1 Full title

2 Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in *Coffea* spp.

```
3 is strengthened by elevated air [CO<sub>2</sub>]
```

4

5 Running Title

- 6 CO₂ protective effects against drought in coffee photosynthesis
- 7

8 Authors

José N. Semedo^{1,2,#}, Ana P. Rodrigues^{3,#}, Fernando C. Lidon^{2,#}, Isabel P. Pais^{1,2}, Isabel
Marques³, Duarte Gouveia⁴, Jean Armengaud⁴, Maria J. Silva^{2,3}, Sónia Martins^{2,5}, Magda
C. Semedo^{2,5}, Danielly Dubberstein⁶, Fábio L. Partelli⁶, Fernando H. Reboredo², Paula
Scotti-Campos^{1,2}, Ana I. Ribeiro-Barros^{2,3,*}, Fábio M. DaMatta^{7,*}, José C. Ramalho^{2,3,*}

13

14 Affiliations

¹ Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de
Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, 2784-505
Oeiras, Portugal.

² Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec),
Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte
de Caparica, 2829-516 Caparica, Portugal.

³ PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior
Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República,
2784-505 Oeiras, and Tapada da Ajuda, 1349-017 Lisboa, Portugal.

⁴ Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour
 la Santé (DMTS), SPI, F-F-30200 Bagnols-sur-Cèze, France.

⁵ Área Departamental de Engenharia Química, Instituto Superior de Engenharia de
 Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007,
 Lisboa, Portugal

- 29 ⁶ Centro Universitário do Norte do Espírito Santo (CEUNES), Departamento de Ciências
- 30 Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), Rod. BR 101
- 31 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil.
- 32 ⁷ Departamento de Biologia Vegetal, Universidade Federal Viçosa, 36570-900 Viçosa,
- 33 MG, Brazil.
- 34 [#] These authors contributed equally to this work
- 35
- 36 * Corresponding authors:
- 37 José C. Ramalho (cochichor@mail.telepac.pt; cochichor@isa.ulisboa.pt).
- 38 Fábio M. DaMatta (fdamatta@ufv.br)
- 39 Ana I. Ribeiro-Barros (aribeiro@isa.ulisboa.pt)
- 40

41 **Correspondence to:**

- 42 José D. Cochicho Ramalho
- 43 Laboratório de Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity),
- 44 Instituto Superior Agronomia
- 45 Universidade de Lisboa
- 46 Av. República, Quinta do Marquês
- 47 2784-505 Oeiras
- 48 Portugal
- 49 Tel 00 351 21 3653395
- 50 E-mail cochichor@mail.telepac.pt; cochichor@isa.ulisboa.pt
- 51

52 Abstract

53 Growing water restrictions associated with climate changes constitute daunting challenges 54 to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) 55 water deficit, and their interaction with air [CO₂], on the photosynthetic apparatus of 56 Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Seven yearold potted plants grown under 380 (aCO₂) or 700 μ L L⁻¹ (eCO₂) [CO₂] gradually reached 57 58 predawn water potentials between -1.6 to -2.1 MPa (MWD), and below -3.5 MPa (SWD). 59 Under drought, stomata closure was chiefly related to ABA rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both 60 61 genotypes, with non-stomatal limitations becoming gradually dominating, especially 62 regarding the photochemical and biochemical components of CL153 SWD plants. In 63 contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron 64 carriers, photosystems (PSs) and RuBisCO activities). Besides, drought-stressed Icatu 65 66 plants displayed increased abundance of a large set of proteins associated with the 67 photosynthetic apparatus (photosystems, light harvesting complexes, cyclic electron flow, 68 RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and 69 photosynthetic down-regulation in both genotypes. Instead, eCO₂ increased 70 photosynthetic performance, moderately reinforced photochemical (PSs activity, electron 71 carriers) and biochemical (RuBisCO, Ru5PK) components, whereas photoprotective 72 mechanisms and protein abundance remained mostly unaffected. In both genotypes, 73 under MWD, eCO₂ superimposition delayed stress severity and promoted photosynthetic 74 functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was 75 decoupled from increases in ABA. In SWD plants most impacts on the photosynthetic 76 performance were reduced by eCO₂, especially in the moderately drought affected CL153 77 genotype, although maintaining RuBisCO as the most sensitive component, deserving 78 special breeder's attention to improve coffee sustainability under future climate scenarios.

79

- 80 Keywords acclimation, C-assimilation, climate change, CO2 mitigation, coffee tree,
- 81 drought.

83 Introduction

84 Current knowledge regarding global climate has pointed to important weather shifts, 85 especially associated with rising temperature and altered rainfall patterns. In this context, prolonged droughts intercalated with extreme precipitation events are expected to be 86 87 aggravated, particularly in the tropical regions (IPCC 2014, IPCC 2018). These changes are predicted to be accompanied by a rising air [CO₂]. Depending on upcoming 88 anthropogenic greenhouse gas emission scenarios, air [CO2] might reach 936 µL CO2 L⁻¹ 89 90 by 2100, accompanied by a global warming up to between 2.6 and 4.8 °C relative to 1986-91 2005 (IPCC 2013, 2014).

92 Drought, a major bottleneck to agriculture production, constrains a number of 93 morphological, physiological and biochemical processes, with impacts on growth, nutrient 94 uptake, C-assimilation and partitioning (Chaves et al. 2009, Fahad et al. 2017, Lamaoui et al. 2018, Lang et al. 2018). However, plants display a number of responses that allow 95 96 them to cope with drought events, involving adjustments from the gene to the whole-plant 97 level (Chaves et al. 2003, Xiong et al. 2006, Hummel et al. 2010). Therefore, it is crucial to 98 better understand such acclimation mechanisms to assist selection and improvement of 99 tolerant cultivars to drought (Chaves et al. 2003, Hasan et al. 2018).

