
More on OOP Patterns Discussion

Software Design Patterns

Kilian Lieret1,2

Mentors:
Sebastien Ponce3, Enric Tejedor3

1Ludwig-Maximilian University
2Excellence Cluster Origins

3CERN

29 September 2020

Kilian Lieret Software Design Patterns 1 / 45

More on OOP Patterns Discussion

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Slides + exercises available at github.com/klieret/icsc-paradigms-and-patterns

Thursday 17:00-17:30: Exercise consultation time

Kilian Lieret Software Design Patterns 2 / 45

https://github.com/klieret/icsc-paradigms-and-patterns

More on OOP Patterns Discussion

Repetition: Object Oriented Programming
Inheritance: Subclasses inherit all (public and protected) attributes and
methods of the base class
Methods and attributes can be public (anyone has access), private (only the
class itself has access) or protected (only the class and its subclasses have
access)
Abstract methods of an abstract class are methods that have to be
implemented by a subclass (concrete class)

New: class methods: Methods of the class, rather than its instances

1 class Class:
2 def method(self):
3 # needs to be called from INSTANCE and can access instance attributes
4 @classmethod
5 def classmethod(cls):
6 # no access to instance attributes
7

8 # This won't work:
9 Class.method() # <-- needs an instance, e.g. Class(...).method()

10

11 # But this does:
12 Class.classmethod()

Kilian Lieret Software Design Patterns 3 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

Class diagrams I
UML (Unified Markup Language) class diagrams visualize classes and the
relationships between them. We will use the following subset of notations:

class A

+ public variable : type
– private variable : type
protected variable : type

+ public method(arg : type) : return type
…

class B
subclass of Asubclass of A

class C
subclass of Bsubclass of B

class D A contains
instances of D

A contains
instances of D

class E A is otherwise
associated with
E

A is otherwise
associated with
E

Kilian Lieret Software Design Patterns 4 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 5 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Single responsibility principle
SOLID

Commonly (mis-)quoted as:
A class should only have one responsibility.

More accurate:
A class should only have one reason to change.

Better still:
Gather together the things that change for the same reasons.
Separate those things that change for different reasons.

So this actually proposes a balance!
Avoid classes that do too much (“god class”)
But also avoid having changes always affect many classes (“shotgun
surgery”)

Kilian Lieret Software Design Patterns 6 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Open Closed Principle
SOLID

You should be able to extend the behavior of a system
without having to modify that system.

Writing a library, modifying functionality means that all users have to be
informed (not backwards compatible) −→ Avoid!
In your own code: Modifying one functionality (also by overriding methods of
the super class, etc.) poses the danger of breaking other parts (though tests
can help with that)
Extending code by providing additional methods, attributes, etc. does not
have this danger −→ preferred!
Requires thinking ahead: What parts have to be flexible, what remains
constant?
Again a balance is required:

Be too generic (avoid modifications) and your code won’t do anything
Be too concrete and you will need to modify (and potentially break things)
often

Kilian Lieret Software Design Patterns 7 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Liskov Substitution Principle
SOLID

If S is a subtype (subclass) of T, then objects of type T can be replaced
with objects of type S without breaking anything

e.g. I can replace all instances of Animal with instances of Cat

This can be expanded to a series of properties that should be fulfilled:
Signature of methods of the subclass:

Required type of arguments should be supertype (contravariance)
Violation: Supermethod accepts any Animal, submethod only Cat
Return type of method should be a subtype (covariance)
Violation: Supermethod returns Cat, submethod returns Animal

Behavior:
Preconditions (requirements to be fulfilled before calling method) cannot be
strengthened in the subtype
Violation: Only in subclass prepare() must be called before method()
Postconditions (conditions fulfilled after calling a method) cannot be
weakened by the subtype
Invariants (properties that stay the same) of supertype must be preserved in
the subtype
History contraint: Subtypes cannot modify properties that are not
modifyable in supertype
Violation: VariableRadiusCircle as subtype of FixedRadiusCircle

Kilian Lieret Software Design Patterns 8 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Interface segregation principle (ISP)
SOLID

Clients should not be forced to depend on methods they do not use

“Thin” interfaces offering a reasonably small number of methods with high
cohesion (serve similar purposes; belong logically together) are preferred over
“fat” interfaces offering a large number of methods with low cohesion
Sometimes we should therefore split up (segregate) fat interfaces into
thinner role interfaces
This leads to a more decoupled system that is easier to maintain
Example: Even if all data is contained in one (e.g. SQL) database, the ISP
asks to write different interfaces to do different things, e.g. have a
CustomerDb, OrderDb, StoreDb, …

Kilian Lieret Software Design Patterns 9 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Dependency Inversion Principle
SOLID

This is about decoupling different classes and modules:
1. High-level modules should not depend on low-level modules.

