
Overview Good code Paradigms Outlook

Programming Paradigms

Kilian Lieret1,2

Mentors:
Sebastien Ponce3, Enric Tejedor3

1Ludwig-Maximilian University
2Excellence Cluster Origins

3CERN

28 September 2020

Kilian Lieret Programming Paradigms 1 / 43

Overview Good code Paradigms Outlook

Overview

Lecture 1: Programming Paradigms (PPs): Monday 14:15 – 15:25
Lecture 2: Design Patterns (DPs): Tuesday 14:00 – 15:10
Exercise consultation time: Thursday 17:00 – 17:30

All material at: github.com/klieret/icsc-paradigms-and-patterns

The goal of this course
This course does not try to make you a better programmer
But it does convey basic concepts and vocabulary to make your design
decisions more consciously
Thinking while coding + reflecting your decisions after coding −→
Experience −→ Great code!

Kilian Lieret Programming Paradigms 2 / 43

https://github.com/klieret/icsc-paradigms-and-patterns

Overview Good code Paradigms Outlook

Programming Paradigms

What is a programming paradigm?
A classification of programming languages based on their features (but
most popular languages support multiple paradigms)
A programming style or way programming/thinking
Example: Object Oriented Programming (thinking in terms of objects which
contain data and code)
Many common languages support (to some extent) multiple paradigms
(C++, python, …)

Why should I care?
Discover new ways of thinking −→ challenge your current believes about
how to code
Choose the right paradigm for the right problem or pick the best of many
worlds

Kilian Lieret Programming Paradigms 3 / 43

Overview Good code Paradigms Outlook

Programming Paradigms

Some problems
Too formal definitions can be hard to grasp and sometimes impractical,
too loose definitions can be meaningless
Comparing different paradigms requires experience and knowledge in both
(if all you [know] is a hammer, everything looks like a nail)
A perfect programmer might write great software using any PP

My personal approach
Rather than asking “How to define paradigm X?”, ask “How would I
approach my problems in X?”.
Try out “academic languages” that enforce a certain paradigm
−→ How does it feel to program in X
Get back to your daily programming and rethink your design decisions

Kilian Lieret Programming Paradigms 4 / 43

Overview Good code Paradigms Outlook Objectives Core concepts

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 5 / 43

Overview Good code Paradigms Outlook Objectives Core concepts

Good code: Objectives

Key objectives
Testability: Make it easy to ensure the software is working correctly
Maintainability: Make it easy to keep the software working (debugging,
readability, ...)
Extendibility: Make it easy to add new functionality
Flexibility: Make it easy to adapt to new requirements
Reusability: Make it easy to reuse code in other projects

−→ How do I achieve all this?

Kilian Lieret Programming Paradigms 6 / 43

Overview Good code Paradigms Outlook Objectives Core concepts

Modularity
Perhaps the most important principle of good software

Split up code into parts, e.g. functions, classes, modules, packages, …

You have done well if the parts are
independent of each other
have clear responsibilities

You have done badly if the parts
are very dependent on each other (changes in one part require changes in
many others)

This has benefits for almost all of your goals:
Easier and more complete testability by using unit tests, better debugging
Confidence from unit tests allows for better maintainability and flexibility
Allowing to split responsibilities for different “modules” enhances
collaboration and thereby maintainability
Code reusability (obvious)

Kilian Lieret Programming Paradigms 7 / 43

Overview Good code Paradigms Outlook Objectives Core concepts

Modularity
Perhaps the most important principle of good software

A related principle: Isolate what changes!
Which parts of your code will likely have to change in the future?
−→ These parts should be isolated (you should be able to change them in one

place, without having to change anything else)
This also leads to the concept of a separation of

interface (used by other “modules”, stays untouched) and
implementation (only used by the module itself, can change easily)

Kilian Lieret Programming Paradigms 8 / 43

Overview Good code Paradigms Outlook Objectives Core concepts

Complex vs Complicated

From the Zen of python:

Simple is better than complex.
Complex is better than complicated.

