Conference paper Open Access

Bilingual Lexicon Induction across Orthographically-distinct Under-Resourced Dravidian Languages

Bharathi Raja Chakravarthi; Navaneethan Rajasekaran; Mihael Arcan; Kevin McGuinness; Noel E. O'Connor; John P. McCrae


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20201222122715.0</controlfield>
  <controlfield tag="001">4320725</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">Seventh Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2020)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dublin City University</subfield>
    <subfield code="a">Navaneethan Rajasekaran</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National University of Ireland Galway</subfield>
    <subfield code="a">Mihael Arcan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dublin City University</subfield>
    <subfield code="a">Kevin McGuinness</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dublin City University</subfield>
    <subfield code="a">Noel E. O'Connor</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National University of Ireland Galway</subfield>
    <subfield code="0">(orcid)0000-0002-7227-1331</subfield>
    <subfield code="a">John P. McCrae</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">273975</subfield>
    <subfield code="z">md5:3b8c8b5d1a849fc0b43e91bdaffda3b5</subfield>
    <subfield code="u">https://zenodo.org/record/4320725/files/chakravarthi2020bilingual.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-pret-a-llod</subfield>
    <subfield code="o">oai:zenodo.org:4320725</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">National University of Ireland Galway</subfield>
    <subfield code="a">Bharathi Raja Chakravarthi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bilingual Lexicon Induction across Orthographically-distinct Under-Resourced Dravidian Languages</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-pret-a-llod</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825182</subfield>
    <subfield code="a">Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Bilingual lexicons are a vital tool for under-resourced languages and recent state-of-the-art approaches to this leverage pretrained monolingual word embeddings using supervised or semi-supervised approaches. However, these approaches require cross-lingual information such as seed dictionaries to train the model and find a linear transformation between the word embedding spaces. Especially in the case of low-resourced languages, seed dictionaries are not readily available, and as such, these methods produce extremely weak results on these languages. In this work, we focus on the Dravidian languages, namely Tamil, Telugu, Kannada, and Malayalam, which are even more challenging as they are written in unique scripts. To take advantage of orthographic information and cognates in these languages, we bring the related languages into a single script. Previous approaches have used linguistically sub-optimal measures such as the Levenshtein edit distance to detect cognates, whereby we demonstrate that the longest common sub-sequence is linguistically more sound and improves the performance of bilingual lexicon induction. We show that our approach can increase the accuracy of bilingual lexicon induction methods on these languages many times, making bilingual lexicon induction approaches feasible for such under-resourced languages.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4320724</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4320725</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
9
6
views
downloads
All versions This version
Views 99
Downloads 66
Data volume 1.6 MB1.6 MB
Unique views 66
Unique downloads 55

Share

Cite as