Both should depend on abstractions (interfaces).
Let’s consider a very simple example: A button controlling a lamp. One way to
implement this:

Button

- client

+ turn_on()
+ turn_off()
+ flip()

Lamp

This violates the DIP, because Button (high-level) depends on
Lamp (detail).

What if we have multiple consumers (Motor, Lamp, …) and
multiple types of buttons (swipe button, switch, push button, …)?
How can we force them to behave consistent? What methods
does a consumer have to implement to work together with the
button?

−→ Enter abstractions (interfaces)

Kilian Lieret Software Design Patterns 10 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

The SOLID rules of OOP: Dependency Inversion Principle
SOLID

AbstractButton

- client

+ turn_on()
+ turn_off()
+ flip()

ConcreteButton

AbstractClient

+ turn_on()
+ turn_off()

ConcreteClient

Now it’s clear which methods the concrete client has to implement. Both high
level and low level modules only depend on abstractions.

This also fulfills the second part of the DIP:
2. Abstractions should not depend on details. Details (i.e. concrete

implementations) should depend on abstractions.

Kilian Lieret Software Design Patterns 11 / 45

More on OOP Patterns Discussion Class Diagrams The SOLID rules of OOP

Performance considerations
Some patterns will advocate:

Classes that only act as interfaces and pass on calls to other (worker)
classes
Using separate classes to facilitate communication between classes
Accessing attributes (only) through methods
Prefer composition over inheritance

However, when writing performance critical (C++, …) code, you should avoid
unnecessary “detours”:

Avoid unncessary interfaces
Consider inlining simple, often-called functions (e.g. getters and setters)
Inheritance > composition > if statements

Modern compilers will try to apply some optimization techniques automatically
(automatic inling, return value optimization, …)

General rule: Profile before Optimizing

Kilian Lieret Software Design Patterns 12 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 13 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Patterns

Software design patters try to offer general and reusable solutions for
commonly occuring problems in a given context.

Commonly categorized as:

Creational patterns: How are instances of classes instantiated? (What if I
have a class that can create instances in different ways?)
Structural patterns: Concerned with relationships between classes. (How
can classes form flexible larger structures?)
Behavioral patterns: Concerned with algorithms and communication
between classes. (How are responsibilities assigned between classes?)
Parallel patterns: Parallel processing and OOP −→ only mentioned briefly

Kilian Lieret Software Design Patterns 14 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 15 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Factory method
If there are multiple ways to instantiate objects of your class, use factory
methods rather than adding too much logic to the default constructor.

Bad:

1 class Uncertainty:
2 def __init__(self, absolute_errors=None, relative_error=None,
3 data=None, config=None, ...):
4 if config is not None:
5 # load from config
6 elif absolute_errors is not None:
7 # add absolute errors
8 elif relative_errors is not None and data is not None:
9 # add relative errors

10 ...
11

12

13 instance = Uncertainty(config="path/to/my/config")

Kilian Lieret Software Design Patterns 16 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Factory method
If there are multiple ways to instantiate objects of your class, use factory
methods rather than adding too much logic to the default constructor.

Good:

1 class Uncertainty:
2 def __init__(self, absolute_errors):
3 # construct from absolute errors
4

5 @classmethod # <-- doesn't need instance to be called (cf. first slide)
6 def from_config(cls, config):
7 # get absolute errors from config file
8 return cls(absolute_errors)
9

10 @classmethod
11 from relative_errors(cls, data, relative_errors):
12 return cls(data * relative_errors)
13

14

15 instance = Uncertainty.from_config("path/to/my/config")

Alternatively, you can also have subclasses that provide (implementations to)
factory methods.

Kilian Lieret Software Design Patterns 16 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Builder Pattern
If you build a very complex class, try to instantiate (build) it in several
steps.

Bad:

1 class Data:
2 def __init__(
3 data: array,
4 data_error: array
5 mc_components: List[array],
6 mc_errors: List[array],
7 mc_float_normalization: List[bool],
8 mc_color: List[string],
9 ...

10)
11

12 def fit(...)
13

14 def plot(...)

You will probably consider different fits and plots; violates Single Responsibility
Principle −→ Rather have Fit and Plot classes

Kilian Lieret Software Design Patterns 17 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Builder Pattern
If you build a very complex class, try to instantiate (build) it in several
steps.