The more complicated something is, the harder it is to understand
The more complex something is, the more parts it has

Complicated problems might not have simple solutions
But it is often still possible to modularize to have several simple
components

For example, using classes and objects will make your code more complex,
but still easier to understand

Kilian Lieret Programming Paradigms 9 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 10 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 11 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

OOP: Idea

Before OOP: Two separate entities: data and functions (logic)
Inspiration: In the real world, objects have a “state” (data) and
“behaviors” (functions)

OOP
Think in terms of objects that contain data and offer methods (functions
that operate on objects) −→ Data and functions form a unit
Focus on object structure rather than manipulation logic
Organize your code in classes (blueprints for objects): Every object is
instance of its class

Kilian Lieret Programming Paradigms 12 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

A basic class in python

1 class Rectangle:
2 def __init__(self, width, height): # <-- constructor
3 # 'self' represents the instance of the class
4 self.width = width # <-- attribute = internal variable
5 self.height = height
6

7 def calculate_area(self): # <-- method (function of class)
8 return self.width * self.height
9

10

11 r1 = Rectangle(1, 2) # <-- object (instance of the class)
12 print(r1.calculate_area()) # <-- call method of object
13 print(r1.width) # <-- get attribute of object
14 r1.width = 5 # <-- set attribute of object

Kilian Lieret Programming Paradigms 13 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Encapsulation and data hiding

Do not expose object internals that may change in the future −→ Make
certain attributes and methods private (data hiding)
Rephrased: Separate interface (won’t be touched because it’s used by
others) from implementation (might change)
In some languages this is “enforced” (e.g. using the private keyword), in
others it is denoted by naming conventions (e.g. leading underscore)

Kilian Lieret Programming Paradigms 14 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Subclasses and Inheritance
Subclasses are specializations of a class

inherit attributes/methods of their superclass
can introduce new attributes/methods
can override methods of superclass

1 class Person:
2 def __init__(self, name):
3 self.name = name
4
5 def greet(self):
6 print(f"Hello, I'm {self.name}")
7
8
9 class Child(Person):

10 def __init__(self, name, school):
11 super().__init__(name)
12 self.school = school
13
14 def learn(self):
15 print(f"I'm learning a lot at {self.school}")
16
17
18 c1 = Child("john", "iCSC20")
19 c1.greet()
20 c1.learn()

Kilian Lieret Programming Paradigms 15 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Abstract methods

An abstract method is a method
that has to be implemented by a
subclass
An abstract class (abstract type) is
a class that cannot be instantiated
directly but it might have concrete
subclasses that can
Use abstract classes to enforce
interfaces for the concrete classes

1 from abc import ABC, abstractmethod
2

3

4 class Shape(ABC):
5 @abstractmethod
6 def calculate_area(self):
7 pass
8

9 @abstractmethod
10 def draw(self):
11 pass
12

13

14 class Rectangle(Shape):
15 def __init__(self, ...):
16 ...
17

18 def calculate_area(self):
19 # concrete implementation here

Kilian Lieret Programming Paradigms 16 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Strenghts and Weaknesses

Strengths
Easy to read and understand if done well (very natural way of thinking if
classes model real world objects)
Natural way to structure large projects (e.g. taking classes as components)
Very wide spread way of thinking
Especially applicable to problems that center around data and bookkeeping
with logic that is strongly tied to the data

Weaknesses
Wrong abstractions can lead to less code reusability
Lasagna code: Too many layers of classes can be hard to understand
Can be hard to parallelize if many entangled and interdependent classes
with shared mutable states are involved (−→ if required, should be design
requirement from the start; parallel patterns address some difficulties)

Kilian Lieret Programming Paradigms 17 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 18 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Functional programming

Functional programming
expresses its computations in the style of mathematical functions
emphasizes

expressions (“is” something: a series of identifiers, literals and operators
that reduces to a value)

over
statements (“does” something, e.g. stores value, etc.)

−→ declarative nature
Data is immutable (instead of changing properties, I need to create copies with
the changed property)
Avoids side effects (expressions should not change or depend on any external
state)

Kilian Lieret Programming Paradigms 19 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Examples
Languages made for FP (picture book examples):

Lisp and derivatives: Common Lisp, Clojure, …
Haskell
OCaml
F#
Wolfram Language (Mathematica etc.)
…

With emphasis on FP:
JavaScript
R
…

Not designed for, but offering strong support for FP:
C++ (from C++11 on)
Perl
Python (?) (−→ You might also want to check out the coconut language)
…

Kilian Lieret Programming Paradigms 20 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Pure functions
A function is called pure if

1 Same arguments =⇒ same return value (x = y =⇒ f(x) = f(y))
2 The evaluation has no side effects (no change in non-local variables, ...)

