

Grant agreement nº: 768869
Call identifier: H2020-FOF-2017

Strategies and Predictive Maintenance models wrapped around physical systems for

Zero-unexpected-Breakdowns and increased operating life of Factories

Z-BRE4K

Deliverable D4.2
Z-BRE4K DSS towards operational optimisation

Work Package 4
WP4 – Design Of Strategies And Integration Of Intelligence

Document type : Report

Version : V0.8

Date of issue : 30/07/2019

Dissemination level : PUBLIC

Lead beneficiary : 2 - ATLANTIS ENGINEERING SA

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement nº 768869.

The dissemination of results herein reflects only the author’s view and the European Commission
is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be construed as a
commitment by any members of the Z-BRE4K Consortium. The information is provided without any warranty of any
kind.
This document may not be copied, reproduced, or modified in whole or in part for any purpose without written
permission from the Z-BRE4K Consortium. In addition to such written permission to copy, acknowledgement of the
authors of the document and all applicable portions of the copyright notice must be clearly referenced.
© COPYRIGHT 2017 The Z-BRE4K Consortium.
All rights reserved.

Ref. Ares(2019)4972503 - 30/07/2019

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 2/63

Executive Summary

Abstract

The development of the DSS of the Z-BRE4K project leads

towards operational optimisation in the end – users shop

floors. The system is developed using the criteria that are set

by risk assessment methods and standards. Also, criteria exist

for the Key Performance Indicators, Failure Modes and

Failure Effects. The criteria are used to develop an application

based on reasoning engine, a mechanism for

recommendation provisions and maintenance scheduling.

The reasoning engine is based on Finite State Machines, the

recommendation mechanism on MQTT protocol, while the

maintenance scheduling in smart asset management

algorithms. Technical involvement in the DSS for different

data source leads to the creation of a communication API

dedicated to the Z-BRE4K project.

Keywords
DSS, Reasoning Engine, Recommendations, Risk Assessment

Methods, Strategies, Predictive Maintenance.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 3/63

Revision history

Version Author(s) Changes Date

V0.1 ATLANTIS
1st Draft – Table of

Contents
04/03/2019

V0.2 ATLANTIS

Risk Assessment

Methods and

Standards

18/03/2019

V0.3 ATLANTIS Z-BRE4K Strategies 19/03/2019

V0.4 ATLANTIS
Z-BRE4K DSS

Approach
22/03/2019

V0.5 ATLANTIS Prediction Module 23/05/10

V0.6 ATLANTIS Message Queue 28/05/19

V0.7 ATLANTIS
Event Sources and

Roslyn Scripting
05/06/19

V0.8 ATLANTIS Reasoning Engine 06/06/19

V0.9 ATLANTIS
Conclusions and Next

Steps
07/06/19

V1.0 ATLANTIS Final Version 16/07/19

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 4/63

Abbreviations
Abbreviations Meaning

API Application Programming Interface

BFS Breadth – First Search

CAD Computer – Aided Design

CAE Computer – Aided Engineering

CAM Computer – Aided Manufacturing

CEP Complex Event Processing

CMMS Computerised Maintenance Management System

CPU Central Processing Unit

DFA Deterministic Finite Automaton

DFS Depth – First Search

DSS Decision Support System

ERP Enterprise Resource Planning

FE Failure Effect

FM Failure Mode

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects and Criticality Analysis

FSM Finite State Machine

GUI Graphical User Interface

HACCP Hazard Analysis and Critical Control Points

HAZOP Hazard and Operability Study

HTTP Hypertext Transfer Protocol

IDS Industrial Data Space

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 5/63

ISO International Organisation for Standardisation

JIT Just – In Time

JSON JavaScript Object Notation

KBS Knowledge Based System

KRI Key Risk Indicator

MCOD Multiple Components in One Database

ML Machine Learning

MP Matrix Profile

MPI Matrix Profile Index

MQTT Message Queuing Telemetry Transport

NDFA Non – Deterministic Finite Automaton

OEM Original Equipment Manufacturer

PdM Predictive Maintenance

PHA Preliminary Hazard Analysis

PL Parameter - Length

RPN Risk Priority Number

SCADA Supervisory Control and Data Acquisition

SFPS Single Failure Points

SRT Shortest Remaining Time

XML Extendable Mark-up Language

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 6/63

TABLE OF CONTENTS

TABLE OF CONTENTS.. 6
TABLE OF FIGURES ... 8
TABLE OF TABLES ... 9
1 SCOPE AND CONTENT OF THE DELIVERABLE .. 10

1.1 Scope and Objective .. 10

1.2 Content and Structure ... 10

2 PREDICTIVE MAINTENANCE REASONING ENGINE .. 12

2.1 Risk Assessment Methods and Standards ... 12

2.1.1 IEC31010:2009 .. 13

2.1.2 IEC60812:2006[15] .. 13

2.1.3 ISO 9001:2015 ... 15

2.1.4 ISO 55001:2014 ... 17

2.1.5 Key Risk Indicators (KRI), Failure Modes (FM) and Failure Effects (FE) 17

3 Z-BRE4K STRATEGIES IN THE DECISION SUPPORT SYSTEM ... 19

3.1 Production Processes of Asset Detection and Prediction Condition 19

3.2 Shop – floor resources .. 21

3.3 Predictive and JIT Maintenance .. 21

4 DSS APPROACH FOR Z-BRE4K.. 23

4.1 System Architecture .. 23

4.2 CMMS Integration ... 24

4.3 Event Aggregation and Processing .. 25

4.3.1 Event Retrieval and Processing ... 27

4.3.2 Message Queue ... 28

4.4 Asset State Tracking – Rule Based Reasoning ... 30

4.5 Reasoning Engine .. 31

4.5.1 Finite State Machines .. 32

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 7/63

4.6 Scripting ... 37

4.7 Notifications .. 40

4.7.1 Mobile Application – Recommendation Feedback ... 41

4.8 Recommendation Provisions... 42

4.9 Maintenance Tasks Assignment and Scheduling .. 43

4.9.1 Smart Asset Management Algorithms .. 43

4.10 Prediction Module ... 46

4.10.1 The MP Algorithm for Artificial Events .. 46

4.10.2 Event – based Predictive Maintenance Solution... 47

4.10.3 Experiments and results .. 48

4.10.4 An unsupervised learning technique based on streaming outlier detection 51

4.11 Internal Suggestion and Alert System ... 51

5 DSS IN THE OVERALL Z-BRE4K SYSTEM .. 52

5.1 Semantic Framework .. 53

5.2 Preventive Maintenance ... 53

5.3 FMECA ... 55

5.4 DSS in the IDS Ecosystem .. 56

6 CONCLUSIONS AND NEXT STEPS ... 59
7 REFERENCES ... 60

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 8/63

TABLE OF FIGURES

Figure 1: FMEA document general format [5] .. 14

Figure 2: Plan - Do - Check - Act cycle [30] .. 16

Figure 3: Example of KRIs in a DSS [11] ... 17

Figure 4: Failure Modes and Effects [12] .. 18

Figure 5: Z-BRE4K Strategies ... 19

Figure 6: DSS Component Diagram ... 23

Figure 7: CMMS plugin and communication with CMMS in the DSS .. 24

Figure 8: Ontology tree for the CMMS plugin ... 25

Figure 9: Event aggregation and processing sub - component tiers ... 26

Figure 10: Message queue system [27]... 28

Figure 11: FSM for a rule in the DSS Reasoning Engine [26] ... 32

Figure 12:Finite State Machine ... 33

Figure 13: Non - Deterministic Finite Automaton ... 34

Figure 14: States of DSS FSMs ... 36

Figure 15: Parameters of DSS FSMs .. 36

Figure 16: Roslyn compiler APIs [17] ... 38

Figure 17: Notification configuration mechanism UI .. 41

Figure 18: Set up ofthe MQTT client on the user's side for the Recommendation Provision sub -

component .. 42

Figure 19: Maintenance tasks scheduling general screen[6] .. 43

Figure 20: Priority Based Scheduler[21] .. 45

Figure 21: Example of connected sub - components after processing the MPI 47

Figure 22: Component diagram with the connected to DSS Z-BRE4K components 52

Figure 23: Predictive Maintenance and Machine Simulators functionality Flow[32] 54

Figure 24: DSS in an IDS Ecosystem... 57

file:///P:/Docs/Ερευνητικά/Ευρωπαϊκά/Projects/2017-01-Z-BRE4K/2%20WPs/WP4/T4.2/D4.2/Z-Bre4k%20DSS%20towards%20operational%20optimisation_v1.0.docx%23_Toc14187037

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 9/63

TABLE OF TABLES

Table 1: Z-BRE4K Strategies for Production Processes of Asset Detection and Prediction

Condition ... 20

Table 2: Z-BRE4K Strategies for Shop - floor Resources .. 21

Table 3: Predictive and JIT maintenance Z-BRE4K Strategies ... 22

Table 4: Transition δ table ... 33

Table 5: Non - deterministic Finite Automaton Transition δ .. 34

Table 6: Differences between DFAs and NDFAs .. 35

Table 7: Scheduler Classification for Personnel .. 44

Table 8: Number of distinct artificial types generated per pattern length (PL) 49

Table 9: Experimental results on all the acoustic channels using the supervised learning

technique (CD: community detection). ... 50

Table 10: Experimental results on all the acoustic channels using an ensemble of the

supervised learning technique. ... 50

Table 11: Semantic Framework APIs ... 53

Table 12: Predictive Maintenance APIs ... 55

Table 13: FMECA APIS ... 56

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 10/63

1 SCOPE AND CONTENT OF THE DELIVERABLE

1.1 Scope and Objective

The present deliverable describes the results of task T4.2 and the work done for the

development of a system able to optimise the predictive and Just-In-Time (JIT) maintenance

operations during production processes and the assets’ conditions. The Decision Support System

(DSS), developed during the duration of T4.2, allows the optimisation of the maintenance

techniques while implementing the Z-BRE4K strategies for predictive and preventive

maintenance. The deliverable also covers the technologies and standards used for the

development of the system. Risk assessment methods, Z-BRE4K strategies and a holistic method

applied in the DSS, based on the end – users use cases, are described in the deliverable and

cover all phases during the development phase.

Based on the technical objectives, described in the Grant agreement, the system should be able

to accommodate risk mitigation through failure mode and effects analysis, and to implement

machine learning techniques based on events with predictive, preventive and diagnostic

analytics capabilities. The combination of the machine learning techniques and risk mitigation

analysis leads to a decision support system, which offers user recommendation for the decision

process on maintenance procedures. Also, the decision support system is able to create work

schedules for maintenance procedures and to re – adapt the production schedule and to comply

with the needs and suggestion of the decision support system.

1.2 Content and Structure

Considering the description of the task T4.2, the deliverable D4.2 is organised as follows:

 Section 2 highlights the reasoning engine for predictive maintenance in the Z-BRE4K

system. The applied risk assessment methods and standards are described as well as the

standards used for Key Risk Indicators (KRIs), Failure Modes (FM) and Failure Effects (FE).

 Section 3 is dedicated to the Z-BRE4K strategy Z-REMEDIATE for repairing, replacing and

reusing shop floor resources and the way how it can be evaluated in the DSS. Also, it

describes the results of the implementation of the strategy on the DSS. It also describes

the strategies which are responsible for the preventive and JIT maintenance in the Z-

BRE4K architecture.

 Section 4 provides the whole DSS solution for Z-BRE4K. The section describes the DSS

architecture in detail, containing the algorithms implemented in DSS sub – components,

component diagrams of the tools and all technical elements of the DSS. Smart asset

management, recommendations and rule creation are described and used in the DSS

reasoning engine.

The detailed analysis in section 4 also includes the technical details and the techniques

used during development of the DSS. Computerized Maintenance Management System

(CMMS) integration, event aggregation and processing, based on event retrieval and

message queueing are the main characteristics of the DSS analysis sub - components.

Asset state tracking in a rule – based reasoning is described, as well as the

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 11/63

recommendation sub – component. Finally, the scripting mechanism of the rule engine,

the algorithm in which the rule engine is based and whom the recommendations are

provisioned to are also analysed in section 4.

 Section 5 describes the connection of the DSS with other Z-BRE4K components and a

small description of each one.

