Dataset Open Access
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">scholarly data</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">citations</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">papers</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">arXiv.org</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">digital libraries</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">scientometrics</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">full-text</subfield> </datafield> <controlfield tag="005">20211110155723.0</controlfield> <controlfield tag="001">4313164</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">University of Freiburg</subfield> <subfield code="0">(orcid)0000-0001-5458-8645</subfield> <subfield code="a">Färber, Michael</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">19120394657</subfield> <subfield code="z">md5:c66da9551fc3e3b7374d55726003552f</subfield> <subfield code="u">https://zenodo.org/record/4313164/files/unarXive-2020.tar.bz2</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-12-09</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire_data</subfield> <subfield code="p">user-natural-language-processing</subfield> <subfield code="p">user-scholarly-data</subfield> <subfield code="p">user-bibliometrics</subfield> <subfield code="o">oai:zenodo.org:4313164</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">University of Freiburg</subfield> <subfield code="0">(orcid)0000-0001-5028-0109</subfield> <subfield code="a">Saier, Tarek</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">unarXive: A Large Scholarly Data Set with Publications' Full-Text, Annotated In-Text Citations, and Links to Metadata</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-bibliometrics</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-natural-language-processing</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-scholarly-data</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="a">Other (Attribution)</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>In recent years, scholarly data sets have been used for various purposes, such as paper recommendation, citation recommendation, citation context analysis, and citation context-based document summarization. The evaluation of approaches to such tasks and their applicability in real-world scenarios heavily depend on the used data set. However, existing scholarly data sets are limited in several regards.</p> <p>Here, we propose a new <strong>data set based on all publications from all scientific disciplines available on arXiv.org</strong>. Apart from providing the <strong>papers&#39; plain text</strong>, <strong>in-text citations were annotated</strong> via global identifiers. Furthermore, citing and cited publications were linked to the <strong>Microsoft Academic Graph</strong>, providing access to rich metadata. Our data set consists of <strong>over one million documents and 29.2 million citation contexts</strong>. The data set, which is made freely available for research purposes, not only can enhance the future evaluation of research paper-based and citation context-based approaches but also serve as a basis for new ways to analyze in-text citations.</p> <p>This <strong>updated version</strong> (v3) of our data set is based on all arXiv publications until 2020-07-31 and on the Microsoft Academic Graph as of 2020-08-18. As additional contribution, we included a table with the publication date and the scientific discipline for each paper for easier filtering.</p> <p>See <a href="https://github.com/IllDepence/unarXive">https://github.com/IllDepence/unarXive</a> for the <strong>source code</strong> which has been used for creating the data set.</p> <p><strong>Usage examples</strong> for our data set are provided at <a href="https://github.com/IllDepence/unarXive#usage-examples">https://github.com/IllDepence/unarXive#usage-examples</a>.</p> <p>For <strong>citing</strong> our data set and for further information we can refer to our journal article</p> <p><em>Tarek Saier, Michael F&auml;rber: &quot;<a href="https://www.aifb.kit.edu/images/f/f9/UnarXive_Scientometrics2020.pdf">unarXive: A Large Scholarly Data Set with Publications&rsquo; Full-Text, Annotated In-Text Citations, and Links to Metadata</a>&quot;, Scientometrics, 2020, <a href="http://dx.doi.org/10.1007/s11192-020-03382-z">http://dx.doi.org/10.1007/s11192-020-03382-z</a>.</em></p> <p>&nbsp;</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">url</subfield> <subfield code="i">isDocumentedBy</subfield> <subfield code="a">https://link.springer.com/article/10.1007%2Fs11192-020-03382-z</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.2553522</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.4313164</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 3,549 | 800 |
Downloads | 24,220 | 450 |
Data volume | 494.8 TB | 8.6 TB |
Unique views | 2,842 | 700 |
Unique downloads | 3,086 | 278 |