Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.4313164</identifier> <creators> <creator> <creatorName>Saier, Tarek</creatorName> <givenName>Tarek</givenName> <familyName>Saier</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5028-0109</nameIdentifier> <affiliation>University of Freiburg</affiliation> </creator> <creator> <creatorName>Färber, Michael</creatorName> <givenName>Michael</givenName> <familyName>Färber</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5458-8645</nameIdentifier> <affiliation>University of Freiburg</affiliation> </creator> </creators> <titles> <title>unarXive: A Large Scholarly Data Set with Publications' Full-Text, Annotated In-Text Citations, and Links to Metadata</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>scholarly data</subject> <subject>citations</subject> <subject>papers</subject> <subject>arXiv.org</subject> <subject>digital libraries</subject> <subject>dataset</subject> <subject>scientometrics</subject> <subject>full-text</subject> </subjects> <dates> <date dateType="Issued">2020-12-09</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4313164</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsDocumentedBy" resourceTypeGeneral="JournalArticle">https://link.springer.com/article/10.1007%2Fs11192-020-03382-z</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2553522</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/bibliometrics</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/natural-language-processing</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/scholarly-data</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>In recent years, scholarly data sets have been used for various purposes, such as paper recommendation, citation recommendation, citation context analysis, and citation context-based document summarization. The evaluation of approaches to such tasks and their applicability in real-world scenarios heavily depend on the used data set. However, existing scholarly data sets are limited in several regards.</p> <p>Here, we propose a new <strong>data set based on all publications from all scientific disciplines available on arXiv.org</strong>. Apart from providing the <strong>papers&#39; plain text</strong>, <strong>in-text citations were annotated</strong> via global identifiers. Furthermore, citing and cited publications were linked to the <strong>Microsoft Academic Graph</strong>, providing access to rich metadata. Our data set consists of <strong>over one million documents and 29.2 million citation contexts</strong>. The data set, which is made freely available for research purposes, not only can enhance the future evaluation of research paper-based and citation context-based approaches but also serve as a basis for new ways to analyze in-text citations.</p> <p>This <strong>updated version</strong> (v3) of our data set is based on all arXiv publications until 2020-07-31 and on the Microsoft Academic Graph as of 2020-08-18. As additional contribution, we included a table with the publication date and the scientific discipline for each paper for easier filtering.</p> <p>See <a href="https://github.com/IllDepence/unarXive">https://github.com/IllDepence/unarXive</a> for the <strong>source code</strong> which has been used for creating the data set.</p> <p><strong>Usage examples</strong> for our data set are provided at <a href="https://github.com/IllDepence/unarXive#usage-examples">https://github.com/IllDepence/unarXive#usage-examples</a>.</p> <p>For <strong>citing</strong> our data set and for further information we can refer to our journal article</p> <p><em>Tarek Saier, Michael F&auml;rber: &quot;<a href="https://www.aifb.kit.edu/images/f/f9/UnarXive_Scientometrics2020.pdf">unarXive: A Large Scholarly Data Set with Publications&rsquo; Full-Text, Annotated In-Text Citations, and Links to Metadata</a>&quot;, Scientometrics, 2020, <a href="http://dx.doi.org/10.1007/s11192-020-03382-z">http://dx.doi.org/10.1007/s11192-020-03382-z</a>.</em></p> <p>&nbsp;</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 3,549 | 800 |
Downloads | 24,220 | 450 |
Data volume | 494.8 TB | 8.6 TB |
Unique views | 2,842 | 700 |
Unique downloads | 3,086 | 278 |