Better:

1 class Data:
2 def __init__(data: array, data_error: array)
3 pass
4

5 def add_mc_component(data, errors, floating=False, color="black", ...):
6 pass
7

8

9 data = Data(...)
10 data.add_mc_component(...)
11 ...
12 data.add_mc_component(...)

What if we have multiple ways to build of the object?
Do I want to have the add_mc_component method after I start using the
data?

−→ Have a separate Data and Builder hierarchy.
Kilian Lieret Software Design Patterns 18 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Builder Pattern
If you build a very complex class, try to instantiate (build) it in several
steps.

Best:

1 class Data:
2 pass
3

4 class Builder:
5 def __init__(...)
6

7 def add_mc_component(...)
8

9 def create(...) -> Data
10

11

12 builder = Builder(...)
13 builder.add_mc_component(...)
14 ...
15 builder.add_mc_component(...)
16 data = builder.create()

And of course I could now create AbstractData and AbstractBuilder etc.

Kilian Lieret Software Design Patterns 19 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 20 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Proxy, Adapter, Facade

Three patterns that deal with interfaces:

Proxy: Given a servant class (doing the actual work), create a new proxy
class with the same interface in order to inject code. The client can then
use the Proxy instead of using the Service class directly.

Client OurInterface

Service Proxy

Usage examples:
Protection proxy: Enforce access rights (always check authorization before
method call/attribute access; e.g. in web applications)
Remote proxy: If the Service is located remotely, the proxy deals with
transferring requests and results
Extend the Service class with caching or logging
…

Kilian Lieret Software Design Patterns 21 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Adapter

Facade: A class providing a simple interface for complicated operations
that involve multiple servant classes

Adapter: We have a 3rd party class ForeignClass whose interface is
incompatible to interface OurInterface −→ Create an adapter class as a
wrapper

Client

ForeignClass

OurInterface

Adapter

Usage case example: We want to switch between different machine learning
models (strategy pattern −→ later). Our models have a train() method, models
from a foreign library have a training() method =⇒ create adapter(s) for library

Kilian Lieret Software Design Patterns 22 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Adapter

1 class OurMLModel(ABC):
2 """ Our interface """
3 @abstractmethod
4 def train(...):
5 pass
6

7

8 class TheirMLModel(ABC):
9 """ Their interface """

10 @abstractmethod
11 def training(...) # <-- this method should be called train
12 pass
13

14

15 class ModelAdapter(OurMLModel): # <-- implements our interface
16 def __init__(self, model: TheirMLModel):
17 self._model = model # <-- our adapter holds the foreign model
18

19 def train(...): # <-- and defines a different interface for it
20 self._model.training(...)
21

22

23 # Their model with our interface:
24 model = ModelAdapter(TheirMLModel(...))

Kilian Lieret Software Design Patterns 23 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 24 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Template Method
Questionable:

1 class MLModel():
2 def load_data(...)
3 def prepare_features(...)
4

5 def train(...):
6 if self.model == "BDT":
7 # train BDT
8 elif self.model == "RandomForest":
9 # train random forest

10 elif ...
11

12 def validate(...)
13 ...

What if multiple methods depend on the model? −→ Need to keep track of
more ifs everywhere
What if we want to add or remove a model? −→ Need to make changes in
many places −→ Open/Closed Principle, “divergent change”
Depend on all implementations −→ Dependency Inversion Principle

Kilian Lieret Software Design Patterns 25 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Template Method
Use case: Several different algorithms that only contain minor differences
in few places
Suggestion: Put shared code in superclass, have subclasses implement or
override specific methods

MLModel

+ preprocess()
+ train()
+ validate()

BDT

+ train()

RandomForest

+ train()

Advantages: Simple and clean with little overhead
Warnings:

If there are many differences between original classes, we need (to override)
many methods −→ increasingly hard to read and mantain
If there are multiple “options” for every method and we want to realize
them, the number of subclasses grows exponentially −→ Strategy pattern
If overriding default methods, the Liskov Substitution Principle can be easily
violated

Kilian Lieret Software Design Patterns 26 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Template Method
Better:

1 class MLModel(ABC): # <-- abstract class
2 def load_data(...)
3 def prepare_features(...)
4

5 @abstractmethod
6 def train(...):
7 pass
8

9 def validate(...)
10 ...
11

12

13 class BDT(MLModel): # <-- concrete class
14 def train(...):
15 # Implementation
16

17

18 class RandomForest(MLModel):
19 def train(...):
20 # Implementation

Kilian Lieret Software Design Patterns 27 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Strategy