100 Under moderate drought, stomatal closure is crucial for reducing water loss through 101 transpiration (Matos et al. 2010, Brodribb and McAdam 2017), but, at the same time, it 102 also constrains the CO_2 diffusion into the leaf. This can limit photosynthesis through a low 103 CO₂ supply to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), even under 104 moderate drought conditions, when little, if any, impairments on photosystems (PSs) 105 efficiency and photosynthetic capacity (Amax) are observed (Chaves et al. 2009, Wang et 106 al. 2016, Zargar et al. 2017). However, with increasing drought severity the photosynthetic 107 performance is also impaired by photochemical and biochemical limitations, including 108 impacts in photosynthetic pigment pools, PSs performance, enzyme activities (e.g., 109 RuBisCO), and membrane integrity (Chaves et al. 2003, Muller et al. 2011, Ramalho et al. 2014, Fahad et al. 2017, Ramalho et al. 2018b). The consequent reduction of 110

photochemical energy use usually imposes a secondary stress related to an uncontrolled generation of reactive species of oxygen (ROS) and chlorophyll, which can aggravate the impairments on chloroplast components (Reddy et al. 2004, Chaves et al. 2009). Therefore, a greater ability to cope with drought is often associated with the triggering of thermal dissipation, photoprotective and antioxidative mechanisms, and cyclic electron flow (CEF) involving PSs (Miyake and Okamura 2003, Chaves and Oliveira 2004, Reddy et al. 2004, Ramalho et al. 2018b).

118 Increasing air [CO₂] affects fundamental plant processes such as photosynthesis, 119 plant growth, crop yield and guality (Idso and Kimball 1997, Bader et al. 2010), altering 120 biomass partitioning (Yang et al. 2006, Ainsworth et al. 2004). Net photosynthesis rates frequently increase by 30 to 60% at 600 to 700 μ L CO₂ L⁻¹, as compared to their 121 122 respective values at 370 to 390 μ L CO₂ L⁻¹ (Ainsworth and Rogers 2007, Kirschbaum 123 2011). These increases arise from an enhanced CO₂ availability to RuBisCO, which in 124 parallel reduces RuBisCO oxygenase activity with concordant decreases in 125 photorespiration rates and ROS production (Ainsworth and Rogers 2007, Leakey et al. 126 2009). This CO₂ fertilization effect can potentially increase crop yields (Long et al. 2004, 127 Norby et al. 2005), although these positive effects can be strongly attenuated under 128 drought conditions, depending on stress severity and duration (Tausz-Posch et al. 2020).

129 Coffee, one of the most important agricultural commodities worldwide, supports the 130 livelihoods of ca. 25 million smallholder farmers, while involving about 100-125 million 131 people worldwide in its chain of value (Osorio 2002, DaMatta et al. 2019). Several studies 132 have claimed that we are already in the midst of a climate crisis, estimating that future 133 climate changes will further constrain the coffee crop, promoting vast agricultural, social 134 and economic impacts associated with huge losses of suitable cultivation areas, 135 aggravated incidence of pests and diseases (Magrach and Ghazoul 2015), reduced yields 136 (van der Vossen et al. 2015), and the extinction of at least 60% of all coffee species 137 (Davis et al. 2019). However, recent studies have demonstrated that an elevated air [CO₂] 138 (eCO₂) can improve C-assimilation (Ramalho et al. 2013, Ghini et al. 2015) and promote a

139 higher C-investment in reproductive structures (Rakocevic et al. 2020), thus ultimately 140 increasing productivity at least under adequate water supply (DaMatta et al. 2019). In fact, 141 under unrestricted water availability eCO₂ has been demonstrated to strengthen the 142 coffee's plant physiological performance (Ramalho et al. 2013). Furthermore, eCO₂ also 143 increased leaf coffee resilience to heat stress, as supported by reinforced photochemical 144 energy use, protective mechanisms (Rodrigues et al. 2016, Martins et al. 2016) and a 145 higher membrane lipid dynamics (Scotti-Campos et al. 2019), while preserving leaf 146 mineral balance (Martins et al. 2014) and bean quality (Ramalho et al. 2018a). These 147 findings underpin a new view, pointing to a lesser grim impact on coffee crop sustainability 148 than earlier forecasted largely based on temperature drifts (DaMatta et al. 2019). 149 Nonetheless, another growing concern is associated with water scarcity (DaMatta et al. 150 2018, Ramalho et al. 2018b) given that coffee is cultivated in tropical areas, which are 151 expected to be strongly impacted by climate change (IPCC 2018). Drought (and heat) 152 impacts are additionally expected to be aggravated, particularly in coffee plantations 153 under full sunlight exposure, which will impose new management challenges to afford 154 sustainability for the coffee crop (Dubberstein et al. 2018, Semedo et al. 2018).

155 We recently demonstrated that eCO₂ mitigates the impairments of moderate drought 156 stress on coffee growth and photosynthetic performance by improving plant water status 157 upon drought imposition (Avila et al., 2020a, 2020b). Here we expanded the underlying 158 mechanisms by which the photosynthetic apparatus adjusts to increasing drought severity and how eCO₂ could modify these adjustments. We hypothesized that eCO₂ improves 159 160 resilience of the photosynthetic functioning to drought stress at the biochemical and 161 molecular levels, and that these improvements are dependent on the magnitude of 162 drought severity. To test these hypotheses, we in-depth assessed the plant impacts and 163 responses through physiological (thermal imaging, gas exchanges, chlorophyll a 164 fluorescence), biochemical (thylakoid electron transport and carriers, enzyme activities), 165 and molecular (abundance of proteins associated with PSs, RuBisCO and CEF) 166 evaluations. For that, plants from two genotypes, representing the two main coffee

167 producing species, grown under normal (aCO_2) or elevated (eCO_2) air $[CO_2]$ were 168 subjected to moderate or severe water deficit conditions. Our findings provide important 169 and timely evidence regarding the role of eCO_2 to mitigate the harmful effects of water 170 deficit and reveal prominent drought tolerance/sensitivity points, therefore advancing our 171 comprehension of coffee performance under future climate scenarios.

