Presentation Open Access

Anomaly detection in nuclear reactors using deep learning

Francesco Caliva


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/fcca3014-e043-4b51-a7d2-df8d33d88d41/2020_Caliva_IAEA_presentation_V1.pdf"
      }, 
      "checksum": "md5:b9b8b8c03544af6a6b7630ebbdb97a62", 
      "bucket": "fcca3014-e043-4b51-a7d2-df8d33d88d41", 
      "key": "2020_Caliva_IAEA_presentation_V1.pdf", 
      "type": "pdf", 
      "size": 17325751
    }
  ], 
  "owners": [
    45514
  ], 
  "doi": "10.5281/zenodo.4314941", 
  "stats": {
    "version_unique_downloads": 8.0, 
    "unique_views": 12.0, 
    "views": 15.0, 
    "version_views": 15.0, 
    "unique_downloads": 8.0, 
    "version_unique_views": 12.0, 
    "volume": 138606008.0, 
    "version_downloads": 8.0, 
    "downloads": 8.0, 
    "version_volume": 138606008.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4314941", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4314940", 
    "bucket": "https://zenodo.org/api/files/fcca3014-e043-4b51-a7d2-df8d33d88d41", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4314940.svg", 
    "html": "https://zenodo.org/record/4314941", 
    "latest_html": "https://zenodo.org/record/4314941", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4314941.svg", 
    "latest": "https://zenodo.org/api/records/4314941"
  }, 
  "conceptdoi": "10.5281/zenodo.4314940", 
  "created": "2020-12-10T15:23:24.021204+00:00", 
  "updated": "2020-12-11T00:27:10.811683+00:00", 
  "conceptrecid": "4314940", 
  "revision": 2, 
  "id": 4314941, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4314941", 
    "description": "<p>Monitoring nuclear reactors working at nominal conditions is fundamental for safety purposes.</p>", 
    "language": "eng", 
    "title": "Anomaly detection in nuclear reactors using deep learning", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4314940"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4314941"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "754316", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::754316"
        }, 
        "title": "Core monitoring techniques and experimental validation and demonstration", 
        "acronym": "CORTEX", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2020-12-08", 
    "creators": [
      {
        "name": "Francesco Caliva"
      }
    ], 
    "meeting": {
      "dates": "December 8-11, 2020", 
      "place": "Remote meeting", 
      "title": "IAEA Consultancy Meeting on Machine Learning for Nuclear Data"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "presentation", 
      "title": "Presentation"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4314940", 
        "relation": "isVersionOf"
      }
    ]
  }
}
15
8
views
downloads
All versions This version
Views 1515
Downloads 88
Data volume 138.6 MB138.6 MB
Unique views 1212
Unique downloads 88

Share

Cite as