 Section 6 contains the conclusions of the deliverable concerning the DSS and its

implementation on the project. The implementation results are examined, and further

improvements and modification are discussed. Also, new DSS features are proposed for

further development.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 12/63

2 PREDICTIVE MAINTENANCE REASONING ENGINE

A predictive maintenance reasoning engine is a Z-BRE4K application able to support risk

assessment with multiple methods based on risk techniques and standards. The application is

also able to connect to ontologies and other applications, such as Knowledge Based Systems

(KBS) and predictive analytics.

The reasoning engine connects the maintenance domain with ontologies, KBS and predictive

analysis in order to train with predictive maintenance models. The models require a large

amount of data to be fed in the system and criteria such as data uncertainty, lack and quality of

information, involved actors and assets, as well as real – time data response. The reasoning

engine will be able to exploit the knowledge that is hidden in all incoming data and systems,

based on the mentioned criteria. Its responses will feed the higher-level components for

scheduling purposes, resources reallocation and re – adaptation of manufacturing procedures

on the shop floor.

The predictive maintenance reasoning engine is implemented based on risk assessment

methods and standards for better implementation of the above criteria. Assessing risk leads to

better procedures and models in the reasoning engine and create a safer environment, where

all criteria are met against the defined risks. Also, the risk assessment methods comply with the

reasoning engine for more educated rules and feedback the other DSS components:

Recommendations provision and Maintenance Scheduling.

2.1 Risk Assessment Methods and Standards

Risk assessment describes the process of identification of risk factors and hazards that may

cause harm in the system called hazard identification, as well as the analysis and evaluation of

the risks associated with a specific hazard and finally the determination of the most appropriate

actions to eliminate it or control the risks.

The thorough look of a certain problem and possible solutions provided by a risk assessment

procedure causes the next steps in all actions to be taken. The steps of the procedures are:

 Understand what happens in each situation and scenario.

 Determine the possible consequences.

 Determine how possible are the consequences to occur.

 Exploit the most suitable way to solve the risk and implement criteria in the DSS

reasoning engine to allow the solution.

 Implement the reasoning engine to reduce the number of possible risks over time.

Risk assessment is valuable during the design and implementation of a reasoning engine.

Knowing the possible risk scenarios, the criteria of the rule engine can be transformed to

accommodate the risk solution in the scenario. Then, the criteria in the rule engine can

determine the consequences of the risks and how possible they are in each scenario. Finally, the

reasoning engine implements some of the criteria to solve the risks for the best possible

solution. After a time period, the reasoning engine is able to re – adapt the implemented criteria,

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 13/63

based on the real system input to develop a behaviour which reduces the causes of the risks and

helps to stabilise the system in the least risky state.

The system is implemented based on recognised risk assessment methods and standards. Most

of the methods are distinct for their significance in manufacturing environments and their

competence to recognising patterns from various data used in manufacturing. The most

common ISO standards and a method based on analysis of Key Performance Indicators (KRI),

Failure Modes (FM) and Failure Effects (FE) are given below.

2.1.1 IEC31010:2009

ISO/IEC 31010[9] is a standard concerning risk management codified by The International

Organization for Standardization and The International Electrotechnical Commission (IEC). The

full name of the standard is ISO. IEC 31010:2009 – Risk management – Risk assessment

techniques. The ISO 31010 standard supports the ISO 31000 standard. It supplies information as

to the selection and application of risk assessment techniques. Risk assessment is part of the

core elements of risk management defined in ISO 31000, which are:

 Communication and consultation.

 Establishing the context.

 Risk assessment (risk identification, risk analysis and evaluation).

 Risk treatment.

 Monitoring and review.

Risk can be assessed at any level of the analysis of the reasoning engine and the implementation

of the DSS. There are 31 risk assessment techniques listed in Annex B of ISO/IEC 31010, the main

ones are: brainstorming, Delphi method, Preliminary Hazard Analysis (PHA), Hazard and

Operability Study (HAZOP), Hazard Analysis and Critical Control Points (HACCP) and Failure mode

and effects analysis (FMEA) or Failure Mode, Effects and Criticality Analysis (FMECA)[15].

2.1.2 IEC60812:2006[15]

Failure mode and effects analysis (FMEA)—also "failure modes", plural, in many publications—

was one of the first highly structured, systematic techniques for failure analysis. It was

developed by reliability engineers in the late 1950s to study problems that might arise from

malfunctions of military systems. An FMEA is often the first step of a system reliability study. It

involves reviewing as many components, assemblies, and subsystems as possible to identify

failure modes, and their causes and effects. For each component, the failure modes and their

resulting effects on the rest of the system are recorded in a specific FMEA worksheet. There are

numerous variations of such worksheets. An FMEA can be a qualitative analysis but may be put

on a quantitative basis when mathematical failure rate models [¡Error! No se encuentra el

origen de la referencia.] are combined with a statistical failure mode ratio database.

A few different types of FMEA analyses exist, such as:

 Functional.

 Design.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 14/63

 Process.

Sometimes FMEA is extended to FMECA (failure mode, effects, and criticality analysis) to

indicate that criticality analysis is performed too. FMEA is an inductive reasoning (forward logic)

single point of failure analysis and is a core task in reliability engineering, safety engineering and

quality engineering.

A successful FMEA activity helps identify potential failure modes based on experience with

similar products and processes—or based on common physics of failure logic. It is widely used

in development and manufacturing industries in various phases of the product life cycle. Effects

analysis refers to studying the consequences of those failures on different system levels. Figure

1 shows a document with the FMEA general format.

Figure 1: FMEA document general format [¡Error! No se encuentra el origen de la referencia.]

The ground rules of each FMEA include a set of project selected procedures; the assumptions

on which the analysis is based; the hardware that has been included and excluded from the

analysis and the rationale for the exclusions. The ground rules also describe the indenture level

of the analysis (i.e. the level in the hierarchy of the part to the sub-system, sub-system to the

system, etc.), the basic hardware status, and the criteria for system and mission success. Every

effort should be made to define all ground rules before the FMEA begins; however, the ground

rules may be expanded and clarified as the analysis proceeds. A typical set of ground rules

(assumptions) follows:

1. Only one failure mode exists at a time.

2. All inputs and software commands to the item being analysed are present and at

nominal values.

3. All consumables are present in sufficient quantities.

4. Nominal power is available.

Major benefits derived from a properly implemented FMECA effort are as follows:

1. It provides a documented method for selecting a design with a high probability of

successful operation and safety.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 15/63

2. A documented uniform method of assessing potential failure mechanisms, failure

modes and their impact on system operation, resulting in a list of failure modes ranked

according to the seriousness of their system impact and likelihood of occurrence.

3. Early identification of single failure points (SFPS) and system interface problems, which

may be critical to mission success and/or safety. They also provide a method of verifying

that switching between redundant elements is not jeopardized by postulated single

failures.

4. An effective method for evaluating the effect of proposed changes to the design and/or

operational procedures on mission success and safety.

5. A basis for in-flight troubleshooting procedures and for locating performance

monitoring and fault-detection devices.

From the above list, early identifications of SFPS, input to the troubleshooting procedure and

locating of performance monitoring / fault detection devices are probably the most important

benefits of the FMECA. In addition, the FMECA procedures are straightforward and allow orderly

evaluation of the design.

The uses of FMEA are: development of system requirements that minimise the likelihood of

failures, development of design and test systems to ensure that the failures have been

eliminated or the risk is reduced to an acceptable level, development and evaluation of

diagnostic systems and to help with design choices (trade – off analysis). For more details, refer

to [15].

2.1.3 ISO 9001:2015

The layout of the standard is similar to the previous ISO 9001:2008 [33] standard in that it follows

the Plan, Do, Check, Act cycle in a process-based approach but is now further encouraging this

to have risk-based thinking, as it is shown in Figure 2.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 16/63

Figure 2: Plan - Do - Check - Act cycle [30]

There are ten quality objectives that define the standard’s layout. They are:

 Scope.

 Normative references.

 Terms and definitions.

 Context of the organization.

 Leadership.

 Planning.

 Support.

 Operation.

 Performance evaluation.

 Continual Improvement.

The purpose of the quality objectives is to determine the conformity of the requirements

(customers and organizations), facilitate effective deployment and improve the quality

management system. A system can be tested against the standard and certified when

requirements from all the above objectives are implemented.

During the development of the DSS reasoning engine, definition of requirements that comply

with the above objectives should be documented and implemented by developers. The ISO

standard facilitates stable development, implementation, testing, acceptance and maintenance

of the reasoning engine and the rules based on it.

Also, based on the standard, all the development phases of the reasoning engine should be

achieved with adequately defined requirements. The product is review in terms of results and

designed based on requirements. Variations of scenarios can also be tested during development

for different purposes. The results should be validated against the criteria and appropriate

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 17/63

actions to resolve the problems that occurred. Finally, all actions should be documented for

future references.

2.1.4 ISO 55001:2014

ISO 55001:2014 [8] is an international standard covering management of assets of any kind.

Before it, a Publicly Available Specification (PAS 55) was published by the British Standards

Institution in 2004 for physical assets. The ISO 55001 series of Asset Management standards was

launched in January 2014. It is based on the four fundamentals of asset management: value,

alignment, leadership and assurance. It also describes how to apply requirements in the key

domains of asset management.

2.1.5 Key Risk Indicators (KRI), Failure Modes (FM) and Failure Effects (FE)

Key Risk Indicators are useful tools used by managers to define the level of risk on the shop floor

procedures. Sometimes they indicate the risk taken by certain activities, the level of uncertainty

and how assets and resources can be stretch during the manufacturing processes.

Key risk indicators are modelled based on financial, business and operational actions. They

usually are evaluated by managers and their indications lead to decision making on different

levels of the manufacturing process. Risks are defined and measured against the most important

indicators.

The DSS reasoning engine should be able to incorporate the KRIs in its rule creation process in

order to respond to difficult and varied problems on a manufacturing process. One of the main

points in using KRIs in the reasoning engine, is to determine the best maintenance practices and

prevent major failures during the operation. Also, KRIs can provide suitable numbers for JIT

maintenance. Figure 3 shows KRIs in a commercial DSS and how they represent some of the

most critical procedures.

Figure 3: Example of KRIs in a DSS [11]

Failure mode (FM) is the cause of a failure in a system. When there are many possible failures in

a system, there also are many different failure modes. Though, some failure modes cause the

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 18/63

system to fail more often than others. Their distribution varies based on the severity and

criticality of the failure mode.

Failure effects (FE) are the consequences of a failure in a system. They disturb the operation,

the status, the functionality of the system. FE have many severity levels and can cause from

minor problems in a production line to complete failure and stop of manufacturing operations.

Some serious effects can be, injury to the user, inoperability of the product or process,

deterioration in product quality, nonadherence to the specifications, failure on other systems in

immediate contact with the system that failed must be considered. Figure 4 indicates the failure

modes and effects in a cycle process.

Figure 4: Failure Modes and Effects [12]

KRIs, FMs and FEs should be incorporated in the DSS and the reasoning engine which trie to

solve problems and create suggestions for maintenance and manufacturing operations. They

can be studied and analysed in the system and the defined criteria can be trained against in all

indicators to create new, more probable rules and suggestions. Input data from sensor networks

is used as a test dataset along with the indicators for improved suggestions from the reasoning

engine.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 19/63

3 Z-BRE4K STRATEGIES IN THE DECISION SUPPORT SYSTEM

The Z-BRE4K DSS includes several strategies for all its purposes. The strategies are defined by

the use cases and the scenarios provided by the end – users. The strategies also help to organise

the system’s architecture and how it should behave in different situations. According to the use

case scenarios, the DSS incorporates seven Z-BRE4K strategies in three well defined use cases.

Figure 5 shows how the Z-BRE4K strategies are connected in the project, as well as how they are

responsible for the various Z-BRE4K components.

Figure 5: Z-BRE4K Strategies

3.1 Production Processes of Asset Detection and Prediction Condition

A manufacturing process is defined by a set of principles. Those principles, in general, are

specifications, safety measures, work progress indicators etc. The manufacturing process is

monitored by recording data to Enterprise Resource Planning (ERP) and CMMS systems.

The main key point is the IoT devices (e.g. sensors) network that collects various signals. At each

shop floor, various assets (machines or other equipment) are monitored by various sensors. The

data that are usually collected, are vibration, temperature, noise data.

Asset detection with proximity-based sensors, asset tracking devices and monitors is one of the

latest implementations of a shop floor sensor network. Assets are tracked because they are cost

– effective, valuable to the production line and asset shortages create a blockage in the

production.

