Published November 30, 2020 | Version v1
Journal article Open

STRESS-STRAIN DISTRIBUTION IN THE MODEL OF RETROCALCANEAL BURSITIS BY USING HEEL-ELEVATION INSOLES

  • 1. Shupyk National Medical Academy of Postgraduate Education
  • 2. Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine

Description

The aim of this study is the analysis of the equivalent stress on the rear foot structures in retrocalcaneal bursitis, when using heel-elevation insoles of different heights (10 mm and 20 mm).

Methods – mathematical calculations of the Achilles force required in the heel-off of the gait stance phase in the conditions of lifting the heel by 10 mm and 20 mm. A 3D-simulation foot model with an enlarged retrocalcaneal bursa was created. The analysis was carried out by the finite element method to calculate and study the stress and strain in the rear foot structures.

Results. When using a 10.0 mm height heel-elevation insole, the calf muscle strength, which must be applied to the heel-off of the gait stance phase, was 19.0 % less than without support and 26.8 % less in 20.0 mm insole. Accordingly, analyzing the simulation results in terms of von-Mises stress, the maximum stress observed on the Achilles tendon decreases by 20.0 % and by 30.0 %. The total deformations maximum in the model when using heel-elevation insoles decreased up to 18.1 % and they were localized not in the tendon, but in the bone structures of subtalar joint.

The maximum values of the total deformation of the model in the case of 10.0 mm and 20.0 mm heel-elevation insoles were 91.67 mm (–20.2 %) and 80.04 mm (–30.3 %), respectively, compared 114.92 mm in the absence of insoles. When using insole with a height of 10.0 mm, the stress in the retrocalcaneal bursa decreased by 20.0 % and was equal to 14.92 MPa compared to 18.66 MPa, and when using a 20.0 mm insoles - by 30.0 %.

Conclusions. It was found that when using 10.0–20.0 mm heel-elevation insoles, the stress distribution in the rear foot structures was significantly reduced by an average of 20.0-30.0 % and correlated with the height of the insoles.

