Dataset Open Access

Global Wheat Head Dataset - 2020 challenge version

DAVID, Etienne


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/6b9462c2-f446-4342-a6d3-d4fc7012ea0b/global-wheat-codalab-official.zip"
      }, 
      "checksum": "md5:be1e6969728afcf6768b5b50a42221eb", 
      "bucket": "6b9462c2-f446-4342-a6d3-d4fc7012ea0b", 
      "key": "global-wheat-codalab-official.zip", 
      "type": "zip", 
      "size": 6928178075
    }
  ], 
  "owners": [
    153939
  ], 
  "doi": "10.5281/zenodo.4298502", 
  "stats": {
    "version_unique_downloads": 1197.0, 
    "unique_views": 194.0, 
    "views": 222.0, 
    "version_views": 563.0, 
    "unique_downloads": 444.0, 
    "version_unique_views": 413.0, 
    "volume": 21934611785450.0, 
    "version_downloads": 12110.0, 
    "downloads": 3166.0, 
    "version_volume": 83996886134664.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4298502", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4252245", 
    "bucket": "https://zenodo.org/api/files/6b9462c2-f446-4342-a6d3-d4fc7012ea0b", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4252245.svg", 
    "html": "https://zenodo.org/record/4298502", 
    "latest_html": "https://zenodo.org/record/4298502", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4298502.svg", 
    "latest": "https://zenodo.org/api/records/4298502"
  }, 
  "conceptdoi": "10.5281/zenodo.4252245", 
  "created": "2020-11-30T14:21:49.654980+00:00", 
  "updated": "2020-12-02T12:27:17.075349+00:00", 
  "conceptrecid": "4252245", 
  "revision": 3, 
  "id": 4298502, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4298502", 
    "description": "<p>The latest version is V4.</p>\n\n<p>This is the only official version of the Global Wheat Head Dataset presented in David et al. (2020) . It&#39;s a corrected version of the dataset published on Kaggle, and the one used for the Codalab challenge.</p>\n\n<p>Test labels are available on request by filling the form <a href=\"https://docs.google.com/forms/d/e/1FAIpQLSciaWUwQDNFP199Xb0Iqt2fY67tQI0hAZBJCCfvwd5OuIVQ3A/viewform?usp=sf_link\">here </a>&nbsp;or contacting <strong>etienne.david@outlook.com</strong></p>\n\n<p>If you use the dataset for your paper, please cite:&nbsp;<a href=\"https://doi.org/10.34133/2020/3521852\">https://doi.org/10.34133/2020/3521852</a></p>\n\n<p>If you want to benchmark your solution and get localization and counting metrics, please submit to the codalab challenge:&nbsp;</p>", 
    "license": {
      "id": "MIT"
    }, 
    "title": "Global Wheat Head Dataset - 2020 challenge version", 
    "journal": {
      "title": "Plant Phenomics"
    }, 
    "relations": {
      "version": [
        {
          "count": 4, 
          "index": 3, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4252245"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4298502"
          }
        }
      ]
    }, 
    "version": "4", 
    "references": [
      "David E. et al. Plant Phenomics (2020) : Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods"
    ], 
    "keywords": [
      "deep learning", 
      "wheat head", 
      "detection dataset"
    ], 
    "publication_date": "2020-08-20", 
    "creators": [
      {
        "orcid": "0000-0003-1116-5540", 
        "affiliation": "INRAE / Arvalis", 
        "name": "DAVID, Etienne"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4252245", 
        "relation": "isVersionOf"
      }
    ]
  }
}
563
12,110
views
downloads
All versions This version
Views 563222
Downloads 12,1103,166
Data volume 84.0 TB21.9 TB
Unique views 413194
Unique downloads 1,197444

Share

Cite as