172

173 Material and Methods

174 Plant material and growth conditions

175 Plants of two cropped genotypes (in Brazil) from the two main producing coffee 176 species, Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and C. 177 arabica L. cv. Icatu Vermelho (an introgressed variety resulting from a cross of C. 178 canephora and C. arabica cv. Bourbon Vermelho, then further crossed with C. arabica cv. 179 Mundo Novo) were used. A total of 36 plants were grown since the seedling stage, during 180 seven years in 80 L pots, divided in two walk-in growth chambers (EHHF 10000, 181 ARALAB, Portugal), each one supplied with ambient (aCO₂, 380 \pm 5 μ L L⁻¹) or elevated $(eCO_2, 700 \pm 5 \mu L L^{-1})$ air $[CO_2]$. In both growth chambers plants were maintained under 182 controlled temperature (25/20 °C, day/night, ± 1 °C), irradiance (max. ca. 750 µmol m⁻² s⁻¹ 183 184 at the upper part of the plant), relative humidity (70% \pm 2%), and photoperiod (12 h). 185 Plants were grown without restrictions of nutrients (provided as in Ramalho et al. 2013). 186 root growth, or water (until applying the water treatments), maintaining adequate soil 187 moisture by watering the plants every two days. According to current definition (Hurlbert, 188 1984, 2004) our experiments used pseudoreplicates given that all the plants (per each 189 CO₂ treatment) were grown in a single growth chamber. To minimize any "growth 190 chamber effect", the walk-in growth chambers were regularly and accurately calibrated by 191 the manufacturer, in order to guarantee that the environmental conditions (air humidity, 192 temperature, light intensity and quality) provided to all plants in both chambers were 193 exactly the same, with the exception of air [CO₂], and a weekly chamber swapping was 194 performed so that we minimize as much as possible potential pseudoreplication

195 implications (Johnson et al., 2016).

196 Determinations were performed on newly matured leaves from the upper third part 197 (well illuminated) from the six plants per treatment. Whenever possible the same leaf (or 198 similar leaves from the same plant) was used for all evaluations. Unless stated otherwise, 199 sample collection and evaluations were performed under photosynthetic steady-state after 200 ca. 2 h of illumination. For biochemical evaluations, the collected leaf material was flash 201 frozen in liquid nitrogen and stored at -80 °C, being finely powdered in liquid N₂ prior to 202 analysis. Leaf tissue extractions were performed using an ice-cold mortar and pestle, as 203 well as cold homogenizing solutions.

204

205 Water deficit imposition and leaf water status

206 Plants were divided into three groups. In the first one, individuals were maintained well 207 irrigated (WW) along the experiment, displaying leaf predawn water potential (Ψ_{pd}) above 208 -0.35 MPa. In the other two groups, water deficit was gradually imposed along two weeks 209 by partially withholding irrigation (with a partial water replacement of the amount lost, 210 individually analysed in each pot) until stability of Ψ_{pd} to values between -1.5 and -2.5 211 MPa (moderate water deficit - MWD) or below -3.5 MPa (severe water deficit - SWD). Leaf 212 Ψ_{pd} was determined immediately after leaf excision in 5-6 true replicates per treatment, 213 using a pressure chamber (Model 1000, PMS Instrument Co., USA). These watering 214 conditions represented ca. 80% (WW), 25% (MWD) or 10% (SWD) of maximal pot water 215 availability (Ramalho et al. 2018b). When the desired Ψ_{pd} was reached (MWD or SWD), 216 pot moisture was maintained thereafter for another two weeks by adding adequate water 217 amounts according to each watering treatment before measurements and samplings. 218 Exceptionally, the Icatu 700-plants under MWD conditions were exposed to total water 219 withholding in the last five days of the four week period, in order to further force the 220 reduction of Ψ_{pd} values, which, even so, did not shift below -0.6 MPa.

221

222 Thermal imaging analysis

223 Thermal images were acquired with a thermal imager (GF300, FLIR Systems, USA) and 224 processed using a Thermal Cam Explorer software (FLIR Systems), following the 225 procedures of Grant et al. (2007). Images were corrected for spatial calibration drift by 226 subtracting corresponding reference images of an isothermal surface. The canopy was 227 imaged using reference leaves to simulate fully closed and fully open stomata. Reference 228 leaves with fully closed stomata had both sides covered with petroleum jelly (Vaseline) to 229 obtain the dry temperature (T_{drv}). Their counterparts with fully open stomata were sprayed 230 with water using a hand spray bottle to maintain their moisture level and to obtain the wet 231 temperature (T_{wet}). The temperatures of the reference leaves (T_{wet} and T_{drv}) together with 232 the actual leaf temperature (T_{leaf}) were used to obtain the stomatal conductance index [I_G 233 = $(T_{dry} - T_{leaf})/(T_{leaf} - T_{wet})$] that is theoretically proportional to stomatal conductance to 234 water vapour (g_s), and the crop water stress index [CWSI = ($T_{dry} - T_{leaf}$)/($T_{dry} - T_{wet}$)] (Grant 235 et al. 2007). For CWSI, values close to 0 indicate a fully transpiring leaf/crop (i.e., with no stress), and close to 1 indicate a non-transpiring leaf/crop (i.e., under maximum stress). 236

237

238 Leaf gas exchanges measurement

Net photosynthesis rate (P_n), g_s , and internal [CO₂] (C_i) were obtained using a portable open-system infra-red gas analyzer (Li-Cor 6400, LiCor, USA), under 25 °C, with an external CO₂ supply of *ca.* 380 or 700 µL CO₂ L⁻¹, and *ca.* 650 µmol m⁻² s⁻¹ of irradiance. This irradiance level is close to the maximal ambient PPFD in the growth chambers, and high enough to saturate P_n under the [CO₂] used in this study, as found in preliminary experiments.

245 Photosynthetic capacity (A_{max}), reflecting the potential photosynthetic rate obtained 246 under saturating light and [CO₂], was measured in 1.86 cm² leaf discs through the 247 evolution of O₂ detected by a Clark-type O₂ electrode (LD2/2, Hansatech, U.K.). A_{max} was 248 obtained at 25 °C, *ca.* 7% [CO₂] (supplied by 400 µL 2 M KHCO₃), and by exposing the 249 leaf samples to increasing irradiance up to 1200 µmol m⁻² s⁻¹ using a Björkman lamp 250 (Hansatech) and neutral filters. 251

252 Chlorophyll a fluorescence analysis

253 Chlorophyll (Chl) a fluorescence parameters were determined on the same leaves and 254 conditions used for gas exchange measurements using a PAM-2000 system (H. Walz, 255 Germany), exactly as previously described (Rodrigues et al. 2016). Measurements in 256 dark-adapted leaves included the F₀ (minimum fluorescence from excited ChI a molecules 257 from the antennae), and F_v/F_m (maximal PSII photochemical efficiency). A second set of parameters, evaluated under photosynthetic steady-state conditions (650 µmol m⁻² s⁻¹ of 258 actinic light) and superimposed saturating flashes (ca. 7500 µmol m⁻² s⁻¹), included the 259 F_v'/F_m' (PSII photochemical efficiency of energy conversion under light exposure), q_1 260 261 (photochemical quenching based on the concept of interconnected PSII antennae, 262 representing the proportion of energy captured by open PSII centers and driven to 263 photochemical events), and F_s/F_m' (predictor of the rate constant of PSII inactivation). 264 Additionally, estimates of photosynthetic quantum yields of non-cyclic electron transfer 265 (Y(II)), photoprotective regulated energy dissipation of PSII (Y(NPQ)), and non-regulated 266 energy dissipation of PSII as heat and fluorescence $(Y_{(NO)})$, where $[Y_{(II)}+Y_{(NPO)}+Y_{(NO)}=1]$, 267 were also calculated.