Files

STRESS-STRAIN DISTRIBUTION IN THE MODEL OF RETROCALCANEAL BURSITIS BY USING HEEL-ELEVATION INSOLES.pdf

Additional details

References

  • Pavlov, H., Heneghan, M. A., Hersh, A., Goldman, A. B., Vigorita, V. (1982). The Haglund syndrome: initial and differential diagnosis. Radiology, 144 (1), 83–88. doi: http://doi.org/10.1148/radiology.144.1.7089270
  • Karjalainen, P. T., Soila, K., Aronen, H. J., Pihlajamäki, H. K., Tynninen, O., Paavonen, T., Tirman, P. F. J. (2000). MR Imaging of Overuse Injuries of the Achilles Tendon. American Journal of Roentgenology, 175 (1), 251–260. doi: http://doi.org/10.2214/ajr.175.1.1750251
  • Irwin, T. A. (2010). Current Concepts Review: Insertional Achilles Tendinopathy. Foot & Ankle International, 31 (10), 933–939. doi: http://doi.org/10.3113/fai.2010.0933
  • Alfredson, H., & Spang, C. (2018). Clinical presentation and surgical management of chronic Achilles tendon disorders – A retrospective observation on a set of consecutive patients being operated by the same orthopedic surgeon. Foot and Ankle Surgery, 24 (6), 490–494. doi: http://doi.org/10.1016/j.fas.2017.05.011
  • Lazarev, I. A., Herasimyuk, B. S., Movchan, O. S., Skiban, M. V. (2019). Biomechanical analysis of the behavior of the rearfoot structures with retrocalcaneal bursitis and Haglund's syndrome in walking. TRAUMA, 20 (6), 12–20. doi: http://doi.org/10.22141/1608-1706.6.20.2019.186030
  • Calder, J. (2012). Disorders of the Achilles Tendon Insertion: Current Concepts. Guildford: DJO Publications, 218.
  • Dixon, S. J., Kerwin, D. G. (1998). The Influence of Heel Lift Manipulation on Achilles Tendon Loading in Running. Journal of Applied Biomechanics, 14 (4), 374–389. doi: http://doi.org/10.1123/jab.14.4.374
  • Farris, D. J., Buckeridge, E., Trewartha, G., McGuigan, M. P. (2012). The Effects of Orthotic Heel Lifts on Achilles Tendon Force and Strain During Running. Journal of Applied Biomechanics, 28 (5), 511–519. doi: http://doi.org/10.1123/jab.28.5.511
  • Braunstein, B., Arampatzis, A., Eysel, P., Brüggemann, G.-P. (2010). Footwear affects the gearing at the ankle and knee joints during running. Journal of Biomechanics, 43 (11), 2120–2125. doi: http://doi.org/10.1016/j.jbiomech.2010.04.001
  • Dixon, S. J., Kerwin, D. G. (2002). Variations in Achilles Tendon Loading with Heel Lift Intervention in Heel-Toe Runners. Journal of Applied Biomechanics, 18 (4), 321–331. doi: http://doi.org/10.1123/jab.18.4.321
  • Mattila, V. M., Sillanpää, P. J., Salo, T., Laine, H.-J., Mäenpää, H., & Pihlajamäki, H. (2010). Can orthotic insoles prevent lower limb overuse injuries? A randomized-controlled trial of 228 subjects. Scandinavian Journal of Medicine & Science in Sports, 21 (6), 804–808. doi: http://doi.org/10.1111/j.1600-0838.2010.01116.x
  • Lohrer, H., Nauck, T. (2014). Retrocalcaneal bursitis but not Achilles tendinopathy is characterized by increased pressure in the retrocalcaneal bursa. Clinical Biomechanics, 29 (3), 283–288. doi: http://doi.org/10.1016/j.clinbiomech.2013.12.002
  • Lee, K. K. W., Ling, S. K. K., Yung, P. S. H. (2019). Controlled trial to compare the Achilles tendon load during running in flatfeet participants using a customized arch support orthoses vs an orthotic heel lift. BMC Musculoskeletal Disorders, 20 (1). doi: http://doi.org/10.1186/s12891-019-2898-0
  • Shim, V. B., Hansen, W., Newsham-West, R., Nuri, L., Obst, S., Pizzolato, C. et. al. (2019). Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons – A subject-specific finite element analysis. Journal of Biomechanics, 82, 142–148. doi: http://doi.org/10.1016/j.jbiomech.2018.10.027
  • Wulf, M., Wearing, S. C., Hooper, S. L., Bartold, S., Reed, L., Brauner, T. (2016). The Effect of an In-shoe Orthotic Heel Lift on Loading of the Achilles Tendon During Shod Walking. Journal of Orthopaedic & Sports Physical Therapy, 46 (2), 79–86. doi: http://doi.org/10.2519/jospt.2016.6030
  • Bogaerts, S., Desmet, H., Slagmolen, P., Peers, K. (2016). Strain mapping in the Achilles tendon – A systematic review. Journal of Biomechanics, 49 (9), 1411–1419. doi: http://doi.org/10.1016/j.jbiomech.2016.02.057
  • Chatzistergos, P., Maganaris, C., Chockalingam, N. (2016). Sensitivity of a numerical model to detect regional differences in mechanical properties of tendons. Foot and Ankle Surgery, 22 (2), 15. doi: http://doi.org/10.1016/j.fas.2016.05.024
  • Choi, R. K., Smith, M. M., Martin, J. H., Clarke, J. L., Dart, A. J., Little, C. B., Clarke, E. C. (2016). Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury. Journal of Biomechanics, 49 (13), 2694–2701. doi: http://doi.org/10.1016/j.jbiomech.2016.06.006
  • Maganaris, C. N., Chatzistergos, P., Reeves, N. D., Narici, M. V. (2017). Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise. Frontiers in Physiology, 8. doi: http://doi.org/10.3389/fphys.2017.00091
  • Obst, S. J., Barber, L., Miller, A., Barrett, R. S. (2017). Reliability of Achilles Tendon Moment Arm Measured In Vivo Using Freehand Three-Dimensional Ultrasound. Journal of Applied Biomechanics, 33 (4), 300–304. doi: http://doi.org/10.1123/jab.2016-0261
  • Pizzolato, C., Lloyd, D. G., Sartori, M., Ceseracciu, E., Besier, T. F., Fregly, B. J., Reggiani, M. (2015). CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. Journal of Biomechanics, 48 (14), 3929–3936. doi: http://doi.org/10.1016/j.jbiomech.2015.09.021
  • Pizzolato, C., Reggiani, M., Modenese, L., Lloyd, D. G. (2016). Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim. Computer Methods in Biomechanics and Biomedical Engineering, 20 (4), 436–445. doi: http://doi.org/10.1080/10255842.2016.1240789
  • Pękala, P. A., Henry, B. M., Ochała, A., Kopacz, P., Tatoń, G., Młyniec, A. et. al. (2017). The twisted structure of the Achilles tendon unraveled: A detailed quantitative and qualitative anatomical investigation. Scandinavian Journal of Medicine & Science in Sports, 27 (12), 1705–1715. doi: http://doi.org/10.1111/sms.12835
  • Shim, V. B., Handsfield, G. G., Fernandez, J. W., Lloyd, D. G., Besier, T. F. (2018). Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Scientific Reports, 8 (1). doi: http://doi.org/10.1038/s41598-018-31587-z
  • Lersch, C., Grötsch, A., Segesser, B., Koebke, J., Brüggemann, G.-P., Potthast, W. (2012). Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon. Clinical Biomechanics, 27 (9), 955–961. doi: http://doi.org/10.1016/j.clinbiomech.2012.07.001
  • Pizzolato, C., Lloyd, D. G., Barrett, R. S., Cook, J. L., Zheng, M. H., Besier, T. F., Saxby, D. J. (2017). Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to the Person for Training and Rehabilitation. Frontiers in Computational Neuroscience, 11. doi: http://doi.org/10.3389/fncom.2017.00096
  • Pizzolato, C., Reggiani, M., Saxby, D. J., Ceseracciu, E., Modenese, L., Lloyd, D. G. (2017). Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25 (9), 1612–1621. doi: http://doi.org/10.1109/tnsre.2017.2683488