Predictive maintenance (PdM) is one of the critical features of Industry 4.0. The prediction

process predicts assets failures (non-conformities and broken assets), shop floor working

conditions. Prerequisite for a successful prediction process is the continuous assets monitoring

and the signal collection they produce.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 20/63

Table 1 describes the Z-BRE4K strategies used in production processes of asset detection and

prediction conditions.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 21/63

Table 1:Z-BRE4K Strategies for Production Processes of Asset Detection and Prediction Condition

Z-BRE4K Strategy Description

Z-Predict The events detected from the physical layer of the system are engineered

into high value data high that will stipulate new and more accurate

process models. Such an unbiased systems behaviour monitoring and

analysis provides the basis for enriching the existing knowledge of the

system (experience) learning new patterns, raising attention towards

behaviour that causes operational and functional discrepancies (e.g.

alarms) and the general trends in the shop-floor. The more the data pool

is being increased the more precise (repeatability) and accurate the

predictions will be. The estimations for the future states involve the

whole production line – the network of machines and components. The

system will predict with high confidence the expected performance of

components and their maintenance needs, allowing better production

planning and decision making on their remaining useful life (RUL). The

ability of Z-BRE4K to optimise the manufacturing processes according to

the RUL, production needs, and the maintenance operations is the key

innovation to fulfil the industrial requirements.

Z-Diagnose This strategy is invoked when a current or an emerging failure is detected

considering the condition at all three levels – Machine, Product, Shop-

floor. In such a scenario, an alarm is being triggered to flag the events

that resulted in a failure. By mapping the true reasons, the system will be

able to avoid generating the failure or its emergence by weighting the

system model. The strategy also involves more actions and processes to

deal both with the generation of the diagnosed failure, and its severity

increase to the next iterations as well as its impact on the production line.

Depending on the criticality of the generated failure, the system will

either adapt its parameters to prolong the useful life until the next

maintenance, or plan to the production for maintenance. The final

decision on the actions is based on the Z-MANAGE strategy.

Z-Estimate This strategy will combine the information from the Z-DIAGNOSE and Z-

PREDICT in order to estimate the remaining useful life of the assets. The

estimated values will also be combined with the information from the

maintenance operations (physical examination from operators) as well

as from the specifications provided by the manufacturer. The latter will

be used as the starting point for the estimation process, which after each

iteration the deviation of the real-model from the physical model will be

reduced having an accurate virtual-model wrapped around the actual

state of each machine and its components. The trends for the fatigue and

ware rates will provide a confident RUL estimation

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 22/63

3.2 Shop – floor resources

Shop floor resources are considered a milestone for the manufacturing procedure. Assets, other

equipment, but even the personnel itself might be identified as resources. Resources allocation

is described by the Z-BRE4K strategies given in Table 2 below:

Table 2:Z-BRE4K Strategies for Shop - floor Resources

Z-BRE4K Strategy Description

Z-Remediate This strategy involves the decision making in the event of a failure, which

after its analysis it will be classified and categorised based on its effect,

criticality, and type. Based on the component/assets types

(repairable/non-repairable) and their remaining useful life the system

will decide for the following; (i) Replace, (ii) reconfigure and/or re-use,

(iii) retire, and (iv) recycle. This strategy triggers the Z-SYNCHRONISE and

Z-SAFETY strategies from which the maintenance actions will be planned

and organized.

3.3 Predictive and JIT Maintenance

Maintenance is a critical operation, from the business and technical point of views. It improves

the assets (and/or other equipment) Remaining Useful Life (RUL), reduces the risk of critical

failures in the production line, prevents severe damages or unscheduled interruptions on the

production.

The typical maintenance operation is the preventive maintenance, which is executed in a strict

periodical schedule each year. The Preventive maintenance process, is the least complex one,

and is one of the oldest maintenance processes.

Predictive and Just–in–Time (JIT) Maintenance are the most recent developments in

manufacturing maintenance. Predictive maintenance is a combination of a failure prediction

(when it will happen), and the DSS that exploits and analyses the prediction, and in the end

generates alarms and alerts. The addressed people are notified with those alarms and alerts, in

order to prevent the failure, if possible.

JIT maintenance is the operation that is executed during a specific time range. The time range

is provided by the DSS as a suggestion, and usually is before the failure when the risk factor is

quite high. Table 3 below is the description of the predictive and JIT maintenance Z-BRE4K

strategies.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 23/63

Table 3: Predictive and JIT maintenance Z-BRE4K Strategies

Z-BRE4K Strategy Description

Z-Manage The overall supervision and optimisation of the system are achieved

after the execution of Z-MANAGE strategy. The failures are processed

with the Decision support system (DSS) tools and are interfaced with

Manufacturing Execution Systems (MES). False positives and false

negatives are clustered after the Z-DETECT strategy, which results into

fine filtering of these false alarms. To achieve so, the previously

acquired knowledge and incidents are also processed to tune the

system’s performance. Additionally, the production is optimised by

better scheduling (Z-SYNCHRONISE), considering the impact of each

failure. The optimised scheduling and adaptability of the manufacturing

improves the overall flexibility, placing a premium on the production

systems, extending their operating life, while preserving increased

machinery availability.

Z-Synchronise The predecessor Z-REMEDIATE strategy will identify the type of action

required for diagnosed failures which will be fused with the Z-MANAGE

output. This strategy will synchronise all the remedy actions with

internal and external supply-chain tiers, as well as with production

planning and logistics. It will be responsible to shift the production from

one machine to another due to failure or deteriorated

condition/performance, acting as the “end-effector” of the Z-BRE4K

system.

Z-Safety Z-BRE4K aims to increase the health & Safety of the factories by

employing this strategy. It will be invoked when a maintenance

operation will take place to act as an operational “handbrake”. Since

most of the accidents occur during maintenance actions, the Z-SAFETY

will prevent any activation to the machine that is under investigation

or repair. The “Safety-Mode” will lift any unauthorised control from the

personnel for the whole duration of the maintenance. Apart from

reducing the accidents Z-SAFETY will also consider the comfort of the

human personnel on the shop floor, e.g. extreme heat or noise may be

tolerable for the machines but not for humans. Therefore, the health &

safety procedures will be also considered towards the operation

feedback of the whole production line. To this end, the design of

Strategy will address “safety & health at workplace” Directive 89/391

EEC – OSH and Directive 2009/104/EC “Use of work-equipment”.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 24/63

4 DSS APPROACH FOR Z-BRE4K

The DSS of the Z-BRE4K project implements risk assessment methods for computing KRIs, FMs

and FEs in order to produce efficient decision making for improved predictive and JIT

maintenance. The system is based on the Z-BRE4K strategies described in the previous section.

There are many types of decision support systems. The DSS developed for Z-BRE4K is a

combination between data driven and model driven DSS. The system is developed as a

combination between these two types of DSS in order to exploit both the acquired data from

the sensor network and the criteria based on the risk assessment methods and the Z-BRE4K

strategies.

4.1 System Architecture

The system is modular developed by smaller and independent sub – components. Each of the

sub – components are specifically designed to execute a function without interrupting other

operations of other sub – components.

The component diagram of the system architecture is given below in Figure 6.

Figure 6: DSS Component Diagram

The DSS sub – components are

 the CMMS plugin,

 the Recommendation Provision,

 the Reasoning Engine,

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 25/63

 the Asset State Tracking – Rule Based Reasoning,

 the Event Aggregation and Processing,

 the Scripting,

 the Maintenance Tasks Assignment and Scheduling,

 the Notification,

 the Prediction,

 the Internal Suggestion and Alert System.

4.2 CMMS Integration

The CMMS Integration sub-component, along with the Event Processing sub-component, form

the lowest tier of the system if seen as a layered architecture. It can be customized via plugins.

Its role is to provide a way for the operators responsible for system initialization, to access,

define, and organize the (meta)data pertaining to the shop floor, and specifically if / when

available, to integrate the system with a CMMS.

The functionality in this sub – component offers benefits such as synchronization tracking by

polling endpoints containing shop floor data, ease of use and avoidance of mis-configuration

(for example the user does not need to copy – paste “asset codes” when defining rules/state

machines) and making advantage of any externally accessible commands the CMMS or other

external component can offer (for example, task creation in the CMMS). Figure 7 shows who a

CMMS system communicates with the CMMS plugin of the DSS.

CMMS CMMS plugin

Figure 7: CMMS plugin and communication with CMMS in the DSS

In addition, agent data can be used for recommendations provision. A plugin system allows this

sub-component to be agnostic to what particular CMMS or similar component is being used. The

sub-component makes the assumption that the shop floor can be modelled using a simplified

schema of Asset, Measurement Location, Event Type and Agent entities and expects to be able

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 26/63

to load and synchronize these entities by a plugin. Figure 8 is the ontology tree for the CMMS

plugin of the DSS system.

Figure 8: Ontology tree for the CMMS plugin

4.3 Event Aggregation and Processing

This sub – component provides the system’s capabilities to access data and event sources,

optionally performing Complex Event Processing (CEP) operations. The sub – component is

created in the, but aims to be a separate .NET library in order to be easily accessible and reused

in other projects, apart from the DSS. It supplies data to sub-components of a higher tier as well

as performs event persistence and logging if needed. In addition, this sub - component

harmonises the data formats coming from various sources into a common event format. The

common event format is used by the rest of the system to create a data format indifferent and

agnostic of the details of the data source format. The sub-component is architecturally designed

to consist of three tiers.

In the lowest level a set of utility and wrapper methods are provided which aim to:

1. Select amongst several common methods for data retrieval (for example HTTP polling,

MQTT, AMQT, an ad hoc internal queue), amongst the provided implementations

2. Assisted in the initialization of the retrieval process for this particular method, by an API

providing sensible defaults (for example hiding any programmatic details of setting up

an MQTT client)

3. Automatically convert this retrieval process into the System. Reactive observable which

is a Microsoft library for creating pipelines of Observables. Data sourced provide data in

event format and CEP is performed on the data. It is the .NET implementation of the

ReactiveX asynchronous programming and observables pipeline API. It also enables the

use of “Asynchronous Processing” techniques, providing a significant performance

boost and simplifying multithreaded code development. Asynchronous Processing in

this context refers to when operations or threads wait for a result from another

operation or thread (for example data parsing waiting on completion of an HTTP call),

but do not create bottlenecks and blocks, simply returning control to a dispatcher and

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 27/63

wait to be notified to continue. Bottlenecks and blocks waste resources and indirectly

introduce deadlocking problems.

System.Reactive was chosen to simplify development, increase performance and make

a robust system, by exploiting an existing implementation of an API and offering the

above async processing functionality, as well as the “compositional” (pipelining)

functionality that enables CEP operations.

In the second tier, resides a CEP system. Eventhoug, the system implementation is not yet

completed, the system is able to delegate the operations available to System.Reactive, but it

also provides a more specific API. The API hides details, provides sensible defaults, and

integrates with the tiers higher in the layer stack of our system. For example, aggregating by

moving averages or throttling of events can be defined on this level. The details of the

implementation are hidden by System. Reactive from higher layers.

Figure 9: Event aggregation and processing sub - component tiers

In the highest third layer, an “Event Stream” entity is defined, which delegates to the tiers below.

An event stream can be thought of as the combination of data retrieval and parsing, along with

default logging mechanisms, persistence, and the ability to expose a simple observable that

notifies of data updates, but also automates all the previously mentioned functionality with only

a simple initial configuration needed by the sub-component user. The Event Stream is

configurable by the DSS-plugins to extract shop floor events and harmonize their data format

into the common internal format used by the rest of the system.

Figure 9 shows the three – tier architecture of the Event Aggregation and Processing sub –

component. Essentially the DSS will treat its plugin – based event sources, as the definition of

Event Streams. These, as described above, can take advantage of asynchronous processing, are

easily configurable to incorporate common logging, CEP and persistence mechanisms, and to

produce events in a common event format.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 28/63

The event streams are also planned to be accessible at a higher level, such as an asset tracking

State Machine directly placing conditions on a named DSS event stream.

4.3.1 Event Retrieval and Processing

An additional system is planned for use, which logically can also be thought of as a part of the

Event Retrieval and Event Processing subsystem, but is developed on its own for reasons that

are described below.

So far, the described sub-component can be considered to provide the following functionality

 Convert data received as events into a common format.