268

269 Thylakoid electron transport rates

Pools of leaves (*ca.* 5 g FW) from six plants were used to obtain sub-chloroplast membrane fractions, as described for coffee (Ramalho et al. 1999). The *in vivo* electron transport rates associated with PSI (DCPIPH₂ \rightarrow MV) and PSII, including (H₂O \rightarrow DCPIP) or excluding (DPC \rightarrow DCPIP) the oxygen-evolving complex (OEC) were obtained with an O₂ electrode (LW2, Hansatech), using 1 mL of reaction mixture containing *ca.* 100 mg Chl, at 25 °C, under *ca.* 3000 µmol m⁻² s⁻¹ irradiance supplied by a Björkman lamp.

276

277 Thylakoid electron carriers

278 Pools of leaves to obtain sub-chloroplast fractions for plastoquinone (PQ-9) (ca. 5 g FW)

279 and cytochrome (Cyt) (ca. 7 g FW) evaluation were collected from six plants. 280 Spectrophotometric measurements were carried out as previously described (Dubberstein 281 et al. 2020). Briefly, PQ-9 content was determined by measuring the absorption difference 282 between the oxidized and reduced forms of PQ-9 at 255 nm, relative to isosbest 283 wavelengths of 276 and 308 nm, and assuming an extinction coefficient of 14.8 mmol L⁻¹ 284 cm⁻¹. The content of Cyt b_{559IP} , b_{559HP} , b_{563} and f were obtained with readings at 545 nm, 285 and isosbest wavelengths at 528 and 568 nm for Cyt b₅₅₉, and 552 and 572 nm for Cyt b_{563} . An extinction coefficient of 20 mmol L⁻¹ cm⁻¹ was assumed. For Cyt f, readings were 286 performed at 554 nm, and an extinction coefficient of 19.7 mmol L⁻¹ cm⁻¹ was assumed. 287

288

289 Photosynthetic enzymes

Samples of 100 mg FW of powdered frozen leaf material were used to evaluate the initial and total activities of ribulose-1,5-bisphosphate carboxylase/oxygenase enzymatic activities (RuBisCO; EC 4.1.1.39) (Tazoe et al. 2008), and ribulose-5-phosphate kinase (Ru5PK; EC 2.7.1.19) (Souza et al. 2005), with some modifications for for coffee leaves (Ramalho et al. 2013).

295 The homogenization was done in 1 mL extraction buffer of 100 mM Tris-HCl, (pH 8), 296 containing 10 mM MgCl₂, 10 mM β-mercaptoethanol, 2 mM DTT, 1% (v/v) Triton X-100, 297 10% (v/v) glycerol and 2% (v/v) "Complete-protease inhibitor cocktail" (Roche, ref. 298 04693159001), together with 100 mg insoluble PVPP per homogenate. The extracts were 299 then centrifuged (16000 g, 15 min, 4 °C) and the obtained clean supernatant was used for 300 RuBisCO and Ru5PK spectrophotometric assays). Briefly, RuBisCO activities evaluation 301 was performed by using an assay medium containing 50 mM Tris-HCl buffer (pH 8.0), 15 302 mM MgCl₂, 20 mM NaHCO₃, 100 mM phosphocreatine, 10 mM ATP, 0.2 mM NAPH, 20 U mL⁻¹ creatine kinase, 15 U mL⁻¹, 3-phosphoglycerate kinase, and 15 U mL⁻¹ 303 304 glyceraldehyde-3-phosphate dehydrogenase.

305 For the initial RuBisCO activity, to the assay medium 15 μ L of 667 mM RuBP (10 mM as 306 final concentration) were added, and then 20 μ L of the clean supernatant, followed by

immediate reading. For the total RuBisCO activity, to the assay medium 20 µL of the clean
supernatant were added, followed by a 20 min incubation period. The reaction was then
started with addition of 10 mM RuBP (as final concentration). In both cases
measurements followed the 3-PGA-dependent NADH oxidation at 340 nm.

For Ru5PK activity 20 μ L of clean supernatant were added to the spectrophotometer cell with 100 mM Tris-HCl pH 8.0 buffer assay, containing 8 mM MgCl₂, 40 mM KCl, 20 mM phosphoenolpyruvate, 5 mM ATP, 1 mM NADH, 20 mM DTT, 8 U pyruvate kinase, 10 U mL⁻¹ lactate dehydrogenase and 5 U mL⁻¹ phosphoriboisomerase. After a 15 min incubation period, the reaction was started by adding 10 μ L of 500 mM ribose-5phosphate, and NADH oxidation was monitored at 340 nm.

For both enzymes, spectrophotometric measurements were done in a final volume of 1
mL, at 25 °C.

319

320 Leaf abscisic acid

Samples of *ca*. 100 mg FW of powdered frozen leaf material were used for ABA analysis, according to Rodrigues et al. (2008). Extraction was performed in 1.0 ml of 200 mM Tris-HCI (pH 8.0), containing 2% triton X-100, 10% PVPP, and 10% glycerol, and centrifuged (5000 *g*, 5 min, 4 °C). ABA was then quantified by an ELISA assay using a monoclonal antibody for ABA (kit-Phytodetek, Agdia, USA).

