Dataset Open Access

unarXive: A Large Scholarly Data Set with Publications' Full-Text, Annotated In-Text Citations, and Links to Metadata

Saier, Tarek; Färber, Michael


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/efa917d9-ab49-4256-a452-78ee459401fd/unarXive-2020.tar.bz2"
      }, 
      "checksum": "md5:c66da9551fc3e3b7374d55726003552f", 
      "bucket": "efa917d9-ab49-4256-a452-78ee459401fd", 
      "key": "unarXive-2020.tar.bz2", 
      "type": "bz2", 
      "size": 19120394657
    }
  ], 
  "owners": [
    57099
  ], 
  "doi": "10.5281/zenodo.4313164", 
  "stats": {
    "version_unique_downloads": 3086.0, 
    "unique_views": 700.0, 
    "views": 800.0, 
    "version_views": 3549.0, 
    "unique_downloads": 278.0, 
    "version_unique_views": 2842.0, 
    "volume": 8604177595650.0, 
    "version_downloads": 24220.0, 
    "downloads": 450.0, 
    "version_volume": 494782966207942.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4313164", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2553522", 
    "bucket": "https://zenodo.org/api/files/efa917d9-ab49-4256-a452-78ee459401fd", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2553522.svg", 
    "html": "https://zenodo.org/record/4313164", 
    "latest_html": "https://zenodo.org/record/4313164", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4313164.svg", 
    "latest": "https://zenodo.org/api/records/4313164"
  }, 
  "conceptdoi": "10.5281/zenodo.2553522", 
  "created": "2020-12-09T16:42:31.655483+00:00", 
  "updated": "2021-11-10T15:57:23.393220+00:00", 
  "conceptrecid": "2553522", 
  "revision": 6, 
  "id": 4313164, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4313164", 
    "description": "<p>In recent years, scholarly data sets have been used for various purposes, such as paper recommendation, citation recommendation, citation context analysis, and citation context-based document summarization. The evaluation of approaches to such tasks and their applicability in real-world scenarios heavily depend on the used data set. However, existing scholarly data sets are limited in several regards.</p>\n\n<p>Here, we propose a new <strong>data set based on all publications from all scientific disciplines available on arXiv.org</strong>. Apart from providing the <strong>papers&#39; plain text</strong>, <strong>in-text citations were annotated</strong> via global identifiers. Furthermore, citing and cited publications were linked to the <strong>Microsoft Academic Graph</strong>, providing access to rich metadata. Our data set consists of <strong>over one million documents and 29.2 million citation contexts</strong>. The data set, which is made freely available for research purposes, not only can enhance the future evaluation of research paper-based and citation context-based approaches but also serve as a basis for new ways to analyze in-text citations.</p>\n\n<p>This <strong>updated version</strong> (v3) of our data set is based on all arXiv publications until 2020-07-31 and on the Microsoft Academic Graph as of 2020-08-18. As additional contribution, we included a table with the publication date and the scientific discipline for each paper for easier filtering.</p>\n\n<p>See <a href=\"https://github.com/IllDepence/unarXive\">https://github.com/IllDepence/unarXive</a> for the <strong>source code</strong> which has been used for creating the data set.</p>\n\n<p><strong>Usage examples</strong> for our data set are provided at <a href=\"https://github.com/IllDepence/unarXive#usage-examples\">https://github.com/IllDepence/unarXive#usage-examples</a>.</p>\n\n<p>For <strong>citing</strong> our data set and for further information we can refer to our journal article</p>\n\n<p><em>Tarek Saier, Michael F&auml;rber: &quot;<a href=\"https://www.aifb.kit.edu/images/f/f9/UnarXive_Scientometrics2020.pdf\">unarXive: A Large Scholarly Data Set with Publications&rsquo; Full-Text, Annotated In-Text Citations, and Links to Metadata</a>&quot;, Scientometrics, 2020, <a href=\"http://dx.doi.org/10.1007/s11192-020-03382-z\">http://dx.doi.org/10.1007/s11192-020-03382-z</a>.</em></p>\n\n<p>&nbsp;</p>", 
    "license": {
      "id": "other-at"
    }, 
    "title": "unarXive: A Large Scholarly Data Set with Publications' Full-Text, Annotated In-Text Citations, and Links to Metadata", 
    "relations": {
      "version": [
        {
          "count": 4, 
          "index": 3, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2553522"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4313164"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "bibliometrics"
      }, 
      {
        "id": "natural-language-processing"
      }, 
      {
        "id": "scholarly-data"
      }
    ], 
    "keywords": [
      "scholarly data", 
      "citations", 
      "papers", 
      "arXiv.org", 
      "digital libraries", 
      "dataset", 
      "scientometrics", 
      "full-text"
    ], 
    "publication_date": "2020-12-09", 
    "creators": [
      {
        "orcid": "0000-0001-5028-0109", 
        "affiliation": "University of Freiburg", 
        "name": "Saier, Tarek"
      }, 
      {
        "orcid": "0000-0001-5458-8645", 
        "affiliation": "University of Freiburg", 
        "name": "F\u00e4rber, Michael"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://link.springer.com/article/10.1007%2Fs11192-020-03382-z", 
        "relation": "isDocumentedBy", 
        "resource_type": "publication-article"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2553522", 
        "relation": "isVersionOf"
      }
    ]
  }
}
3,549
24,220
views
downloads
All versions This version
Views 3,549800
Downloads 24,220450
Data volume 494.8 TB8.6 TB
Unique views 2,842700
Unique downloads 3,086278

Share

Cite as