Dataset Open Access

Datasets and Supporting Materials for the IPIN 2020 Competition Track 3 (Smartphone-based, off-site)

Joaquín Torres-Sospedra; Darwin Quezada Gaibor; Antonio R. Jiménez; Antoni Pérez-Navarro; Fernando Seco


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/4a9d86ea-1904-4806-8e37-ad59a6bb3186/2020_IPIN_Competition_Track03.zip"
      }, 
      "checksum": "md5:57fc32f251aca1638bf1cb992d1c7736", 
      "bucket": "4a9d86ea-1904-4806-8e37-ad59a6bb3186", 
      "key": "2020_IPIN_Competition_Track03.zip", 
      "type": "zip", 
      "size": 214137903
    }
  ], 
  "owners": [
    48988
  ], 
  "doi": "10.5281/zenodo.4314992", 
  "stats": {
    "version_unique_downloads": 7.0, 
    "unique_views": 96.0, 
    "views": 101.0, 
    "version_views": 101.0, 
    "unique_downloads": 7.0, 
    "version_unique_views": 96.0, 
    "volume": 1498965321.0, 
    "version_downloads": 7.0, 
    "downloads": 7.0, 
    "version_volume": 1498965321.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4314992", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4314991", 
    "bucket": "https://zenodo.org/api/files/4a9d86ea-1904-4806-8e37-ad59a6bb3186", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4314991.svg", 
    "html": "https://zenodo.org/record/4314992", 
    "latest_html": "https://zenodo.org/record/4314992", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4314992.svg", 
    "latest": "https://zenodo.org/api/records/4314992"
  }, 
  "conceptdoi": "10.5281/zenodo.4314991", 
  "created": "2021-05-19T11:19:39.858670+00:00", 
  "updated": "2021-06-15T11:00:50.179346+00:00", 
  "conceptrecid": "4314991", 
  "revision": 5, 
  "id": 4314992, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4314992", 
    "version": "1.0", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Datasets and Supporting Materials for the IPIN 2020 Competition Track 3 (Smartphone-based, off-site)", 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4314991", 
        "relation": "isVersionOf"
      }
    ], 
    "notes": "We would like to thank ISTI-CNR for managing the Virtual competition and find sponsors for the winner's award. We are also grateful to Francesco Potort\u00ec, Sangjoon Park and the ISTI-CNR team for their invaluable help in organizing and promoting the IPIN competition and conference. Parts of this work were carried out with the financial support received from projects and grants: \n\t\t- A-WEAR (H2020-MSCA-ITN-2018, Grant Agreement 813278)\n\t\t- INSIGNIA (PTQ2018-009981)\n\t\t- REPNIN+ network (TEC2017-90808-REDT)\n\t\t- LORIS (TIN2012-38080-C04-04)\n\t\t- SmartLoc(CSIC-PIE Ref.201450E011)\n\t\t- TARSIUS (TIN2015-71564-C4-2-R, MINECO/FEDER)\n\t        - MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE)", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4314991"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4314992"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "a_wear"
      }, 
      {
        "id": "ipin"
      }
    ], 
    "grants": [
      {
        "code": "813278", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::813278"
        }, 
        "title": "A network for dynamic WEarable Applications with pRivacy constraints", 
        "acronym": "A-WEAR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Indoor Positioning; IPIN Competition"
    ], 
    "publication_date": "2020-12-10", 
    "creators": [
      {
        "affiliation": "UBIK Geospatial Solutions", 
        "name": "Joaqu\u00edn Torres-Sospedra"
      }, 
      {
        "affiliation": "Universitat Jaume I; Tampere University", 
        "name": "Darwin Quezada Gaibor"
      }, 
      {
        "affiliation": "Consejo Superior de Investigaciones Cient\u00edficas", 