326

327 **Proteins associated with the photosynthetic apparatus**

All procedures, including protein extraction (from *ca*. 200 mg FW samples of powdered frozen coffee leaves), liquid chromatography and high resolution mass spectrometry (NanoLC-MS/MS) analysis, and protein identification and quantification were performed as previously described in detail (Dubberstein et al. 2020). A reference database from *C. canephora* (Denoeud et al. 2014) of 25,574 polypeptide sequences totalling 10,251,572 residues was downloaded from Genoscope (http://coffeegenome.org/sites/coffee-genome.org/files/download/coffea_cds.fna.gz) on July 1st 2019,

335 and used for peptide and protein inference by MASCOT Daemon 2.6.1 search algorithm 336 (Matrix Science). For this study we followed a targeted approach associated with the 337 photosynthetic apparatus, by selecting and presenting the abundance changes of a set of 338 26 proteins, aiming to relate their results with physiological and biochemical data to 339 improve our understanding regarding plant response to drought and/or eCO₂ conditions. 340 These proteins comprise PSI and PSII, including, the Oxygen Evolving Complex, OEC 341 (related to PSII), and light harvesting complexes, LHC (from both PSs), Cyclic Electron 342 Flow (CEF) involving PSI, and RuBisCO and RuBisCO activase (Table 3). Protein 343 annotation obtained at The UniProt Knowledgebase (UniProtKB) was 344 (https://www.uniprot.org/uniprot/?query=&sort=score). The original mass spectrometry 345 proteomics data have been deposited at the ProteomeXchange Consortium via the 346 PRIDE partner repository with the data set identifier PXD019830 and Project DOI: 347 10.6019/PXD019830 for C. arabica, and the data set identifier PXD019831 and Project DOI: 10.6019/PXD019831 for C. canephora. Data set identifiers PXD019474 and 348 349 PXD019541 were also used in the present study.

350

351 Experimental design and statistical analysis

352 Plants from each coffee genotype were subjected to six treatment combinations, forming a 353 2 x 3 factorial (two $[CO_2]$, aCO_2 or eCO_2 ; and three levels of available water, WW, MWD 354 or SWD) following a completely randomized design, with six plants in individual pots per 355 treatment. Physiological and biochemical data were analysed using a three-way ANOVA 356 to evaluate the differences between genotypes (CL153 or Icatu), air [CO₂] conditions 357 (aCO₂ or eCO₂), between watering treatments (WW, MWD or SWD), and their interaction 358 (supplementary Tables S1 and S2). Given that a significant genotype effect was only 359 observed in very few cases (except in protein abundance), and our main focus was to 360 compare the impact of air $[CO_2]$ conditions and watering treatments (and their interaction) 361 in each genotype, an a posteriori Tukey's HSD test for mean comparisons was performed 362 separately for each genotype (as shown in Figures and Tables). Data analysis was 363 performed using STATISTICA v7.0 (StatSoft).

364

365 RESULTS

366 Leaf water status

Leaf Ψ_{pd} values evidenced a progressive transition from well-watered status (WW – *ca.* -0.30 MPa) to moderate (MWD – between -1.6 and -2.1 MPa, except the 700-lcatu plants) and severe (SWD – between -3.7 and -4.5 MPa) water deficit in both genotypes (Fig. 1). Notably, MWD plants displayed higher Ψ_{pd} at eCO₂ than at aCO₂ (significant in lcatu). The higher Ψ_{pd} (-0.6 MPa) in MWD lcatu plants was even maintained under a harsher water restriction by total irrigation withholding for five days prior to data collection.

373

374 Thermal imaging analysis

375 The gradual drift of thermal indexes for both crop water stress (CWSI) and stomatal 376 conductance (I_G) (Fig. 2) showed that different drought degrees were progressively 377 reached until maximal severity in SWD plants, in line with Ψ_{pd} variation (Fig. 1). Greater 378 stress severity was always observed in SWD plants, as judged from the maximal CWSI 379 paralleling minimal I_G values irrespective of genotype or [CO₂]. Although no differences 380 were observed between [CO₂] treatments within each water condition, under eCO₂ these 381 indexes barely changed from WW to MWD conditions (somewhat clear in Icatu), in 382 somewhat contrast to 380-plants, as compared to their respective WW plants.

383

384 Leaf gas exchanges

Single drought exposure depressed the net photosynthetic rate (P_n) by 62 and 68% in MWD plants, and by 84 and 92% in SWD plants, in CL153 and Icatu plants, respectively, as compared to their WW controls (Fig. 3). Additionally, stomatal conductance (g_s) was decreased by 65 and 77% in MWD plants, and by 69 and 77% in SWD individuals, in the same genotype order. Under SWD conditions, internal [CO₂] (C_i) *ca.* doubled the values in both genotypes, whereas the photosynthetic capacity (A_{max}) declined by 32% (CL153) and 20% (Icatu), always as compared to their WW controls.

Long-term eCO_2 exposure significantly increased P_n values in WW plants of CL153 (37%) and Icatu (56%) as compared with their 380-plants, concomitantly with a relevant (although non-significant) increase in A_{max} values by 35% (CL153) and 16% (Icatu).

395 The eCO₂ greatly attenuated the decreases in P_n, g_s, and A_{max} imposed by MWD, but 396 had not effect under the hasher SWD conditions. In fact, the 700-plants of both genotypes 397 showed some P_n reduction under MWD, but maintained values close to their respective 398 WW 380-plants, as well as displayed higher Pn values (146% for CL153, and 240% for 399 Icatu) than in their MWD 380-counterparts. This was accompanied by non-significant 400 changes of gs and Ci when comparing WW and MWD plants under eCO2. Amax showed a 401 similar pattern to that of P_n in the MWD 700-plants of both genotypes, that is, although 402 showing some decrease when compared to the WW 700-plants, the MWD 700-plants still 403 maintained higher A_{max} values (50% in CL153 or 11% in Icatu) than those of the 380-404 plants under MWD.

405 Under SWD conditions P_n and g_s were severely reduced regardless of $[CO_2]$ or 406 genotype. However, under such drought conditions a relevant potential for C-assimilation 407 was preserved, with A_{max} still showing values close to 60% (CL153), or even higher than 408 70% (Icatu) relative to those displayed by their respective WW controls.

409

410 Leaf abscisic acid

Single drought prompted gradual ABA increases of *ca.* 46% in MWD plants in both
genotypes, and 100% (CL 153) and 184% (Icatu) under SWD conditions, whereas single
eCO₂ increased ABA levels (by 85%) only in Icatu.

Under water restriction, the eCO₂ tended to increase ABA content in both genotypes (except in Icatu SWD plants), and stimulated an earlier response in Icatu given that ABA levels peaked at MWD conditions and were so maintained afterwards, whereas in the 380-plants maximal ABA values were precisely observed in SWD conditions.