Which of the following functions are pure?

1 def f1(x):
2 return x**2
3

4

5 def f2(x):
6 print(x)
7 return x**2
8

9

10 global y = 0
11

12

13 def f3(x):
14 y += 1
15 return x + y

18 def f4():
19 return int(input()) + 1
20

21

22 def f5(lst: List):
23 lst[0] = 3
24 return lst

Answer: f1 is pure; f2, f3, f5 violate
rule 2; f4, f3 violate rule 1.

Kilian Lieret Programming Paradigms 21 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Non strict evaluation

Some functional programming languages use non-strict evaluation: The
arguments of a function are only evaluated once the function is called.

Example: print(sqrt(sin(a**2)))

In a strict language (e.g. Python, C++), we evaluate inside out:

a 7−→ a2 7−→ sin a2 7−→
√
sin a2

In a non-strict language, the evaluation of the inner part is deferred, until
it is actually needed.

But Python actually has something similar in the concept of generators:

1 %time a = range(int(1e8))
2 >>> Wall time: 7.63 µs
3

4 %time b = list(a)
5 >>> Wall time: 2.33 s

This allows for infinite data structures (which can be more practical than it
sounds)

Kilian Lieret Programming Paradigms 22 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Memoization

Non strict evaluation together with sharing (avoid repeated evaluation of
the same expression) is called lazy evaluation
Generally, functional programming can get cheap performance boosts by
very simple memoization: Storing the results of expensive pure function
calls in a cache

1 import time
2 from functools import lru_cache
3

4

5 @lru_cache()
6 def expensive(x):
7 time.sleep(1)
8 return x+42
9

10

11 %time expensive(2)
12 >>> Wall time: 1 s
13

14 % time expensive(2)
15 >>> Wall time: 6.2 µs

Kilian Lieret Programming Paradigms 23 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Higher order functions
A higher order function does one of the following:

returns a function
takes a function as an argument

Opposite: first-order function.

Mathematical examples (usually called operators or functionals): differential operator,
integration, …

Higher level functions are the FP answer to template methods in OOP
(“configuring” object behavior by overriding methods in subclasses).

Classic example of a higher order function: map (applies function to all elements in
list):

1 def map(function, iterator):
2 """ Our own version of map (returns a list rather than a generator) """
3 return [function(item) for item in iterator]
4

5

6 map(lambda x: x**2, [1, 2, 3])
7 >>> [1, 4, 9]

Kilian Lieret Programming Paradigms 24 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Higher order functions II

A function that also returns a function:

1 def get_map_function(function):
2 """ Takes a function f and returns the function map(f, *) """
3 def _map_function(iterator):
4 return map(function, iterator)
5

6 return _map_function
7

8

9 mf1 = get_map_function(lambda x: x**2)
10 mf2 = get_map_function(lambda x: x+1)
11

12 mf2(mf1([1, 2, 3]))
13 >>> [2, 5, 10]

Kilian Lieret Programming Paradigms 25 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Type systems

Types:
In OOP, type and class are often used interchangeably (e.g. "abc" is of type
string = is an instance of the str class)
In FP we talk about types
Complex types can be built from built in types
(e.g. List[Tuple[str, int]], we can also use structs)
In many languages, types of variables, arguments, etc. have to be declared
(e.g. def len(List[float]) -> int)
Real FP languages usually have very powerful type systems

Kilian Lieret Programming Paradigms 26 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Polymorphism
In FP, the type system allows to bring back some OOP thinking but is more
flexible. Usually you can do some of the following:

Single/multiple dispatch/ad hoc polymorphism:
Can overload function definitions (e.g. define def print(i: int) differently
from def print(string: str))
The right function is resolved based on the type at compile- or runtime

Parametric polymorphism:
Parameterize types in function signatures (e.g. def first(List[a]) -> a; a
represents an arbitrary type)

Type classes:
Define a “type” by what functions it has to support (e.g. define Duck as
anything that allows me to call the quack function on it)
Similar to a class with only abstract methods (=interface) and no
encapsulated data

Kilian Lieret Programming Paradigms 27 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Looping in functional programming
Let’s consider a function that calculates

∑N
i=0 i2:

1 def sum_squares_to(n):
2 result = 0
3 for i in range(n+1):
4 result += i^2
5 return result

This is a function, but does not follow the FP paradigm:
More statements (assignments, loops, …) than expressions
The for loop segment is not free of side effects (value of result changes)
Repeated reassignments of result are frowned upon (or impossible)