Usage: Your problem consists of several steps. Each step can be solved
with different algorithms (strategies)
Suggestion: Create abstract class for each step and concrete subclasses
with specific algorithms; original class holds instances of algorithms

MyAnalysis

+ ml_model: MLModel
+ fitter: Fitter

+ train()
+ fit()

MLModel

+ train()

BDT

+ train()

RandomForest

+ train()

Fitter

+ fit()

KernelDensityFit

+ fit()

CrystalBallFit

+ fit()

Kilian Lieret Software Design Patterns 28 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Strategy

1 class MyAnalysis():
2 def __init__(ml_model: MLModel, fitter: Fitter)
3 self.ml_model = ml_model
4 self.fitter = fitter
5

6 def fit(...):
7 self.fitter.fit(...)
8

9 def train(...):
10 self.ml_model.train(...)
11

12 class MLModel(ABC):
13 @abstractmethod
14 def train(...)
15

16 class RandomForest(MLModel):
17 def train(...):
18 # Implementation
19

20

21 my_analysis = MyAnalysis(RandomForest(...), KernelDensityEstimator(...))
22 my_analysis.train(...)
23 my_analysis.fit(...)

Kilian Lieret Software Design Patterns 29 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Strategy

Note: The main class holds instances of algorithm classes; the algorithm
classes use the the template method pattern
Advantages:

Open/Closed principle: Easily add new strategies
Dependencies inverted (MyAnalysis does not depend on the individual
implementations)
Small number of subclasses
Separated implementation of algorithms from higher level code
For compiled languages: Change algorithms at runtime

Warnings:
Might be overkill for very simple problems
For maximum performance, avoid virtual calls

Alternatives:
If your language supports it: Use functions instead of objects (e.g. provide
several fit() functions and pass them to the class)
Use template pattern if there is only one strategy that can be replaced

Kilian Lieret Software Design Patterns 30 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Command
The command pattern turns a method call into a standalone object.

Rather than directly calling a method, the interface creates a Command object
(describing what we want to execute) and passing it on to a Receiver that
executes it

Use cases:
Decouple user interfaces from the backend (by using Command objects as
means of communication)
Build up a command history with undo functionality
Remote execution of commands
Queue or schedule operations

HEP specific use case example (Belle II software framework):
Build up analysis by adding modules (Command objects) to a path (list of
modules), each implementing a event() method to process one event
After all modules are added, process the path: Loop over all events, calling
the event() method of all modules in order

Kilian Lieret Software Design Patterns 31 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Command
Slightly simplified Belle II steering file:

1 # Create path to add modules (=Command objects) to
2 path = create_path()
3

4 # Load data (convenience function that adds a "DataLoader" module to the path)
5 inputMdstList("default", "/path/to/input/file", path=path)
6

7 # Get final state particles
8

9 # Fill 'pi+:loose' particle list with all particles that have pion ID > 0.01:
10 fillParticleList("pi+:loose", "piid > 0.01", path=path)
11 # Fill 'mu+:loose' particle list with all particles that have muon ID > 0.01:
12 fillParticleList("mu+:loose", "piid > 0.01", path=path)
13

14 # Reconstruct decay
15 # Fill 'K_S0:pipi' particle list with combinations of our pions and muons
16 reconstructDecay(
17 "K_S0:pipi -> pi+:loose pi-:loose", "0.4 < M < 0.6", path=path
18)
19

20 # Process path = call execute() on all Command objects
21 process(my_path)

Kilian Lieret Software Design Patterns 32 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Command

Upon processing path:

Strictly declarative approach (no for loops or implementation details)
Modules can be implemented in python or C++
“Building block” approach makes steering files extremely easy to write and
understand (even browser based graphical interface for highschoolers: try it at
masterclass.ijs.si)

Kilian Lieret Software Design Patterns 33 / 45

masterclass.ijs.si

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Visitor

Concrete example: Serialize a collection of instances of different classes
(e.g. provide JSON export for a list of different data objects)
Possible implementation: Provide a to_json() method to all classes
Potential issue: Might soon want to add export for export possibilities:
(XML, CSV, YAML, etc.)
=⇒ more and more unrelated methods need to be added to the data class
=⇒ “polluted” interface (methods are irrelevant for core functionality); people

might be wary of frequent changes to a well working class
Solution: Separate algorithms from the objects they operate on

Visitor

+ visit_element_a()
+ visit_element_b()

JSONExport

Element

+ accept(visitor)

ElementA

+ accept(visitor)

ElementB

+ accept(visitor)

Kilian Lieret Software Design Patterns 34 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Visitor

Use case (more formally):
Given a heterogeneous family of Element classes
Do not expect significant changes to Element classes
Various unrelated operations need to be performed on a collection of
Element objects
We expect frequent additions and changes for the operations
Do not want to frequently change Element classes because of that

Advantages of visitor pattern:
Single responsibility principle: All the operation functionality is in one place
Open/Closed principle: Easy to add new operations

Disadvantages of the visitor pattern:
No access to private information of Element classes
Changes to Element classes can require changes to all visitors

Kilian Lieret Software Design Patterns 35 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 36 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Concurrency Patterns

Concurrency patterns need their own lecture, so this will only quickly
mention basic concepts.