419 Chlorophyll a fluorescence analysis

Single drought (380-plants) did not affect F_0 (even under SWD conditions) regardless of genotype. In contrast, single eCO₂ (WW plants) promoted significant F_0 rises, but upon MWD and SWD exposure F_0 was unaltered by eCO₂ (Table 1). In turn, single eCO₂ did not affect F_v/F_m in both genotypes, whereas single drought significantly reduced F_v/F_m only in CL153 SWD plants, an effect that was largely attenuated by eCO₂.

425 Under photosynthetic steady-state functioning, the actual PSII photochemical 426 efficiency $(F_v)/F_m$ remained unaffected under single eCO₂ exposure, but it was reduced 427 by single drought in MWD (Icatu - 30%) and SWD (CL153 - 40%; Icatu - 24%) plants. 428 Also, eCO₂ clearly attenuated drought impacts on F_v'/F_m', particularly in Icatu which 429 showed no significant reductions in either MWD or SWD 700-plants, in contrast with the 430 impact found in CL153 SWD 700-plants. In turn, the PSII inactivation estimate (F_s/F_m') 431 greatly increased due to single drought exposure (MWD and SWD) in either genotype, 432 although eCO_2 mitigated these impacts, particularly in MWD plants.

The photochemical energy use, assessed by $Y_{(II)}$ and q_L , was not significantly modified by single eCO₂ exposure, but was markedly impacted by MWD and, especially, SWD conditions, the latter reducing $Y_{(II)}$ by 82% and 62%, and q_L by 65% and 46%, in CL153 and Icatu plants, respectively. Yet, eCO₂ clearly reduced the MWD and SWD impacts on $Y_{(II)}$ and q_L in both genotypes, particularly in MWD plants which showed values not significantly different from those of their WW counterparts.

The photochemical energy use is balanced with dissipation mechanisms under conditions of excessive available energy. The $Y_{(NPQ)}$ remained unaffected by single eCO₂, although increasing strikingly upon single MWD or SWD exposure regardless of genotype. Under SWD the 380-plants showed increases of 151% (CL153) and 98% (Icatu) in $Y_{(NPQ)}$. Notably, in both genotypes such dissipation capabilities were maintained at a lower level in the 700-plants under MWD and SWD than in their respective 380-plants, what agrees with their higher photochemical energy use under eCO₂.

446 Finally, $Y_{(NO)}$ was only marginally impacted by the single or combined drought and

447 eCO₂ exposure, reflecting and absence of aggravated status regarding non-regulated
448 energy dissipation processes.

449

450 Thylakoid electron transport rates

The potential rates of electron transport involving both PSs were assessed to provide clues regarding potential drought sensitivity points in coffee plants. Drought reduced the activities of PSII (with or without OEC), and PSI by *ca*. 20% in CL153 only under SWD, while lcatu plants remained unaffected by drought irrespective of $[CO_2]$.

Additionally, within each genotype the WW 700-plants displayed improved PSI and II activities, reaching *ca.* 20% (CL153) and 15% (Icatu) higher values than in their WW 380plants. The eCO_2 usually maintained such positive impact under drought, and even reversed the loss of PSs performance observed in CL153 380-plants under SWD.

459

460 Thylakoid electron carriers

Single drought exposure promoted different changes among electron carriers and genotypes (Tab. 2). In Icatu, the Cyt b_{559} and b_{563} contents were not significantly modified, whereas significant increases in Cyt *f* (28%) and PQ-9 (the redox form of plastoquinone, PQ) (102%) were observed under SWD. In sharp contrast, in CL153 significant reductions were found for all Cyts under both MWD and SWD, while PQ-9 did not vary significantly.

The eCO₂ alone did not significantly alter these carrier contents (except for Cyt b_{559HP} in CL153, and Cyt b_{563} in Icatu). Yet, it is noteworthy that a systematic tendency to higher values was observed for all carriers in both genotypes, justifying the observed significant global CO₂ effect (Table S1).

Under drought and eCO_2 , despite some variations between MWD and SWD plants, eCO₂ globally increased these photosynthetic components under SWD conditions. In fact, while CL153 380-plants were clearly affected by single SWD exposure, their 700-plants counterparts showed no impact on Cyt contents (as compared to WW plants regardless of [CO₂]), and a large PQ-9 increase. In Icatu, eCO₂ did not reverse the single SWD effect

475 given that no significant impact was observed in the 380-plants, but the 700-plants476 exposed to SWD still showed a tendency to higher contents in all Cyts.

Interestingly, the 700-plants of both genotypes under MWD usually showed lower
contents than those of their respective 700-plants under SWD, but without impact on the
electron transport rates (Fig. 5).

480

481 Photosynthetic enzymes

RuBisCO activities were gradually reduced in CL153 plants by single drought, reaching declines of 40% (initial) and 30% (total) under SWD conditions (Fig. 6A,B). This contrasted with lcatu plants in which RuBisCO was not negatively affected by drought. RuBisCO activation presented some fluctuations (with a reducing tendency in CL153), and Ru5PK tended to a higher activity at MWD, and with no declines in SWD conditions, as compared to their respective WW plants, always for both genotypes.

Single eCO_2 significantly reinforced the initial (45-61%) and total (*ca.* 38%) activities of RuBisCO, as well as that of Ru5PK (*ca.* 50%) in WW plants from both genotypes. RuBisCO activation also increased in lcatu.

Under MWD, the 700-plants from both genotypes showed a consistent trend to higher
Ru5PK and RuBisCO activities (and activation state for the latter), although nonsignificantly in most cases. Under SWD conditions, this tendency was only preserved in
Icatu.

495

496 Proteins from the photosynthetic apparatus

497 Regarding the altered environmental conditions, drought alone was globally the main 498 driver for abundance increase of most proteins associated with the photosynthetic 499 apparatus (PS I and II, OEC, LHC I and II, RuBisCO, RuBisCO activase, and CEF-PSI) 500 (Table 3), different for the genotype factor for most proteins (Table S2). In fact, under 501 SWD conditions a systematic increase trend was observed in all 26 proteins in both 502 genotypes, but only lcatu showed significant increases (in 15 of them).