How to change this? −→ Use recursion

1 def sum_squares_to(n):
2 return 0 if n == 0 else n^2 + sum_squares_to(n-1)

Kilian Lieret Programming Paradigms 28 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Looping in functional programming
The previous example is called a head recursion (recursion before computation);
using a tail recursion (recursion after computation) is preferable due to better
compiler optimization:

1 def sum_squares_to(n, partial_sum=0):
2 return partial_sum if n == 0 else sum_squares_to(n-1, partial_sum + n^2)

Another FP way is to use the higher level functions map and reduce together
with anonymous functions (lambda):

1 from functools import map, reduce
2

3

4 def sum_squares_to(n):
5 return reduce(
6 lambda x, y: x+y,
7 map(lambda x: x**2, range(n+1))
8)

This also opens the door for concurrency (−→ parallel versions of map and reduce)

Kilian Lieret Programming Paradigms 29 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Strengths and Weaknesses

Strengths
Proving things mathematically (referential transparency, …)
Testability (no object initializations and complex dependencies, pure functions)
Easy debugging (no hidden states)
Can be very short and concise −→ easy to verify
Sophisticated logical abstractions (using high level functions) −→
modularity, code reuse
Easy parallelization (no (shared) mutable states)

Kilian Lieret Programming Paradigms 30 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Strengths and Weaknesses

Weaknesses
Structuring code in terms of objects can feel more intuitive if logic
(methods) are strongly tied to data
Imperative algorithms might be easier to read and feel more natural than
declarative notation
FP might have a steeper learning curve (e.g. recursions instead of loops, …)
Performance issues: Immutable data types and recursion can lead to
performance problems (speed and RAM), whereas many mutable data
structures are very performant on modern hardware
Pure FP has still only a small user base outside of academia, but FP
support more and more wide spread in common languages

Kilian Lieret Programming Paradigms 31 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Object oriented vs functional programming
Some key aspects to keep in mind:

FP 6= OOP − classes
FP is not the opposite of OOP: Both paradigms take opposite stances in
several aspects: declarative vs imperative, mutable vs immutable, … =⇒
Not everything can be classified into one of these categories
Rather: Two different ways to think and to approach problems −→ see
caveats at the beginning

In a multi-paradigm language, you can use the best of both worlds!
OOP has its classical use cases where there is strong coupling between
data and methods and the bookkeeping is in the focus (especially of
”real-world” objects)
FP instead focuses on algorithms and doing things
Some people advocate “OOP in the large, FP in the small” (using OOP as
the high level interface, using FP techniques for implementing the logic)

For example:
Many complicated class structures implementing manipulations can be
made more flexible with a system of high level functions, anonymous
functions etc. (pandas.DataFrame.apply)

Kilian Lieret Programming Paradigms 32 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 33 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Declarative vs imperative programming

Declarative programming:
Program describes logic rather than control flow
Program describes “what” rather than “how”
Aims for correspondence with mathematical logic
FP is usually considered a subcategory

Opposite: imperative programming:
Algorithms as a sequence of steps
Often used synonymously: procedural programming (emphasizing the
concept of using procedure calls (functions) to structure the program in a
modular fashion)
OOP is usually considered a subcategory

Kilian Lieret Programming Paradigms 34 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Examples

“Pure” declarative languages:
SQL (Structured Query Language – language to interact with databases):

SELECT * FROM Customers WHERE Country='Mexico';
Markup languages, like HTML, CSS (Cascading Style Sheets – language to
describe styling of e.g. HTML pages), …

<h1 style="color:blue;">This is a Blue Heading</h1>
Functional programming languages like Haskell (even though they allow
some “encapsulated” imperative parts)
…

Kilian Lieret Programming Paradigms 35 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Powerful backends I

Idea:
Split up your code into application/analysis specific code (describing the
problem) and a backend/library (implementing solution strategies)
The application specific code starts to feel very declarative
The backend can use different strategies depending on the nature/scale of
the problem

Kilian Lieret Programming Paradigms 36 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Powerful backends II
Example:

1 # "Chi2 distance" using plain python
2 def chi2(data, theory, error):
3 err_sum = 0
4 for i in range(len(data)):
5 if data[i] == theory[i] and error[i] == 0:
6 continue
7 err_sum += (data[i] - theory[i])**2 / (error[i]**2)
8 return err_sum
9

