There is a newer version of this record available.

Dataset Open Access

Data Supporting: "Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change"

Daniel M Gilford; Scott Kulp; Klaus Bittermann; Maya K. Buchanan; Robert Kopp; Chris Massey; Hans de Moel; Philip Orton; Benjamin H. Strauss; Sergey Vinogradov

Code supporting Strauss et al. (2020) submitted to Nature Communications. If you use any original data from this archive, please cite the study as:

B. H. Strauss, P. Orton, K. Bittermann, M. K. Buchanan, D. M. Gilford, R. E. Kopp, S. Kulp, C. Massey, H. de Moel, S. Vinogradov, 2020: Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change. Nature Communications. (under review, Dec. 2020)

If you have any questions or comments, please contact Daniel Gilford at dgilford@climatecentral.org

Included are Input, Output, and Source files (compressed) used in the publication; data files are primarily in txt, csvxlsx, and mat formats. In the absence of a MATLAB license, mat files may be read with open access software such as SciPy. Code supporting this publication may be found at https://github.com/climatecentral/cc_sandy_matlab.

Archived Data Short Descriptions:

  • INPUT -- Input semi-empirical model, hydrodynamic, and observational data files used to create distributions/analyses in this study.
    • 8518750_meantrend.csv: The Battery, NY monthly mean sea levels and trends/uncertainty, accessed from https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8518750 on 29 July 2020.
    • cmip5.zip: CMIP5 semi-empirical model analyses for each individual model and scenarios (historical and counterfactual), and index files for reference.
    • hadcrut.zip: HadCRUT4 semi-empirical model analyses for each individual HadCRUT4 scenario (historical and counterfactuals)
    • Dangendorf2019_GMSL.txt: Monthly mean global mean sea level rise from Dangendorf et al. (2019).
    • Also included are datum information, block damages, hydrodynamic simulations, and additional auxiliary files required to run the accompanying repository analyses.
  • OUTPUT -- Code outputs supporting this publication
    • fig1_data.mat: Quick access source data file which may be used to recreate Fig. 1 in the manuscript
    • SEanalysis.mat: The full output semi-empirical model analyses in this study
    • summary_samps.mat: Summary/ensemble analyses in this study
  • SOURCE -- Individual source data files for each Figure (1, 2, 3a-b), Table (1-2), Supplementary Figure (S1-4), and Supplementary Table (S1-6) in this study.
    • Included is a readme.txt with full descriptions of source data files.
Files (6.0 GB)
Name Size
INPUT_v1.1.zip
md5:3f0fd8a59e218d2bd783c2b1a3becc81
3.1 GB Download
OUTPUT.zip
md5:0b79259b46314457ef896a1dbc2183d7
2.4 GB Download
SOURCE.zip
md5:edd720e5b70c508c6d3f1dd4ef10fd7f
514.9 MB Download
  • Dangendorf, S., Hay, C., Calafat, F.M. et al. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 9, 705–710 (2019). https://doi.org/10.1038/s41558-019-0531-8

  • Kopp, Robert. (2013). Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?. Geophysical Research Letters. 40. 10.1002/grl.50781

751
7
views
downloads
All versions This version
Views 75118
Downloads 70
Data volume 16.1 GB0 Bytes
Unique views 30711
Unique downloads 70

Share

Cite as