 Collaborate with shop floor specific plugins to abstract the details of receiving events

from each shop floor.

 Enable the use of asynchronous techniques.

 Provide automatic persistence and logging mechanisms.

 Make use of various CEP techniques and set up event pipelines.

However, when thought of as an “API” it is evident that it is targeted to the system programmer

and not an and user. In addition, one might expect for the user to people to participate in the

CEP pipeline by a “scripting” method.

Therefore, an additional layer related to data and event retrieval exists, which presupposes the

base layer, and thus can take advantage of functionality such as receiving events in a common

format, and having access to a “list of shop floor Event Sources”. The arguments allowed by this

functionality are:

 Configuration of the event transformations and CEP pipeline by user scripts

 Automatic dependency resolution

 Domain Specific Language like enhancements towards simplifying scripts specifically for

this context

 “Augmented Compilation”, where the build errors of the C# compiler when compiling

user scripts, are augmented with errors regarding the DSL syntax or parameter set up

etc.

The sub component is named the Parameters sub component, which sort of signifies that it is

supposed to offer Event Processing style operations but in a higher and more “mathematical”

level.

The Parameters sub-component is directly usable from the User Interface of the application. It

allows a user to set up a Parameter by choosing a set of Event Streams, configuring it with a set

Event Processing parameter, such as extra data filters on the common DSS event format, or user

assignable TTL settings.

Finally, it adds the option to use a C# script (with specific DSL style syntax that simplifies the

code) to convert data in events in an ad hoc way, and additionally to reuse other parameters

when defining new ones.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 29/63

That is the goal is that for an installation that for example has been configured by a plugin to

provide three basic even sources 𝑋, 𝑊, 𝑈

The user is able to quickly write the equivalent form as:

𝑌 = 𝑀𝑎𝑡ℎ. 𝑆𝑖𝑛(5 ∗ 𝑋)

𝑍 = 𝑀𝑎𝑡ℎ. 𝑆𝑞𝑟𝑡(𝑌 + 𝑊 ∗ 𝑈) + 1

The system automatically resolves the human form regular expressions and creates the

necessary dependency pipeline to compute the above without the effort of writing possible

difficult code (such as synchronization code etc.).

Crucial to this is the use of topological sorting for dependency extraction from parameter

references in user scripts.

The subsystem is not only used for simplifying end user interaction, but as the gateway for any

machine learning sub – components interacting with our rule reasoning and asset state machine

tracking functionality. It provides a format for accessing relevant data that is much simpler and

closer to the mathematical model used by inference techniques, in comparison to directly

accessing the DSS internal events.

4.3.2 Message Queue

We are also implementing our own message queue for the common case scenario where an

external component wants to directly provide events to the DSS, without making use of an MQTT

broker. The queue is integrated into the asynchronous event parsing methods described above

and makes available simplified message queuing techniques while providing a simple rest call

like API.

Figure 10: Message queue system [27]

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 30/63

Figure 10 shows the functionality of a message queuing system. Message queuing allows

applications to communicate by sending messages to each other. The message queue provides

temporary message storage when the destination program is busy or not connected.

A queue is a line of things waiting [27] to be handled - in sequential order starting at the

beginning of the line. A message queue is a queue of messages sent between applications. It

includes a sequence of work objects that are waiting to be processed.

A message is the data transported between the sender and the receiver application; it's

essentially a byte array with some headers on top. An example of a message could be something

that tells one system to start processing a task, it could contain information about a finished task

or just be a plain message.

The basic architecture of a message queue is simple, there are client applications called

producers that create messages and deliver them to the message queue. Another application,

called consumer, connect to the queue and get the messages to be processed. Messages placed

onto the queue are stored until the consumer retrieves them.

A message queue provides an asynchronous communications protocol, a system that puts a

message onto a message queue does not require an immediate response to continuing

processing. Email is probably the best example of asynchronous messaging. When an email is

sent, the sender continues processing other things without an immediate response from the

receiver. This way of handling messages decouples the producer from the consumer. The

producer and the consumer of the message do not need to interact with the message queue at

the same time.

Decoupling is used to describe how much one piece of a system relies on another piece of the

system. Decoupling is the process of separating them so that their functionality will be more

self- contained.

A decoupled system is achieved when two or more systems are able to communicate without

being connected. The systems can remain completely autonomous and unaware of each other.

Decoupling is often a sign of a computer system that is well structured. It is usually easier to

maintain, extend and debug.

If one process in a decoupled system fails to process messages from the queue, other messages

can still be added to the queue and be processed when the system has recovered. You can also

use a message queue to delay processing; A producer post messages to a queue. At the

appointed time, the receivers are started up and process the messages in the queue. A queued

message can be stored-and-forwarded, and the message is redelivered until the message is

processed.

Instead of building one large application, it is beneficial to decouple different parts of your

application and only communicate between them asynchronously with messages. That way

different parts of your application can evolve independently, be written in different languages

and/or maintained by separated developer teams.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 31/63

A message queue will keep the processes in your application separated and independent of each

other. The first process will never need to invoke another process, or post notifications to

another process, or follow the process flow of the other processes. It can just put the message

on the queue and then continue processing. The other processes can also handle their work

independently. They can take the messages from the queue when they are able to process them.

This way of handling messages creates a system that is easy to maintain and easy to scale.

4.4 Asset State Tracking – Rule Based Reasoning

The core of the DSS functionality lies in its ability to make real time decisions based on the

aggregated events and data describing the shop floor’s operation state.

These decisions might derive from criteria such as those in section 2 containing risk assessment

methods, or in a general sense contain reasoning that attempts to suggest an action to be

performed on the shop floor based on its current or predicted state.

On a high level some of desired attributes of such a system are:

1. The ability to allow managers, operators and experts to accurately and easily express

and integrate criteria derived from their domain knowledge or from a set of standards.

2. The ability to easily view the current “shop floor” state in real time without the data that

is being used itself, ending up hidden inside a rule-based processing module that may

only output specific recommendations.

3. Flexibility when it comes to the system integrating to various installations or external

modules providing supplemental functionality, such as the prediction module.

4. Gathering and organizing historical data that can be provided to statistical and machine

learning techniques, as well as for report generation

5. An interface to allow machine learning systems to directly manipulate the current “rule

set” after a machine learning method has computed more optimal conditions etc.

Several alternative methods to express user supplied rule-based processing on a set of data were

tested during development. Certain powerful methods such as variable based on if-then rule

sets used in some expert systems were for the time abandoned in favour of a State Machine

Based model.

Considering (1) and (2) above, if the rule set was supplied in a set of if-else statements it could

require too much effort from the end-user. Designing a rule that is only activated by a certain

system states, would increase the predicate size and require introducing and controlling state

variables by the user. Such implementation would potentially make the system error prone in

adding or configuring rules, because it requires complete understanding of the moment of firing

by the user and “expert system designer” skills which the user group should not possess.

The expectation of a state machine-based model is more natural and more comprehensible for

users. Rules are already provided by transition moving from one state to the next, based on the

context described by parameters. In addition, this complies with requirement (2) since we get a

model for the current system setting which can be visually examined in a relatively easy

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 32/63

procedure. More about the theoretical background of the state machines is mentioned in

section 4.5.1 below.

There are several drawbacks using State Machines, such as the fact that certain transitions, and

therefore if-then rules, have to be repeated multiple times when they are to be fired by multiple

states, increasing the model’s complexity. However, complexity mitigation is designed by

providing additional functionality to the transitions. Transitions could be defined to have

multiple sources. A transition “prototype” is created and transformed into the final state

machine, as well as a guide for users to “walk through” the application to design multiple smaller

independent state machines. The more agile, smaller state machines are more efficient versus

a more complex or “hierarchical” model. They also help with the rule context because they

depend on the separation of concerns in the system.

Thus, the model used is a state machine-based model where the states are declared by the user

and are expected to represent a condensed description of the measurements defining the

current shop floor state. And the transitions are the equivalent to the “IF [CONDITION] THEN

[ACTION]” rule set item.

The system allows users to design transitions, extract visualizations of the model, and attach

actions via the Recommendation Provision sub – component. It is also accessible by software

components such as machine learning subsystems. The system is able to provide to them

complete historical data such as the transition log and parameter values, as it is stated in (4) and

(5) above.

The transitions level rules take as input the current output of the Parameter Sub-Component.

Several common predicates (such a value threshold) are directly provided in the UI as user filters.

In addition, the scripting sub – component, described in section 4.6, allows the creation of

complex transition firing predicates. Machine Learning (ML) techniques where the model can be

applied within the context of a single transition, such as a Support Vector Machine that creates

a classification based on recommendation feedback. The set of computed parameters at the

time the transition is activated, are integrated to the available option for configuring a

transition’s triggering condition.

Requirement (3) above is implemented in conjunction with the CMMS integration sub-

component.

4.5 Reasoning Engine

The reasoning engine is the core functionality of the Z-BRE4K DSS. It contains all the criteria

described in section 2, concerning the risk assessment methods and standards. The engine

executes a set of rules, based on the criteria to create suggestion concerning the operations of

a shop floor.

The algorithm and logic behind the DSS Reasoning Engine is based on the Finite State Machines

(FSM) theory. As the theory indicated, there is an alphabet, words, conditions and transitions.

FSMs were chosen for the development of the DSS Reasoning Engine because they provide a

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 33/63

valuable and reliable way to compute the transitions and the movement between states. Even

if the reasoning engine contains many rules that should be computed simultaneously, the FSMs

do not expand in the system and they do not strong computational power. An FSM for the rule

engine is shown in Figure 11.

The reasoning engine is based on the parameters, transitions and states to describe each rule.

The parameter is the value against which both states and transitions are measured. The

parameters can be numeric, alphanumeric, regular expressions etc. They usually are set at the

beginning of the systems operation and they are commonly linked with the operations of the

system.

The states are described to indicate the current state of the system. Each state is defined by

arithmetic values, which are set by the users (maintenance and production managers) through

a web UI. Managers take advantage of their experience, by setting the limits for each state. The

DSS exploits their knowledge to create a set of rules based on those states [4].

The transitions are triggered when the state changes. They constantly monitor the incoming

data. The consumed data is compared with the parameter values and if the transition conditions

are true the transition is triggered.

Figure 11: FSM for a rule in the DSS Reasoning Engine [26]

4.5.1 Finite State Machines

A deterministic finite automaton (DFA) D is a tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where [2]:

 𝑄 :is a finite set of states

 Σ :is the input alphabet (any non-empty set of symbols),

 𝛿: 𝑄 × Σ ⟶ 𝑄: is the transition function

 𝑞0: is the initial state and

 𝐹 ⊆ 𝑄: is the set of final states.

When the transition function is total, the automaton 𝐷 is said to be complete. Any finite

sequence of alphabet symbols 𝑎 ∈ Σ is a word. Let Σ∗ denote the set of all words over the

alphabet Σ and 𝜖 denote the empty word. We define the extended transition function 𝛿: 𝑄 ×

Σ∗ ⟶ 𝑄in the following way:𝛿(𝑞, 𝜖) = 𝑞; 𝛿(𝑞, 𝑥𝑎) = 𝛿(𝛿(𝑞, 𝑥), 𝑎) . A state 𝑞 ∈ 𝑄of a DFA 𝐷 =

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 34/63

(𝑄, Σ, 𝛿, 𝑞0, 𝐹) is called accessible if 𝛿(𝑞0, 𝑤) = 𝑞 for some 𝑤 ∈ Σ∗ e. If all states in 𝑄 are

accessible, a complete DFA 𝐷 is called (complete) initially-connected (ICDFA). The language

accepted by 𝐷, 𝐿(𝐷), is the set of all words 𝑤 ∈ Σ∗ such that 𝛿(𝑞0, 𝑤 ∈ 𝐹). Two DFAs 𝐷 and 𝐷′

are equivalent if and only if 𝐿(𝐷) = 𝐿(𝐷′). A DFA is called minimal if there is no other equivalent

DFA with fewer states. Given a DFA 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), two states 𝑞1, 𝑞2 ∈ 𝑄 are said to be

equivalent, denoted 𝑞1 ≈ 𝑞2 , if for every 𝑤 ∈ Σ∗ ,𝛿(𝑞1, 𝑤) ∈ 𝐹 ⇔ 𝛿(𝑞2, 𝑤) ∈ 𝐹 . Two states

that are not equivalent are called distinguishable. The equivalent minimal automaton 𝐷/≈ is

called the quotient automaton, and its states correspond to the equivalence classes of ≈. It is

proved to be unique up to isomorphism.

