will also advise on data archival at the time of publication.
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Postdoctoral Mentoring Plan
This project will fund postdoctoral training for 1-3 individuals. I anticipate hiring one

postdoc right away, and that this individual will likely leave for a permanent position.
Each postdoc will complete the American Societies for Experimental Biology mentoring
plan (http://myidp.sciencecareers.org/). This will be a springboard for us to evaluate
the skills the postdoc has, the skills they would like to gain, and the timeline for doing so.
We will need to re-evaluate skills gains according to this tool annually during the award
period.

Southeastern does not have the research activity of an R1 institution. This means that
the postdoc would have less access to seminars, to a community of other postdoctoral
researchers, and to other training. Therefore, I am proposing to have the postdoc housed
with Dr. Jeremy Brown (senior personnel on this grant) three days a week. This will
permit them to interact with other early career researchers more readily. The postdoc
will be responsible for teaching one section of introductory biology with R each semester,
and one other course of their choosing. This could be another section of introductory
biology without R (pursuant to Educational Aim One), or another course they would
like to develop. The postdoc will be expected to be the lead author on the manuscript
on educational gains that results from Educational Aim One. Therefore, they will be
expected to have an active teaching role, but also to analyse the data associated with the
assessments described in this aim.

Postdocs hired on this proposal will work with me to mentor Master’s and under-
graduate students to pursue Research Aims One and Two, and to help develop software
solutions for this work. Funds are requested for the postdoc to present their research at
the Evolution or Systematic Biology meetings. While the postdoc will not be the primary
mentor of the students, they will develop mentorship as a skill by working with me to
supervise the students. I have also requested one month of summer salary for Dr. Jeremy
Brown for his role in housing the postdoc. The postdoc will be encouraged to develop an
independent project with Dr. Brown and any students in his lab.

To assess the success of the postdoc’s progress, I will do the following:

• Keep track of the postdoc’s progress toward goals as laid out in the mentoring plan

• Research outputs, including papers, software, and talks

• Teaching evaluation scores

Together, these three items should provide a wholistic look at how the postdoc is pro-
gressing. I will compile these into a report using Southeastern’s annual faculty evaluation
template, and discuss this as a performance review with the postdoc annually.
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