        "name": "Antonio R. Jim\u00e9nez"
      }, 
      {
        "affiliation": "Universitat Oberta de Catalunya", 
        "name": "Antoni P\u00e9rez-Navarro"
      }, 
      {
        "affiliation": "Consejo Superior de Investigaciones Cient\u00edficas", 
        "name": "Fernando Seco"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p>This package contains the datasets and supplementary materials&nbsp;used in the IPIN 2020 Competition.</p>\n\n<p><strong>Contents:</strong></p>\n\n<ul>\n\t<li>IPIN2020_Track03_TechnicalAnnex_V1-01.pdf:&nbsp;Technical annex describing the competition&nbsp;</li>\n\t<li>01-Logfiles:&nbsp;This folder contains a subfolder with the 78 training logfiles,&nbsp;72 of them single floor, 4 in bookshelves areas and 2 of them&nbsp;in floor-transition zones, a subfolder with the 13 validation&nbsp;logfiles, and a subfolder with the 1 blind evaluation logfile&nbsp;as provided to competitors.</li>\n\t<li>02-Supplementary_Materials:&nbsp;This folder contains the matlab/octave parser, the raster maps,&nbsp;the files for the matlab tools and the trajectory visualization.</li>\n\t<li>03-Evaluation:&nbsp;This folder contains the scripts used to calculate the competition&nbsp;metric, the 75th percentile on the 82 evaluation points. It requires the&nbsp;Matlab Mapping Toolbox. &nbsp;The ground truth is also provided as a CSV file. Since the results must be provided with a 2Hz freq. starting from&nbsp;apptimestamp 0, the GT includes the closest timestamp matching the timing&nbsp;provided by competitors. It contains a sample of reported estimations and the corresponding results.&nbsp;Additionally, we provide a second script to provide a more detailed report on the results file (requires export_fig folder to run).</li>\n</ul>\n\n<p><strong>Please, cite the following works when using the datasets included in this package:</strong></p>\n\n<ul>\n\t<li>Torres-Sospedra, J.;&nbsp;Quezada-Gaibor, D.; Jimenez, A.R.; Perez-Navarro, A.;&nbsp;Seco, F.; &nbsp;Datasets and Supporting Materials for the IPIN 2020 Competition Track 3 (Smartphone-based, off-site).&nbsp;http://dx.doi.org/10.5281/zenodo.4314992</li>\n\t<li>Potort&igrave;, F.; Torres-Sospedra, J.; Quezada-Gaibor, D.; Jim&eacute;nez, A.R.; Seco, F.; P&eacute;rez-Navarro, A.; Ortiz, M.; Zhu, N.; Renaudin, V.; Ichikari, R.; Shimomura, R.; Ohta, N.; Nagae, S.; Kurata, T.; Wei, D.; Ji, X.; Zhang, W.; Kram, S.; Stahlke, M.; Mutschler, C.; Crivello, A.; Barsocchi, P.; Girolami, M.; Palumbo, F.; Chen, R.; Wu, Y.; Li, W.; Yu, Y.; Xu, S.; Huang, L.; Liu, T.; Kuang, J.; Niu, X.; Yoshida, T.; Nagata, Y.; Fukushima, Y.; Fukatani, N.; Hayashida, N.; Asai, Y.; Urano, K.; Ge, W.; Lee, N.T.; Fang, S.H.; Jie, Y.C.; Young, S.R.; Chien, Y.R.; Yu, C.C.; Ma, C.; Wu, B.; Zhang, W.; Wang, Y.; Fan, Y.; Poslad, S.; Selviah, D.R.; Wang, W.; Yuan, H.; Yonamoto, Y.; Yamaguchi, M.; Kaichi, T.; Zhou, B.; Liu, X.; Gu, Z.; Yang, C.; Wu, Z.; Xie, D.; Huang, C.; Zheng, L.; Peng, A.; Jin, G.; Wang, Q.; Luo, H.; Xiong, H.; Bao, L.; Zhang, P.; Zhao, F.; Yu, C.A.; Hung, C.H.; Antsfeld, L.; Chidlovskii, B.; Jiang, H.; Xia, M.; Yan, D.; Li, Y.; Dong, Y.; Silva, I.; Pend&atilde;o, C.; Meneses, F.; Nicolau, M.J.; Costa, A.; Moreira, A.; Cock, C.D.; Plets, D.; Opiela, M.; D\u017eama, J.; Zhang, L.; Li, H.; Chen, B.; Liu, Y.; Yean, S.; Lim, B.Z.; Teo, W.J.; Lee, B.S.; Oh, H.L. Off-line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences from IPIN 2020 Competition IEEE Sensors Journal, Early Access (in press), 2021.&nbsp;https://doi.org/10.1109/JSEN.2021.3083149</li>\n</ul>"
  }
}
101
7
views
downloads
All versions This version
Views 101101
Downloads 77
Data volume 1.5 GB1.5 GB
Unique views 9696
Unique downloads 77

Share

Cite as