Figure 12:Finite State Machine

A DFA is represented by digraphs called state diagram [24].

 The vertices represent the states.

 The arcs labelled with an input alphabet show the transitions.

 The initial state is denoted by an empty single incoming arc.

 The final state is indicated by double circles.

Figure 12 shows an example of a DFA where:

 𝑄 = {𝑎, 𝑏, 𝑐}

 Σ = {0, 1}

 𝑞0 = {𝑎}

 𝐹 = {𝑐}, and

Transition function 𝛿 as shown by the following Table 4.

 Table 4: Transition δ table

Present State Next State for Input 0 Next State for Input 1

a a b

b c a

c b c

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 35/63

A non-deterministic finite automaton (NDFA) is also a tuple (𝑄, Σ, Δ, 𝐼, 𝐹) where 𝐼 is a set of

initial states and the transition function is defined as Δ ∶ 𝑄 × Σ ⟶ 2𝑄 . Just like with DFAs, we

can define the extended transition function Δ̂ ∶ 2𝑄 × Σ∗ ⟶ 2𝑄 in the following way: Δ̂(𝑆, 𝜖) =

𝑆; Δ̂(𝑆, 𝑥𝑎) =∪𝑞∈Δ̂(𝑆,𝑥) 𝛿(𝑞, 𝑎). The language accepted by 𝑁is the set of all words 𝑤 ∈ Σ∗ such

that Δ̂(𝐼, 𝑤) ∩ 𝐹 ≠ 0. Every language accepted by some NFA can also be described by a DFA.

The subset construction method takes an NFA 𝐴 as input and computes a DFA 𝐷 such that

𝐿(𝐴) = 𝐿(𝐷). This process is also referred to as determinization and has a worst-case running

time complexity of 𝑂(2|𝑄|).

Figure 13: Non - Deterministic Finite Automaton

An NDFA is represented by digraphs called state diagram [25].

 The vertices represent the states.

 The arcs labelled with an input alphabet show the transitions.

 The initial state is denoted by an empty single incoming arc.

 The final state is indicated by double circles.

Figure 13 shows and example of an NDFA where:

 𝑄 = {𝑎, 𝑏, 𝑐}

 Σ = {0, 1}

 𝑞0 = {𝑎}

 𝐹 = {𝑐}, and

The transition function 𝛿 as shown in the Table 5 below:

Table 5: Non - deterministic Finite Automaton Transition δ

Present State Next State for Input 0 Next State for Input 1

a a, b b

b c a, c

c b, c c

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 36/63

Among the DFAs and NDFAs there are conceptual differences. Those differences are

summarised in

Table 6 below:

Table 6: Differences between DFAs and NDFAs

DFA NDFA

The transition from a state is to a single next

state for each input symbol. Hence it is called

deterministic.

The transition from a state can be to multiple next

states for each input symbol. Hence it is called

non-deterministic.

Empty string transitions are not seen in DFA. NDFA permits empty string transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it transits to a

final state.

A string is accepted by a NDFA, if at least one of all

possible transitions ends in a final state.

The transition density of an automaton 𝐴 = (𝑄, Σ, Δ, 𝐼, 𝐹) as the ratio
𝑡

|𝑄|2|Σ|
 , where 𝑡 is the

number of transitions in 𝐴 . We also define deterministic density as the ratio of the number of

transitions t to the number of transitions of a complete DFA with the same number of states and

symbols, i.e.:
𝑡

|𝑄||Σ|
.

The reversal of a word 𝑤 = 𝑎0𝑎1 … 𝑎𝑛, written 𝑤𝑅, is 𝑎𝑛 … 𝑎1𝑎0. The reversal of a language

𝐿 ⊆ Σ∗ is 𝐿𝑅 = {𝑤𝑅|𝑤 ∈ 𝐿}.

A string is accepted by a DFA/NDFA if the DFA/NDFA starting at the initial state ends in an

accepting state (any of the final states) after reading the string wholly.

 A string 𝑆 is accepted by a DFA/NDFA (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), if 𝛿 ∗ (𝑞0, 𝑆) ∈ 𝐹

 The language 𝐿 accepted by DFA/NDFA is {𝑆|𝑆 ∈ Σ∗𝑎𝑛𝑑 𝛿 ∗ (𝑞0, 𝑆) ∈ 𝐹}

 A string 𝑆 ′ is not accepted by a DFA/NDFA (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), if 𝛿 ∗ (𝑞0, 𝑆) ∉ 𝐹

 The language 𝐿′ not accepted by DFA/NDFA (Complement of accepted language L) is

{𝑆|𝑆 ∈ Σ∗𝑎𝑛𝑑 𝛿 ∗ (𝑞0, 𝑆) ∉ 𝐹}

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 37/63

Theoretically, the rule creation in the reasoning engine should be allowed only to managers,

who are responsible for the production line or the maintenance procedures. They are the ones

with the most knowledge of the production lines and the risks that happen continuously.

Another reason for selecting FSMs is the flexibility and ease of use to a non – experienced user.

The system allows the rule completion to be done relatively easy by trained personnel due to a

user interface which follows the flow of the FSMs.

Figure 14: States of DSS FSMs

Figure 14 and Figure 15 show the states and parameters screen in the DSS GUI.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 38/63

Figure 15: Parameters of DSS FSMs

4.6 Scripting

The system provides a way for system operators to supply ad hoc methods to evaluate

conditions, configure parameters, pre-process data etc., since it is expected that the complexity

of the needed expressions for the above will exceed that of what can be represented in a

predefined GUI form.

 The way this is done is by accepting user defined scripts that can be assigned to specific stages

and “junction points” of the DSS pipeline. Since the DSS is supposed to be a solution targeted to

domain users, any of these scripts will be able to be hot-loaded into the running instance of the

DSS and to be assignable from the User GUI (without any compilation/build/deployment and

other “programmer task” related steps.

The chosen method to allow user scripting was to take advantage of a C# real time compilation

framework (Roslyn, from Microsoft), C# being the language the DSS was written in itself. This

has several advantages in comparison to other scripting methods (Javascript/Python/Lua) such

as higher performance and compile time checking.

In addition, the user isn’t asked to write code directly in C# but in a simplified Domain Specific

Language like syntax which provides several shortcuts to referring to the DSS entities and makes

use of lambda expressions (the syntax of which is generic enough for the learning curve to be

lower).

Code in the DSL syntax is automatically checked and compiled to C#, with any errors being

supplied to the user upon compilation.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 39/63

The scripting sub-component can be thought of as an independent module of the application

even though it is directly used by other sub-components as a library.

The reasoning sub-component uses this system to declare parameter transformations and ad

hoc transition firing conditions. The recommendation sub-component can use it to directly inject

parameter and transition data into message templates.

Figure 16: Roslyn compiler APIs [17]

Roslyn compiler APIs are shown inFigure 16 The first version of Roslyn was released in October

2011 as a part of Community Technology Preview (CTP)[17] – an extension for Visual Studio 2010

SP1. The update of CTP in September 2012, despite the large scale, was not very successful. It

had the so-called “breaking changes” – changes in Roslyn components, which could potentially

crash other components. Besides, not all the features of the CTP APIs were implemented for C#

and Visual Basic languages.

Starting with 2015 version, Visual Studio uses Roslyn to compile and build its own projects.

However, to date, Roslyn only supports two languages – C# and Visual Basic.

Most of the existing traditional compilers come as “black boxes”, which “magically” convert the

source code into an executable file or library. Unlike them, Roslyn allows you to access each

stage of the code compilation and application creation process via its own APIs.

Together with compilers, other “black boxes” are often supplied – integrated development

environments (IDEs) that can enable you to increase the development speed with convenient

tools, such as code highlighting, Intelligence, refactoring tools, performance analysis tools

(profilers) and other complex tools. Roslyn takes over these features and also provides an API to

them.

The Roslyn compiler pipeline is represented by four phases, each of which has its own object

representation:

1. The parser displays information in the form of a syntax tree;

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 40/63

2. The symbol declaration phase displays a hierarchical symbol table;

3. The binding phase returns information in the form of semantic analysis results;

4. The emitting phase provides APIs for generating low-level code in MSIL language (similar

to what System.Reflection.Emit does).

Language services use these APIs to perform their own functions. For example, code highlighting

uses a syntax tree, while an object browser uses a hierarchical symbol table.

Roslyn diagnostic APIs allow you to handle errors and warnings that occur at all the compilation

stages. Roslyn also allows you to process errors through analysis tools written by the user.

Scripting APIs allow executing C# or Visual Basic code without compilation – something similar

to the REPL interactive environment in Perl, Python, Haskell, Erlang, and others.

Workspace APIs gives direct access to the application’s object model in the compiler without

parsing the source code files for the second time. The APIs also allow for projects tuning,

management of project dependencies, source code generation without using Visual Studio

components.

The syntax tree is the basic structure used by Roslyn for compilation, code analysis, binding,

refactoring, code generation and other operations. Roslyn syntax trees have three key

properties:

1. They contain all the source information, such as grammatical constructs, tokens,

directives, comments and even whitespaces – all this information is contained in the

syntax tree;

2. The syntax tree or its part can be converted back to the source code – you can build

syntax trees and generate code from them, you can edit the syntax tree and it will

generate a corrected code;

3. They are thread-safe and protected from changes. This means that you will not be able

to directly change the data in the syntax tree. The tree completely reflects the state of

the source code at the time of construction.

These three important attributes of the trees allow you to work with the syntactic structure of

the source code, including in custom projects, accessing it through APIs. These properties have

also greatly simplified complex refactoring operations, and this happens naturally without direct

code editing but only by editing the syntax tree. Each syntax tree consists of the following

elements:

 Syntax Nodes – they represent complex syntactic constructs, such as declarations or

expressions;

 Syntax Tokens – they represent the simplest constructs for constructing syntax nodes.

Syntax tokens consist of, for example, an identifier or operator;

 Syntax Trivia – it represents parts of the source text that are mainly insignificant for the

compiler, such as comments, directives or whitespace;

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 41/63

 Spans display positions within the source text of each node, token or trivia, and its

length;

 Kinds identify the syntax unit in the tree;

 Errors are processed in the syntax tree in two ways: either by inserting the expected

token or by adding a token that is unknown to the compiler as a trivia.

Unlike syntax trees that represent the structure of source code, semantics is the logic in the

source code and all its constructs. It includes declarations of variables, classes, objects, fields,

methods, function calls and passing parameters to them, types of operands and operation

results, and operator priorities. Semantic analysis of source code checks the code (or syntax tree

in Roslyn) for compliance with the rules of the language. The semantic model provides the

following information about the source code:

 Semantic symbols: source elements or elements imported from libraries (types,

methods, properties, fields, events, etc.),

 Resulting type of expression,

 Diagnostic data: errors, warnings, exceptions, etc.

Workspace APIs represent the object model of solutions, projects in solutions and documents in

projects. All the objects and methods listed above can be called from any .NET application

working with Roslyn as a service and using Roslyn APIs.

4.7 Notifications

The recommendations sub – component is the output layer of the system. It is responsible for

organizing the recommended actions to accompany rules and state machine transitions, and for

their proper dissemination to those responsible for executing them on the shop floor.

The system allows the declaration of abstract recommendations which can be directly supplied

by experts or imported through a set based on an industry standard. Then, it “attaches” these

recommendations to the transitions of our STM model, with the semantics of this action being

that whenever transition X is activated supply these recommendations.

Attached recommendations are augmented with data regarding their method of dispersal, such

as options to send them via email forward them via MQTT, link them to CMMS commands

provided by the CMMS integration sub-component etc. In addition, they can take attributes such

as a characterization of their severity, as Alerts, Suggestions and Warnings.

The above system usually works with our notifications sub-component, whose purpose is to set

up rules that match incoming messages based on their metadata, to agents of which the

attributes and contact data have been loaded by a plugin. In this case, it means that we can set

up rules that determine for example which agents can receive recommendations of an “Alert”

level and on specific assets, and how they should be notified for them.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 42/63

Figure 17: Notification configuration mechanism UI

The notifications component has a separate user interface, as shown in Figure 17 since the

functionality of assigning agents to incoming recommendation messages via “access control list”

like rules is sufficiently independent and of a lower level for the DSS rule-based system to directly

deal with it. An implicit layer exists for indirection (the DSS user does not specify specific agents

for which recommendations are to be provided, but only characterizes the recommendations

with metadata, it is expected that the actual matching will be done by another admin using the

notifications sub-component independently).