In contrast, eCO_2 did not significantly modify the abundance of any of these 26 proteins in WW plants from both genotypes, in line with the absence of significance for the large majority of proteins as regard the CO_2 factor or their interaction with genotype (Table S2). Still, a closer look revealed a tendency to lower abundance of 15 proteins in 700-plants, as compared to their 380-counterparts, especially in CL153.

508 Under SWD conditions, eCO_2 did not significantly alter protein abundance in the 700-509 plants (with the unique exception for the minor represented LHCII 21 kDa protein in 510 CL153), as compared to the respective 380-plants of each genotype.

511 A more detailed analysis of each protein group revealed that, regardless of CO₂, the 512 proteins associated with PSII and LHCII were more abundant under drought, significantly 513 under SWD only in Icatu for some of them. These proteins included the PsbP (extrinsic 514 subunit of PSII) and the PsbS (PSII 22 kDa) proteins (as noted by their significant 515 interaction of genotype vs. water availability - Table S2), which are associated with O2 516 evolution and non-photochemical quenching mechanism, respectively. Greater 517 abundance under drought in Icatu was also observed for seven (aCO₂) and four (eCO₂) 518 proteins (out of eight) from LHCII. As regards CL153 plants, only the abundance of LHCII 519 21 kDa protein increased significantly, exclusively under eCO₂.

A similar pattern to that of PSII was also found for 10 proteins associated with PSI, their LHC, and with CEF-PSI (two NADH dehydrogenase-like (NDH) complex proteins, and one proton gradient regulation protein (PGR5)). Overall, abundance of these proteins was also gradually increased by drought, regardless of $[CO_2]$, but significant higher values were observed only in Icatu SWD plants (five in aCO_2 ; four in eCO_2).

525 Finally, RuBisCO (small unit) and RuBisCO activase tended to greater abundance 526 under SWD conditions, similarly for both [CO₂], with Icatu SWD plants showing the 527 greater increases, as compared to their WW-plants.

528

529 Discussion

530 Firstly, we acknowledge that our experimental design and data collection was based on

531 the use of pseudoreplicates regarding the air [CO₂] treatments (Hurlbert, 1984; 2004), 532 given that all the plants per each CO_2 treatment were grown in a single growth chamber. 533 This contrasts with water treatments in which the implementation of water restriction was 534 performed individually for each plant until the desired level of drought was achieved (as 535 controlled through Ψ_{pd} monitoring and partial water addition). Also, the weekly chamber 536 swapping, although does not eliminate the potential pseudoreplication effects, is expected 537 to allow us to obtain similar data and conclusions as whether had used true replicates, 538 either by performing one experiment with multiple chambers or using one chamber 539 replicated in multiple experimental runs (Johnson et al. 2016). Still, considering that some 540 statistical bias still can remain, any marginally significant results must be discussed with 541 caution, and it is advisable to interpret effect sizes rather than P-values per se (Johnson et 542 al., 2016), what was herein done. Therefore, as long as pseudoreplicates existence is 543 clearly stated, and the readers are aware of the potential problems interpreting such 544 results, we are confident that our study reports solid and useful informaton despite 545 potential issues associated with pseudoreplication (Newman et al. 2011, Johnson et al. 546 2016).

547

548 Single drought impact on photosynthetic performance and components

A gradual water constraint was imposed until the SWD plants displayed Ψ_{pd} values below -3.7 MPa in both genotypes, a value that reflects an extreme water deficit in coffee (*cf.* Pinheiro et al. 2004, Brum and Melo 2013). Such increasing drought severity was globally reflected in changes in water stress thermal indexes (CWSI and I_G) (Fig. 2), which followed the gradual reduction in g_s and Ψ_{pd} values, as also reported in other plant species (Costa et al. 2013, Gómez-Bellot et al. 2015), and are considered useful indicators of microenvironment suitability for the coffee crop (Craparo et al. 2017).

556 The g_s decline in drought-stressed plants of both genotypes was likely associated 557 with a greater ABA content (Fig. 4). ABA is determinant to stomata responses to 558 increased air evaporative demand and/or reduced soil water availability (Buckley 2019),

and a greater ABA synthesis has been implicated in drought tolerance in coffee trees *via* reductions in g_s , which in turn restrain the transpiration flow and postpone plant dehydration (Silva et al. 2018).

562 Due to the intrinsically low g_s values of coffee leaves, stomatal limitation, more than 563 mesophyll or biochemical ones, have been shown to constitute the major constraint to 564 photosynthesis in this species (DaMatta et al. 2019, Martins et al. 2019). However, as 565 drought severity increases non-stomatal limitations will gradually become dominating. In 566 fact, under MWD and SWD conditions the g_s reduction was accompanied by a C_i increase 567 (Fig. 3C), suggesting that photosynthesis was not limited by stomatal constraints. 568 Additionally, the greater decline of P_n than in A_{max} (the latter assessed under the absence 569 of diffusion-mediated limitations of photosynthesis by using saturating [CO₂]) suggests 570 increased mesophyll diffusional constraints to CO₂ flux towards the carboxylation sites, 571 whereas the A_{max} decline by itself points to photo/biochemical constraints. Collectively, 572 our data indicate that non-stomatal (mesophyll and photo/biochemical) limitations were 573 the major constraints to photosynthesis under drought conditions, which were 574 exacerbated with increasing drought severity, in line with the sharp changes of CWSI and I_G from MWD to SWD conditions (Fig. 2). 575

576 Non-stomatal limitations of photosynthesis were further confirmed by the negative 577 impacts on the PSII photochemical efficiency (Fv/Fm, Fv'/Fm'), photochemical use of 578 energy ($Y_{(II)}$, q_L), and PSII inactivation (F_s/F_m) (Table 1). These changes were stronger in 579 SWD than in MWD plants, and usually to a higher extent in CL153 than in Icatu, in 580 agreement with their impact on A_{max}. Notably, the lower photochemical use of energy was 581 fully compensated for by the reinforcement of photoprotective thermal dissipation 582 mechanisms ($Y_{(NPQ)}$) that protect the coffee leaves from excessive excitation damages 583 (Pompelli et al. 2010), coupled with the reduction of reactive species of oxygen and 584 chlorophyll (Fortunato et al. 2010, Dalal and Tripathy 2018). It is also remarkable that PSII 585 non-regulated energy dissipation (Y_(NO)) did not rise in drought-stressed plants of both 586 genotypes. This points that non-photochemical quenching processes attributable to 587 photoinactivation and uncontrolled energy (heat and fluorescence) dissipation in PSII 588 (Kramer et al. 2004, Huang et al. 2011) were not aggravated even under the SWD 589 conditions, implying an intrinsic tolerance of these coffee plants to drought.