10

11 # Using DataFrames: Table contains columns experiment, theory, error
12

13 # ROOT RDataFrame example:
14 chi2 = ROOT.ROOT.RDataFrame(...) # initialize
15 .Filter("!(data==theory & error==0.)") # filter rows
16 .Define("sqd", "pow(data-theory, 2) / pow(error, 2)") # new col
17 .Sum("sqd").GetValue() # sum it up
18

19 # Pandas example:
20 chi2 = pd.DataFrame(...) # initialize
21 _df = df.query("~(data==theory & error==0)") # filter
22 chi2 = (_df["data"] - _df["theory"]).pow(2) / _df["error"].pow(2)).sum()

Kilian Lieret Programming Paradigms 37 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Powerful backends III

We might want even more of our backend, e.g. delayed or distributed
execution
pandas can also be viewed as a “declarative language” describing the
problem −→ have a more sophisticated backend handle all operations −→
modin pandas

Kilian Lieret Programming Paradigms 38 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Powerful backends IV

Belle II steering file:

1 path = create_path()
2

3 # Load data
4 inputMdstList("default", "/path/to/input/file", path=path)
5

6 # Get final state particles
7

8 # Fill 'pi+:loose' particle list with all particles that have pion ID > 0.01:
9 fillParticleList("pi+:loose", "piid > 0.01", path=path)

10 # Fill 'mu+:loose' particle list with all particles that have muon ID > 0.01:
11 fillParticleList("mu+:loose", "piid > 0.01", path=path)
12

13 # Reconstruct decay
14 # Fill 'K_S0:pipi' particle list with combinations of our pions and muons
15 reconstructDecay(
16 "K_S0:pipi -> pi+:loose pi-:loose", "0.4 < M < 0.6", path=path
17)

Kilian Lieret Programming Paradigms 39 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Powerful backends V

Many more high level tools available:

LINQtoROOT: Uses C# with LINQ (SQL like) queries to describe problem
events

.Select(e => e.Data.eventWeight)

.FuturePlot("event_weights", "Sample EventWeights",100, 0.0, 1000.0)

.Save(hdir);

The FAST HEP toolkit: Uses yaml config files to describe problem; using
pandas, numpy, etc. in the backend
stages:
- BasicVars: Define
- DiMuons: cms_hep_tutorial.DiObjectMass
- NumberMuons: fast_carpenter.BinnedDataframe
- EventSelection: CutFlow
- DiMuonMass: BinnedDataframe

Many more…

Kilian Lieret Programming Paradigms 40 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

1 Overview

2 Good code
Objectives
Core concepts

3 Programming Paradigms
Object Oriented Programming
Functional programming

Definition
Signature moves
Strengths and Weaknesses

OOP vs FP
Declarative vs Imperative Programming
Others

4 Outlook

Kilian Lieret Programming Paradigms 41 / 43

Overview Good code Paradigms Outlook Object Oriented Functional OOP vs FP Declarative vs Imperative Others

Other paradigms
Logic programming (LP) (subset of declarative programming): Automatic
reasoning by applying inference rules

LP languages: Prolog, Datalog
LP can be made available with libraries, e.g. for Python: Pyke (inspired by
prolog), pyDatalog (inspired by Datalog)
Example:
% X, Y are siblings if they share a parent
sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

% Father, mother implies parent
parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

% Introduce some people
father_child(tom, sally).
father_child(tom, erica).

% Ask:
?- sibling(sally, erica).
Yes

Symbolic programming
Differentiable programming

Kilian Lieret Programming Paradigms 42 / 43

Overview Good code Paradigms Outlook

Outlook

Next lecture: Software design patterns
Focus on OOP
Introduce some “golden rules” of OOP
Patterns: Reusable solutions to common problems

Discussion on mattermost:
mattermost.web.cern.ch/csc/channels/programming-paradigms

Get the exercises at github.com/klieret/icsc-paradigms-and-patterns

Kilian Lieret Programming Paradigms 43 / 43

https://mattermost.web.cern.ch/csc/channels/programming-paradigms
https://github.com/klieret/icsc-paradigms-and-patterns

	Overview
	Good code
	Objectives
	Core concepts

	Programming Paradigms
	Object Oriented Programming
	Functional programming
	OOP vs FP
	Declarative vs Imperative Programming
	Others

	Outlook