4.7.1 Mobile Application – Recommendation Feedback

For the requirements of our system, a type of agent feedback rating received recommendations

is needed. This is mainly planned to be used by supervised Machine Learning techniques that

will make use of those ratings as training input. However, it could theoretically be used by

domain experts directly, and to that end aside from a numerical rating, we have also

incorporated a user comments system through which administrators and domain experts can

directly communicate with those executing recommendations.

The first edition of the Recommendations sub – component was a one – way notification from

the system to the user. It was implemented along with the Notification sub – component to

disperse 1 – way messages to agents.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 43/63

In order to allow users to provide feedback back to the system, we have created a mobile

application, section 4.8 and Figure 18, that acts a separate target for sending recommendations.

The application allows the user to view received recommendations, rate them and provide user

comments. This data is sent back to the server and linked to the recommendation and transition

activation. The application is implemented as a Xamarin app for the Android OS and relies on

MQTT for communication with the server.

As an aside benefit to using this system, ML techniques applied to the data gathered by the DSS

become collaborative since many users can implicitly modify the ML technique’s training set

independently and in real time.

4.8 Recommendation Provisions

The DSS outcome is the feedback that is sent to the addressed users through the sub –

components of recommendation provisions.

The sub – component is based on the MQTT protocol. It sends the suggestions to a RabbitMQ

and a feedback android application consumes the suggestions.

Figure 18: Set up ofthe MQTT client on the user's side for the Recommendation Provision sub -
component

Figure 18 shows the set-up screen on the mobile application for the recommendation provisions

sub – component. The user connects to the DSS base URL and subscribes to a certain topic with

their username and password. The client creates the a connection with the topic and when the

connection is established, the user receives the respective messages.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 44/63

4.9 Maintenance Tasks Assignment and Scheduling

Maintenance tasks assignment and scheduling is a standard process in industrial manufacturing.

A maintenance task carries a number of constraints. It is long enough, the appointed for

maintenance asset and the addressed personnel have to be available. Additionally, the

maintenance process must not interfere with the production scheme, because any interferences

could create collisions and interruption in the production line.

Besides the scheduled maintenance tasks, there are unexpected assets break downs, that lead

to extra and unexpected maintenance tasks. In that case, the schedule should be updated

immediately in order the unexpected task to fit in.

Figure 19: Maintenance tasks scheduling general screen[6]

Figure 19 depicts a generic example of scheduling software.

4.9.1 Smart Asset Management Algorithms

We will incorporate a, dynamically adapted to the current operating conditions, the algorithm

for Smart Asset Management (SAM) for the generation of a maintenance plan. To this end it

identifies:

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 45/63

 the optimal time for maintenance activities in terms of workload,

 production capacity and schedule,

 availability of the support team,

 the stock level of spare parts,

 and interfacing with the higher level management systems for co-scheduling

maintenance and production

The assignment processes

The assignment problem is a fundamental combinatorial optimization problem. In our case, we

have a number of skilful technicians and a number of tasks, and we have to assign the tasks to

the technicians, based on a number of criteria and constraints. We achieve the assignment by

taking into consideration the following:

 Personnel availability

The software communicates with higher MES/ERP/CRM systems, and has access to the

technicians’ availability, based on a number of factors like days off, shifts etc.

 Priority score

The priority score provides the task’s weight (importance). It is measured by the

following formula:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = (0.7 ∗ 𝐴𝑠𝑠𝑒𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦) + (0.3 ∗ 𝑇𝑎𝑠𝑘𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦)%

 Spare parts availability

If the needed spare parts are not available at the moment, the task filtered out, till the

spare parts are available.

 Technician skills and experience

We match the technicians to the tasks based on the needed skills and experience (TE).

TE is a percentage value (0% to 100%). We classify the experience based on the Table 7

below:

Table 7: Scheduler Classification for Personnel

Experience Percentage

Unexperienced 0% - 20%

Junior 21% - 40%

Intermediate 41% -60%

Senior 61% - 80%

Master 81% - 100%

We keep this generalized score, because each company calculates the experience based on

different formulas.

While the skills issue is one to one matching, we had to find a way to make sure that the task

will be assigned to the technician, who not only has the appropriate skills, but also the

appropriate experience. We came up with the following formula:

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑆𝑐𝑜𝑟𝑒 = |𝑇𝐸 − 𝑃𝑆|

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 46/63

The matching score has to be as close to zero as possible.

E.g. let’s assume we have a task with a PS (PriorityScore) = 67%, and three technicians that all

of them have the necessary skill, but different experiences TE1 = 90%, TE2 = 22% and TE3 =

60%. The matching scores are the following:

 𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀=90−67=23

 𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀= 22−67=45

 𝑀𝑀𝑀𝑀ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀=60−67=7

We select the third matching score.

We set the matching score as an absolute value, because we want to assign first the most crucial

tasks to the most experienced technicians, and then, if they are done with those, we assign to

them, easier for them tasks. So, we have actually implemented a greed search algorithm.

The scheduling processes

The scheduling takes under consideration the following constraints for a prioritized execution

order

1. the Priority Score

2. the start date

3. task's duration

Each task is assigned with a “priority ticket”. The task with the “highest value” ticket is to be

executed first and so on. Tasks with the same “ticket value” are executed on First In First Out

(FIFO) basis. A priority-based scheduler can be seen in Figure 20.

Figure 20: Priority Based Scheduler[21]

Rearrange existing schedule

An Interval Tree is an ordered data structure whose nodes represent the intervals and are

therefore characterized by a start value and an end value. A typical application example is when

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 47/63

we have a number of available intervals and another set of query interval, for which we want to

verify the overlap with the given intervals.

In particular, to make more efficient this type of search we can use an Augmented Interval Tree,

a structure in which the information contained in each node is increased by adding, in addition

to the bounds of the range, also the information related to the maximum value of the subtree

of the node that we are analysing.

The trivial solution is to visit each interval and test whether it intersects the given point or

interval, which requires 𝑂(𝑛)time, where n is the number of intervals in the collection. Interval

trees have a query time of 𝑂(log 𝑛 + 𝑚) and an initial creation time of 𝑂(𝑛 log 𝑛), while limiting

memory consumption to 𝑂(𝑛) . After creation, interval trees may be dynamic, allowing efficient

insertion and deletion of an interval in𝑂(log 𝑛) time. If the endpoints of intervals are within a

small integer range (e.g., in the range [1, … . , 𝑂(𝑛)]), faster data structures exist with pre -

processing time O(n) and query time 𝑂(1 + 𝑚) for reporting m intervals containing a given

query point.

4.10 Prediction Module

The prediction module classifies time series as a sequence of events instead of a discrete set. A

sequential event set reduces the effort of timestamping the created events and the data

annotation of sensor measurements. Time is essential only for critical failures in the fault

prediction methods. The key point is the create a discrete series of events in the span of the

time series. The Matrix Profile (MP) is deployed for that purpose. It is a data structure that

annotates the time series. The main advantage of the MP is that can provide efficient solutions

in cost – effective data mining problems concerning time series. The basic idea behind the MP

is the estimation of the Euclidean distances of the sub – sequences of the times series. The

distances define the similarities between the sub – sequences. The similarities are the basis of

the analytics task performed for the predictive maintenance module.

4.10.1 The MP Algorithm for Artificial Events

The algorithm to create artificial events is based on the estimation of MP. The applied technique

also is responsible for extracting hidden patterns to predict or timely detect failures. The only

requirement of the described technique is the existence of raw measurements from a sensor

network on the shop floor.

Based on the pattern – length parameter (PL), an application of MP computes the sub –

sequences of length PL and generate the Matrix Profile Index (MPI). The MPI is a directed graph,

where each edge points to the most similar sub – sequence. MPI graph is 𝐺 = (𝑉, 𝐸) where 𝑉 =

 𝑣1, … , 𝑣𝑛 denotes a set of nodes and 𝐸 = 𝑒1, … , 𝑒𝑛 defines the edges of the graph 𝐺 weighted

by the values in MP. There edges in the graph that have globally or locally very high weights. A

set of thresholds is applied to eliminate the nodes with the weighted edges, due to the fact that

in most cases they are just noise in the system. The applied filters are: the edges of the graph

that connect two nodes when their distance is 𝑋 times greater than the distance of the edge

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 48/63

connecting the sink node to its nearest neighbour (local rule) are removed from the graph. Also,

all edges with a weight more than 𝑌 times the mean MP value are filtered out.

The following step estimates the weakly connected components (sub – graphs) of the MPI graph

and maps each component to a distinct event. Components with less than 𝑍 members are

omitted.

Figure 21: Example of connected sub - components after processing the MPI

Every point in the time series is part of a connected component labelled by the id of that

component. The values decide for the three thresholds are based on the experiments conducted

on data set from the shop floors. Figure 21 shows the application of MP – based algorithm for

𝑃𝐿 = 10. 19 elements of the original timeseries are mapped to the same artificial event based

on their similarity.

4.10.2 Event – based Predictive Maintenance Solution

The created artificial results are mapped to time stamps based on the original time series and

partitioned in ranges defined by the occurrences of the fault the predictive maintenance targets

(failure modes). The ranges are split into time segments, the size of which (i.e. minutes, hours,

days) corresponds to the time granularity of the needed analysis.

There is a rationale behind the time segmentation and dictates that the segments closer to the

end of the range may contain fault events indicative of the main event. Considering this rationale

a process function can be taught to quantify the risk of the targeted failure in the near future, if

the events precede the rationale. The proposed function is a sigmoid function which maps

higher values to the segments closer to the machine failure. The steepness and shift of the

sigmoid function are configured to better map the expectation of the time before the failure at

which correlated events will start occurring. The segmented data in combination with the risk

quantification values are fed into a Random Forests algorithm as a training set to form a

regression problem (the objective of which is the minimization of the mean squared error). In

practice, the event types are hundreds if not thousands. Each event type is essentially a

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 49/63

dimension. Therefore, to increase the effectiveness of the approach standard pre-processing

techniques can be applied:

1. Rare events (RE) (much rarer than the fault events) are considered as extremely rare,

hence they can be removed to reduce the dimensionality of the data.

2. Multiple occurrences (MO) of the same event in the same segment can either be noise

or may not provide useful information. Hence, multiple occurrences can be collapsed

into a single one.

3. Most frequent events (FE) can be removed, as they usually do not contain significant

information since they correspond to issues of minor importance. The events that occur

more frequently than the faults are considered as such.

4. Events of minor importance occur and appear in every segment until their underlying

cause is treated by the technical experts. Hence, only the first occurrence (FO) of events

that occur in consecutive segments can be maintained.

5. Standard feature selection (FS) techniques [23] can also be used in order to further

reduce the dimensionality of the data.

Finally, to deal with the imbalance of the labels (given that the fault events are rare) and as

several events appear shortly before the occurrence of the fault events, but only a small subset

of them is related to them, Multiple Instance Learning (MIL) can be used for bagging the events.

A single bag contains fault events of a single hour. Using MIL, the data closer to the fault events

(according to a specified threshold), are over-sampled, so that training is improved.

4.10.3 Experiments and results

The experiments were done using historical time series data and converting them to a

continuous stream. The ground truth used for the measurements is the information of the

timestamps that the machine stopped working due to technical reasons, e.g. damage to a

module on the press; this information has been provided by the engineers responsible for the

machinery under investigation. Each machine stop represents a failure mode, each prediction

represents an alarm and the detected stops are the ones that have at least one preceding alarm

within a fixed period before the fault. We assess the efficiency of the supervised learning

technique, based on the recall and precision metrics adapted to the PdM context, measured

based on the following definitions: Precision is the ratio of the successfully predicted stops to

the number of total alarms, and Recall is the ratio of the predicted stops to the number of total

stops, where a stop is considered as successfully predicted if there is any prediction made in a

specified time gap before a machine stop. Multiple alarms inside the specified time gap for the

same machine stop are counted as a single alarm, while the false alarms (i.e. before the time

gap) are counted individually. The rationale is that the maintenance engineers are prompted to

respond to the first alarm for a specific machine stop, while in the case of the false alarms, they

are called to respond to every one of them.