Use cases:
Manage/synchronize access to shared resources (e.g. to avoid race
conditions when several threads perform read and write operations)
Scheduling tasks in parallel
(A)synchronous event handling

Kilian Lieret Software Design Patterns 37 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Concurrency Patterns II

Advanced example: Active object pattern
Want to decouple method calling from method execution
Can request a calculation early and check later whether the result is
available

The pattern consists of multiple components:
The client calls a method of a proxy, which (immediately) returns a future
object (can be used to check if results are available and get them)
At the same time the proxy turns the method call into a request object
and adds it to a request queue
A scheduler takes requests from the request queue and executes it (on
some thread)
Once the request is executed, the result is added to the future object
Only when the client accesses the future (wants to get the result value), the
client thread waits (if the result is already available by that time, no
waiting/blocking occurrs)

Kilian Lieret Software Design Patterns 38 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 39 / 45

More on OOP Patterns Discussion Patterns Creational Patterns Structural Patterns Behavioral Patterns Concurrency Patterns Antipatterns

Anti-patterns

God object, The blob: One massive class containing all functionality
Object orgy: Not using data encapsulation (not distinguishing between public
and private members); some objects modify the internals of others more
than their own (−→ it is not clear “who is doing what to whom”)
Not using polymorphism: Having many parallel sections of identical if
statements rather than using classes and subclasses
Misusing (multiple) inheritance: Some inherited methods do not make
sense for subclass; violations of the Liskov substitution principle
Overgeneralization/inner platform effect: A system so general and
customizable that it reproduces your development platform

Kilian Lieret Software Design Patterns 40 / 45

More on OOP Patterns Discussion

1 More on OOP
Class Diagrams
The SOLID rules of OOP

2 Patterns
Patterns
Creational Patterns
Structural Patterns
Behavioral Patterns
Concurrency Patterns
Antipatterns

3 Discussion

Kilian Lieret Software Design Patterns 41 / 45

More on OOP Patterns Discussion

Common criticism

“Repetitive use of the same patterns and lots of boilerplate indicates
lack or abstraction or lacking features of your programming language.”

Example: If functions are first-level objects (can be passed around like normal
datatypes), I do not need to define a strategy class hierarchy.
However, this could still be considered the same “pattern” (only with a
simpler implementation)
The “Patterns” give you vocabulary to describe your problem in an
abstract way, even if the implementation details very a lot between
languages
Lots of pattern boilerplate should make you think about your design and
language choices
Be aware that the implementation of (or even the need for) certain patterns
can be very dependent on your language features

Kilian Lieret Software Design Patterns 42 / 45

More on OOP Patterns Discussion

Common criticism

“Design patterns are used excessively and introduce unneeded complex-
ity.”

Remember the zen of python: simple is better than complex; but complex
is better than complicated
Do not introduce complexity (use the design pattern) if you do not fully
understand why you need it.
Some people highlight the KISS (keep it simple, stupid) and YAGNI (you
aren’t gonna need it) principle

Kilian Lieret Software Design Patterns 43 / 45

More on OOP Patterns Discussion

Common criticism

“The common design patterns are often the direct results of think-
ing about good software design; focusing on patterns replaces actual
thought with cut-and-paste programming.”

Take discussion of patterns as a mental practice of thinking about good
design; avoid simple cut-and-paste

Kilian Lieret Software Design Patterns 44 / 45

More on OOP Patterns Discussion

Outlook

Exercise consultation time Thursday 17:00 – 17:30!

Discussion on mattermost:
mattermost.web.cern.ch/csc/channels/software-design

Get the exercises at github.com/klieret/icsc-paradigms-and-patterns

Kilian Lieret Software Design Patterns 45 / 45

https://mattermost.web.cern.ch/csc/channels/software-design
https://github.com/klieret/icsc-paradigms-and-patterns

	More on OOP
	Class Diagrams
	The SOLID rules of OOP

	Patterns
	Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns
	Concurrency Patterns
	Antipatterns

	Discussion