The data used for the assessment of the supervised learning approach are the acoustic emission

measurements. The acoustic emission sensors are placed in 6 different spatial positions on the

cold forming press, generating data in 6 distinct channels providing measurements in hundreds

of different angles per channel. We perform dimensionality reduction by aintaining only the

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 50/63

maximum value across all angles per channel per time point. I.e., finally, for each timestamp,

there is a single measurement per acoustic channel.

Table 8: Number of distinct artificial types generated per pattern length (PL)

Source PL-5 PL-10 PL-50

Channel 1 6411 5615 1794

Channel 2 6401 5800 5234

Channel 3 6374 5722 3591

Channel 4 6334 5148 1305

Channel 5 6353 5837 3445

Channel 6 6396 5724 4216

The experiments share a common parametrization and fine-tuning is beyond the scope of this

work. Three values of pattern-length (PL) for the Matrix Profile are used (i.e. 5, 10 and 50). Due

to the generation of multiple distinct artificial event types, as depicted in Table 8, the event type

that represents the machine stops (target event) is the most frequent one, hence the RE, FE and

FO pre- processing steps are disabled as they are more beneficial for cases where the frequency

of the target event is lower than the other event types. MO is enabled in all the experiments

and over-sampling (MIL) is applied. The steepness and the shift of the sigmoid are set to 0.8 and

4, respectively, the threshold for the value of the sigmoid function to set an alarm is set to 0.3,

while the time gap for true alarm consideration is set between 1 and 8 hours before a closing

machine incident. All measurements refer to 10-fold cross validation. As there are lots of event

types, FS pre – processing step is also tested. For partitioning the dataset into 10 folds, we use

the number of incidents and not the number of time segments.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 51/63

Table 9: Experimental results on all the acoustic channels using the supervised learning technique (CD:
community detection).

Source PL FS Recall Precision F1-score

Channel 1 5 X 0.61 0.61 0.61

Channel 1 CD 5 X 0.57 0.63 0.59

Channel 2 10 0.63 0.53 0.55

Channel 2 CD 5 0.49 0.45 0.47

Channel 3 10 X 0.55 0.61 0.57

Channel 4 50 0.49 0.76 0.59

Channel 5 50 X 0.45 0.80 0.54

Channel 6 50 X 0.48 0.68 0.50

Table 9 presents the recall and precision values, of the results that achieved the best F1-score

per channel. The second column depicts the pattern-length used in the Matrix Profile algorithm,

while the third one indicates the usage of the FS pre - processing step. The Table also presents

the results in two of the channels (i.e. 1st and 2nd) where the community detection (CD)

algorithm is used in place of the connected component (CC) algorithm utilized in the MP-based

artificial event generation approach. As we observe, Channel 1 and Channel 4 achieved the

highest F1-score (0.61 and 0.59 resp.). There is no clear winner between the different pattern-

lengths and whether feature selection has applied or not. Regarding the application of the CD,

the results are inferior to those achieved by CC, despite the fact that the number of the

generated artificial event types is almost the same in both cases.

Table 10: Experimental results on all the acoustic channels using an ensemble of the supervised learning
technique.

Source Strategy Recall Precision F1-score

Ch.4-Ch.1 AND 0.62 0.5 0.55

Ch.1- CD – Ch.1 OR 0.59 0.82 0.67

Next, we employ two simple ensemble strategies with two predictors each: the AND strategy,

where two predictors need to raise an alarm, and OR strategy, where an alarm is raised

whenever at least one of the predictors’ votes for it. We have computed the precision, recall

and F1-score of all the possible pairs between all the previous experiments. The results with the

highest F1-score per strategy are shown in Table 10. As we observe, the OR strategy was able to

enhance the previous results, achieving 0.67 F1-score combining two cases with low recall but

high precision. Note, that in this scenario, a random predictor achieved F1-score of 0.31;

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 52/63

moreover, a dummy predictor with recall 1 through raising an alarm every 7 hours cannot

exceed F1-score of 0.58.

4.10.4 An unsupervised learning technique based on streaming outlier detection

In this section, we present the streaming distance-based outlier detection algorithm, namely

Multiple Component in One Database (MCOD) [13], that was used for early detection of failure

on the dataset. We first introduce the background needed for streams and the MCOD algorithm

and we conclude this section by presenting the experiments and the results of the unsupervised

technique.

Outlier detection techniques are used to identify noise and anomalies in a dataset. In a

streaming environment, because of the infinite nature of the data, detecting outliers need to be

done in combination with windowing techniques. A window splits the data stream into either

overlapping or non-overlapping finite sets of data-points based either on the arrival of each

point or the number of points.

For the Philips use case, we use a distance-based outlier detection algorithm, in which the

number of a data point’s neighbours represent its status as an anomaly or a normal point, as

explained in Definition 1. We employ sliding windows. A recent work [5] compares the state-of-

the-art distance-based outlier detection algorithms used in streaming settings, in both CPU and

memory consumption. The results of the comparison show that MCOD has the best

performance in most scenarios. MCOD uses the notion of micro-clusters in order to drastically

cut down the number of distance computations needed to assess a data point as normal or

anomalous.

Definition 1. Given a set of objects 𝑂 and the threshold parameters 𝑅 and 𝑘 , report all the

objects oi for which the number of neighbours 𝑜𝑗. 𝑛𝑛 < 𝑘, i.e., the number of objects 𝑜𝑗, 𝑗 ≠ 𝑖 for

which 𝑑𝑖𝑠𝑡(𝑜𝑖, 𝑜𝑗) ≤ 𝑅 is less than 𝑘. The report should be updated after each window slide.

Note that according to the above definition, outliers may be reported during any time they

belong to the window and not necessarily when they are first inserted into it.

4.11 Internal Suggestion and Alert System

The Alert, Suggestion and Recommendation sub-system is at a high level responsible for defining

and organizing DSS Recommendations, or semantically similar entities like Alerts or Suggestion,

and then dispersing those while also recording them for further analysis. The component can

work on its own but also be configured to forward them to other Z-BRE4K components or other

systems such as ERPs or CMMS.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 53/63

5 DSS IN THE OVERALL Z-BRE4K SYSTEM

DSS is a part of the overall Z-BRE4K architecture. It works along with the rest of the Z-BRE4K

components. The system receives processed and raw data from the various sources, implements

the rules in the reasoning engine, creates suggestions based on the risk assessment methods

and sends them to the user. The collaboration between the Z-BRE4K components is essential for

creating an uninterrupted data flow on the shop floors.

DSS communicates with the Predictive Maintenance and planning to communicate with FMECA

component using the infrastructure of the Semantic Framework. The component diagram with

the interacting DSS components is given in Figure 22 below:

Figure 22: Component diagram with the connected to DSS Z-BRE4K components

The DSS participates in two sections of the Z-BRE4K components. The first section regards the

prediction mechanism of the system. The use of predictive and preventive maintenance is

critical in a manufacturing environment.

The second section is the risk assessment methods of the Z-BRE4K architecture. Risk assessment

is implemented for both DSS and FMECA components.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 54/63

5.1 Semantic Framework

The semantic framework includes an ontology, which serves as a common knowledge model for

all components. The ontology entities model the shop floor operations, procedures and actors.

Entities are also used in recognising assets, critical components, failure modes and effects.

Apache Jena will be used for knowledge storage. It provides data retrieval interface through a

SPARQL query engine. The input data format are XML files. Output data is rich models about the

shop floor procedures and their criticality as RDF triples for the Knowledge Based System and

Semantic rules for analysis.

The APIs for the Semantic Framework and their descriptions are given in the Table 11 below:

Table 11: Semantic Framework APIs

Semantic Framework API Description

SPARQL The SPARQL Web service is used to send custom

SPARQL queries against the SF RDF repository as a

general-purpose querying web service. Developers

communicate with the SPARQL web service using the

HTTP POST method. Each results document can be

serialized in many ways, and may be expressed as one

of the following mime types: (i) text/xml, (ii)

application/rdf+xml, (iii) application/rdf+n3, (iv)

application/ sparql-results +xml, (v)

application/sparql-results+json or (vi)

application/json. The content returned by the web

service is serialized using the mime type requested

and the data returned depends on the parameters

selected.

Knowledge Management The SF RESTful web services can be accessed directly

via API or command line, or may be controlled and

interacted with using standard content management

systems (CMSs). Each request to an individual web

service returns an HTTP status and optionally a

document of result sets. Each results document can

be serialized in many ways, and may be expressed as

RDF, pure XML or JSON.

5.2 Preventive Maintenance

Predictive maintenance Z-BRE4K component provides an event analysis method, finds the

causes of failure and breakdown, evaluates the impact and eliminates the potential causes by

recognising the events that lead to breakdowns. Another purpose of the predictive maintenance

component is the recognition of the chain reactions that cause failure and the rise of alerts for

corrective actions.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 55/63

The main data inputs for the predictive maintenance component are machine simulations:

CAD/CAE schemas of machines and assets, electromechanical properties and specifications,

embedded data acquisition systems for condition monitoring which provide sensorial data,

specifications of SCADA systems and machine simulations files. Also, the predictive maintenance

component exploits the historical data from CMMS systems, reports of types of breakdowns and

risks and reports of Fault Detection, Fault Diagnosis and Prognosis procedures. The main data

output for the Predictive maintenance component is the predicted mean time between failures,

the predicted service time and the prognosis.

Predictive Maintenance functionality focuses on the machine simulator which provides visual

analysis of the state of the machines, using mathematical models and logical functions. The

simulator provides illustrates potential failures and their causes. The results of the simulator

ignite the predictive maintenance functionality which provides failure mode, type of failure,

possible failure cause and mean time between failures.

Figure 23: Predictive Maintenance and Machine Simulators functionality Flow[32]

The APIs for the Predictive Maintenance component is given in Table 12 below:

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 56/63

Table 12: Predictive Maintenance APIs

Predictive Maintenance APIs Description

Supported API for other

entities to communicate with

Machine Simulator

Description of the supported API:

Interfaces with machines, controllers, production planning

applications, and BRE4Kdown alarm systems, Machine and

component CAE/CAM/Simulator files

(API coming directly from those sources – OEM facilitated or from

AUTOWARE)

Supported API for other

entities to communicate with

Predictive Maintenance

Interfaces with Component A (Machine Simulators), machines,

controllers, production planning applications, and BRE4Kdown

alarm systems, Machine and component CAE/CAM/Simulator files

(API coming direct from those sources – OEM facilitated or from

AUTOWARE)

5.3 FMECA

Failure effects identified by the FMEA analysis and each one is given a severity class. Failure

event frequency is calculated by the failure data and multiplied with the mission time of concern

giving the criticality number 𝐶 = 𝜆 ∗ 𝑇 , where 𝜆 = 𝐹𝑀 and 𝑡 =

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. FMECA also uses Risk Indicators and computes the

Risk Priority Number (RPN). FMECA analysis defines Risk as 𝑅 (𝑅𝑖𝑠𝑘) = 𝑆 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) ∗

𝑃 (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) and RPN as 𝑅𝑃𝑁 = 𝑆 ∗ 𝑃 ∗ 𝐷 (𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛).

Severity is defined as four distinctive levels: insignificant, marginal, critical and catastrophic. The

frequency has five different levels: improbable, remote, occasional, probable, frequent. The

FMECA classification of Failure Modes gives the main FM categories: failure during operation,

failure to operate at the prescribed time or the given time, failure to cease operation at

prescribed time, premature operation and failure due to the lower level component.

The main inputs for the FMECA component are: machines and their assets, FMs that occur in

each machine, severity and the effects caused by FMs, failure data and KRIs. The main FMECA

outputs contain the calculated risks, RPN, criticality numbers per FM, criticality matrix and alerts.

The basic functionality of the FMECA component is the computation of Risks, RPN and

probabilities of a FM. Also, the FMECA is able to create an effect builder which identify the

failures which affect system operations. Classification of identified failure modes according to

characteristics such as detection, capability and operating provisions is another output of the

FMECA component. The causes of the effects, the criticality matrix and alerts are also output

data.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 57/63

FMECA component provides the DSS with the results of FMECA analysis as input in the reasoning

engine to create rules for maintenance and re – adaptation scheduling purposes. The FMECA

APIs are shown in Table 13 below.

Table 13: FMECA APIS

FMECA APIs Description

Supported API for

other entities to

communicate with

FMECA

Description of the supported API:

Interfaces with sensors and retrieves the sensorial data. Computes the risks

based on the analysis and mathematical forms for the data. The data format

comes from the supported schema and usually is in XML or JSON.

(API coming directly from those sources – OEM facilitated or from

AUTOWARE)

Supported API for

other components to

communicate with

FMECA

Interfaces with other components. The API gives permissions to FMECA to

retrieve or send data to other components.

Input data is the supported FMECA format, output data is in a format

supported by other entities. Calls between the components rely on

communications protocols defined in the API. E.g. FMECA and DSS

communicate between them and the data are in the supported XML or JSON

format, based on the ontology entities defined in the Semantic Framework Z-

BRE4K component.

(API coming directly from those sources – OEM facilitated or from

AUTOWARE)

5.4 DSS in the IDS Ecosystem

The ATLANTIS Predictive Maintenance (PdM) solution communicates with the INNOVA+’s IDS

connector in order to get access to data from the Philips production line. The use of an IDS

connector is crucial in order to meet specific requirements, which are encapsulated at the core

of the ID Ecosystem as:

 TRUST - Each participant is evaluated and certified before being granted access to the

trusted business ecosystem.

 SECURITY AND DATA SOVEREIGNTY - Apart from architectural specifications, security is

mainly ensured by the evaluation and certification of each technical component used in

the International Data Spaces.

 ECOSYSTEM OF DATA - The architecture of the International Data Spaces pursues the

idea of decentralization of data storage, which means that data physically remains with

the respective data owner until it is transferred to a trusted party

 STANDARDIZED INTEROPERABILITY - Each Connector is able to communicate with any

other Connector in the ecosystem of the International Data Space.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 58/63

 VALUE ADDING APPS - The International Data Spaces allows app injection into the IDS

Connectors in order to provide services on top of data exchange processes.

 DATA MARKETS - The International Data Space enables the creation of novel, data-

driven services that make use of data apps.

The ATLANTIS PdM solution applied in the Philips use case communicates directly with another

ATLANTIS component, the Decision Support System (DSS). The latter is responsible for the

circulation of the PdM results to the appropriate departments/engineers of the Philips plant.

Hence, apart from the data transfer between the Philips plant and the ATLANTIS PdM solution,

there are two extra data transfer routines

1. PdM → DSS,

2. DSS → Philips

which can potentially take place using the IDS Connectors.

Figure 24 presents an abstract architecture design of the components participating in the Philips

use case.

The INOVA+’s Industrial Data Space (IDS) connector is based on an open source FIWARE

implementation and more specifically the FIWARE Orion Broker component, which is extended

with specific capabilities to meet the Philips use case special characteristics, such as persistent

data storage and on – demand data request. ATLANTIS on the other side has strategically

decided to build its IDS connectors utilizing the Trusted IDS Connector implementation provided

by the IDSA. The usage of different IDS Connector implementations on different layers of the

same use case is not causing any problem, as it is already stated that the Standardized

Interoperability specification is at the core of the IDS Ecosystem (i.e. different IDS Connector

implementation can still exist on the same IDS Ecosystem).

Figure 24: DSS in an IDS Ecosystem

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 59/63

As it is presented in the Figure, the data from the Philips plant are transferred to the ATLANTIS

PdM solution through the INOVA+’s FIWARE-based IDS Connector. The ATLANTIS PdM

component supports the data transfer to the ATLANTIS DSS component using the IDSA’s Trusted

IDS Connector and finally the ATLANTIS DSS component supports the results circulation back to

the Philips plant through an IDSA’s Trusted IDS Connector.

The IDSA’s Trusted Connector provides a subscription plan for the data exchange functionality,

using MQTT servers (queues) for the data transfer on top of the IDS Protocol. Both the ATLANTIS

components (PdM and DSS) support the communication with MQTT servers, hence it is possible

to create an MQTT topic in which the PdM solution will publish its results and the DSS will

subscribe in order to receive them and process them accordingly.

Considering the communication between the DSS and the Philips plant, currently the

information is transferred using an ATLANTIS proprietary data transfer approach. However, the

DSS component has the needed endpoints implemented to support the data transfer through

an IDSA’s IDS Trusted Connector.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 60/63

6 CONCLUSIONS AND NEXT STEPS

The Z-BRE4K DSS is a system created based on standards and methods concerning risk

assessment. The risks that occur in a manufacturing environment are considered by a DSS which

is developed with a specification for manufacturing processes and maintenance procedures.

Also, the DSS is developed with the use of the Z-BRE4K strategies and different strategies

correspond to different actions of the DSS. Also, the Z-BRE4K strategies allow the system to

develop a reasoning engine which can correctly suggest solutions to problems that arise, as well

as send notifications and re – adapt the maintenance schedule.

The system architecture is based on different sub – components which interact between them

but they are developed as stand – alone sub – components. The architecture allows the modular

effect of the DSS and a degree of flexibility which does not exist in other systems. A dedicated

Z-BRE4K API is used for communication with the rest Z-BRE4K components.

The communication between DSS and FMECA will be implemented through the subscription

engine of the FIWARE Orion Broker. DSS and FMECA will play the role of producer and consumer

at the same time. They will subscribe to context information, so when an event, a value change

happens, the consumer application will get an asynchronous notification. This way, there is no

need to continuously repeat query requests (i.e. polling). The Orion Context Broker will let you

know the information when it arrives.

The traditional data-driven prognostic approach is to construct multiple candidate algorithms

using a training data set, evaluate their respective performance using a testing data set, and

select the one with the best performance while discarding all the others. This approach has

three shortcomings:

 the selected standalone algorithm may not be robust;

 it wastes the resources for constructing the algorithms that are discarded;

 it requires the testing data in addition to the training data.

To overcome these drawbacks, we will follow an ensemble data-driven prognostic approach

which combines multiple – member algorithms with a weighted-sum formulation.

Next steps DSS development includes industry – accepted standards with regard to Remaining

Asset Health Estimation, Key Performance Indicators and Auditing Criteria, in a structured

manner that enables user integration to the Asset Tracking and Rule Based Reasoning solution,

as well as to report generation summarising the shop floor’s efficiency over time. The possibility

of using an industry standard for auditing will be available to users that will be able to implement

the standard without special configuration. In addition, exploitation of the current external

Machine Learning component access points will be implemented in the system as an attempt to

enhance the product to provide a suite of Machine Learning methods that can possibly be

directly applied by general users via a graphical user interface, without heavily depending on a

specialized data scientist’s offline data-set analysis.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 61/63

7 REFERENCES

1. Aggarwal, C. (2015). Outlier analysis. Data mining, 237-263.

2. Almeida, M., Moreira, N., & Reis, R. (2007). On the performance of automata

minimization algorithms. Technical Report Series.

3. Cyber Security Key Risk Indicators. An Automated Report for the C - Suite. (12 de July de

2019). Obtenido de Outpost24: https://outpost24.com/blog/cyber-security-key-risk-

indicators-automated

4. (2018). D3.9 - Manufacturing Decision Support System II. Brussels: The COMPOSITION

project.

5. Failure mode and effects analysis. (12 de July de 2019). Obtenido de Wikipedia:

https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

6. Free scheduling software designed for hourly employees. (16 de July de 2019). Obtenido

de ZoomShift: https://www.zoomshift.com/services-other

7. GeeksforGeeks. (12 de July de 2019). Obtenido de Job Assignement Problem using

Branch and Bound: https://www.geeksforgeeks.org/job-assignment-problem-using-

branch-and-bound/

8. ISO 55001:2014. (12 de July de 2019). Obtenido de bsi: https://www.bsigroup.com/en-

GB/Asset-Management/

9. ISO/IEC 31010. (12 de July de 2019). Obtenido de Wikipedia:

https://en.wikipedia.org/wiki/ISO/IEC_31010

10. Katie, B. (12 de July de 2019). Asset management system standard published. Obtenido

de International Organization for Standardization:

https://www.iso.org/news/2014/01/Ref1813.html

11. Key Risk Indicators. (12 de July de 2019). Obtenido de The Institute of Operational Risk:

https://www.ior-institute.org/sound-practice-guidance/key-risk-indicators

12. Kiran, D. (2017). Failure Modes and Effects Analysis. En D. Kiran, Civil Aircraft Electrical

Power System Safety Assessment (págs. 187-216). Tianjin, China: Civil Aviation

University of China, Tianjin, China.

13. Kontaki, M., Gounaris, A., Papadopoulos, A., Tsichlas, K., & Manolopoulos, Y. (2016).

Efficient and flexible algorithms for monitoring distance - based outliers over data

streams. International systems 55, 37 - 53.

14. Korovesis, P., Besseau, S., & Vazirgiannis, M. (2018). Predictive maintenance in aviation:

Failure prediction from post flight reports. IEEE Int. Conf. on Data Engineering ICDE,

1414-1422.

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 62/63

15. (2018). KRI models and tools. Brussels: The Z-BRE4K project.

16. Kubiak, T. M. (12 de July de 2019). Quality Progress. Obtenido de Conducting FMEAs for

Results: http://asq.org/quality-progress/2014/06/34-per-million/conducting-fmeas-

for-results.html

17. Microsoft Roslyn - using the compiler as a service. (12 de July de 2019). Obtenido de

instinctools: https://www.instinctools.com/blog/microsoft-roslyn-using-the-compiler-

as-a-service

18. N., N. (12 de July de 2019). Bright Hub Project Management. Obtenido de A Comparison

of Risk Analysis Versus FMEA (Failure Modes and Effects Analysis):

https://www.brighthubpm.com/risk-management/71098-risk-analysis-vs-fmea/

19. organisation, I. (12 de July de 2019). IEC 31010:2009. Obtenido de International

Organization for Standardization: https://www.iso.org/standard/51073.html

20. Risk Assessment. (12 de July de 2019). Obtenido de Canadian Centre for Occupational

Health and Safety:

https://www.ccohs.ca/oshanswers/hsprograms/risk_assessment.html

21. Scheduling. (16 de July de 2919). Obtenido de freeRTOS:

https://www.freertos.org/implementation/a00005.html

22. Tay, K. M. (2008). On the use of fuzzy inference techniques in assessment models: part

II: industrial applications. Fuzzy Optimization and Decision Making, Volume 7,

September, 283-302.

23. Tran, L., Fan, L., & Shahabi, C. (2016). Distance - based outlier detection in data streams.

Proceedings of the VLDB Endowment 9(12), 1089-1100.

24. tutorialspoint. (2018). Recuperado el 16 de April de 2018, de

https://www.tutorialspoint.com/automata_theory/deterministic_finite_automaton.ht

m

25. tutorialspoint. (2018). Recuperado el 17 de April de 2018, de

https://www.tutorialspoint.com/automata_theory/non_deterministic_finite_automat

on.htm

26. Vafeiadis, T., Nizamis, A., Apostolou, K., Charisi, V., Metaxa, I., Mastos, T., . . .

Papadopoulos, A. (s.f.). Intelligent Information Management System for Decision

Support: Application in a lift manufacturer's shop floor.

27. What is a messaging queuing service? (12 de July de 2019). Obtenido de MuleSoft:

https://www.mulesoft.com/resources/cloudhub/what-is-a-messaging-queuing-service

Z-BRE4K Project
Grant Agreement nº 768869 – H2020-FOF-2017

D4.2 V1.0 Page 63/63

28. What is failure mode? (12 de July de 2019). Obtenido de Minitab(R) 18 Support:

https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-

statistics/reliability/supporting-topics/basics/what-is-a-failure-mode/

29. What is message queuing? (12 de July de 2019). Obtenido de CloudAMQP:

https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html

30. What is the Pland - Do - Check - Act (PCDA) Cycle? (12 de July de 2019). Obtenido de

Learn about Quality: https://asq.org/quality-resources/pdca-cycle

31. Yeh, C., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H., . . . Keogh, E. (2016). Matrix

profile I: all pairs similarity joins for time series: A unifying view that includes motifs,

discords and shapelets. IEEE 16th International Conference on Data Mining, ICDM 2016,

1317-1322.

32. (2018). Z-BRE4K system architecture. Brussels: The Z-BRE4K project.

33. Χαράλαμπος, Α. (2014). Η νέα έκδοση το ISO 9001:2015. Αθήνα: TUV AUSTRIA HELLAS.