590 Icatu showed a great drought tolerance concerning both PSs activity (Fig. 5), and 591 carriers content (Table 2), whereas CL153 was clearly affected, particularly under the 592 harshest drought conditions. In fact, although CL153 presented a consistent tendency to 593 greater abundance of proteins related to PSs, LHCs, and CEF-PSI, significant rises for 594 more than half of these photosynthetic related proteins were only observed in Icatu, thus 595 reflecting a greater responsiveness of this genotype (Table 3). Knowing that when C-596 assimilation is affected by environmental stresses (as was the case in SWD plants), the 597 resultant generation of ROS can inhibit protein synthesis (Murata et al. 2007), our findings 598 revealed that *de novo* synthesis was in place to maintain full functioning capabilities, likely 599 associated with the crucial reinforcement of antioxidative mechanisms under drought 600 (Ramalho et al. 2018b), similarly to this plant response to cold, high irradiance and heat 601 (Ramalho et al. 1998, Fortunato et al. 2010; Martins et al. 2016). Among the identified 602 proteins associated with PSII, it should be highlighted the significant increases of PsbS 603 (involved in non-photochemical quenching), and PsbP, an extrinsic subunit of PSII 604 involved in O₂ evolution, in addition to PSII regulation, stabilization (Ifuku et al. 2005), 605 repair and reassembly (Lu et al. 2016) only in SWD lcatu plants, in good agreement with 606 their abilities to maintain PSII activity regardless of $[CO_2]$ (Fig. 5). Under a reduced use of 607 energy through photochemistry, the resulting increase of transthylakoid H⁺ gradient will 608 promote zeaxanthin synthesis and dimeric PsbS protein interaction with the LHCII 609 antenna, with both promoting a rapid increase of thermal dissipation, thus protecting PSII 610 from photodamage (Niyogi et al. 2005, Ruban 2016). Taken together, our data are 611 consistent with increases in zeaxanthin pools (data not shown) and Y(NPO) rise (Table 1) in 612 Icatu SWD plants, as also reported in droughted Arabidopsis thaliana plants (Chen et al. 613 2016). From the above, we argue that the reinforcement of both PsbS and PsbP proteins 614 in Icatu SWD 380-plants likely strengthen their photoprotective capabilities and the 615 maintenance of PSII O₂ evolution (Fig. 5), supporting their drought resilience. Notably, 616 reductions of potential PSI and PSII activities (Fig. 5) and photochemical efficiency (F_v/F_m, 617 Table 1) in CL153 SWD plants under aCO₂ were not associated with reductions in the 618 abundance of PSs-related proteins (Table 3). This suggests that, although present these 619 proteins might not be under a fully functional state, what would be associated with a lower 620 efficiency of protective mechanisms previously as reported in C. canephora plants under 621 drought (Ramalho et al. 2018b). Still regarding PSII, with the exception of PsbP, the 622 abundance of proteins related to O₂ evolution remained mostly unchanged, which, overall, 623 agrees with the similar pattern of PSII with or without the OEC participation in both 624 genotypes (Fig. 5). Therefore, we contend that OEC is not a preferential drought sensitive 625 component in coffee leaves.

626 Some of the greatest abundance increases, particularly in Icatu, were observed in 627 LHC a/b binding proteins, which are related to the structure and function of both PSs, 628 being associated with antennae pigments and/or with the PSs core reaction centres (Kim 629 et al. 2009, Liu et al. 2013, Pietrzykowska et al. 2014). Given that the expression of the 630 Lhcb genes is closely regulated by multiple environmental cues (Liu et al. 2013), and that 631 LHCII functioning plays an important role in preventing PSII photodamage under drought 632 stress (Chen et al. 2016), the higher pools of LHCII and LHCI proteins likely contributed to 633 preserve PSII and PSI activities (Fig. 5), the PSII photochemical efficiency (F_v/F_m) (Table 634 1), and energy capture (F_0) in Icatu SWD plants, thus supporting a high resilience under 635 long-term drought exposure. Additionally, the large and gradual increase of PQ-9 with drought in Icatu is expected to improve the scavenging of singlet oxygen $({}^{1}O_{2})$ and inhibit 636 637 lipid membrane oxidation (Ksas et al. 2018), whereas, CEF-PSII (with Cyt b₅₅₉) and CEF-638 PSI (with Cyt b_6/f complex, PGR5 and NDH proteins which also increased) were likely 639 stimulated. Overall, these processes should contribute to protect both PSs from 640 photoinhibition by reducing the excess of excitation pressure (Miyake and Okamura 2003, 641 Chu and Chiu 2016, Yamori et al. 2016), with the CEF-PSI further promoting the 642 protective non-photochemical guenching (Sun et al. 2018) and ATP synthesis (Yamori et 643 al. 2016) in Icatu. In contrast, CEF-PSII and CEF-PSI were unlikely to have been 644 stimulated in CL153 since all Cyts content declined, in line with the significant difference in 645 the genotypes response to drought for these electron carriers (Table S1). In particular, the 646 reduction in the Cyt b_{θ}/f complex components points to a drought sensitivity, as reported 647 in other species (Kohzuma et al. 2009, Sanda et al. 2011). Finally, this might have contributed for decreasing the electron transport ability (PSs activities and F_v/F_m) and 648 649 photosynthesis (P_n and A_{max}) given that C-assimilation has been reported to be closely 650 related to Cyt b_{θ}/f content under changing environmental conditions (Schöttler and Toth 651 2014).

652 Key enzymes from the Calvin-Benson cycle (RuBisCO and Ru5PK) have been used 653 as probes of tolerance of photosynthetic biochemical components to environmental 654 stresses in coffee (Ramalho et al. 1999, 2003, Rodrigues et al. 2016). Here we 655 demonstrated that the drought sensitivity of CL153 plants was also likely associated with 656 strong impairments on RuBisCO activity (Fig. 5), together with the above reported impact 657 in both PSs activity and Cyt contents. These drought-induced impacts on RuBisCO 658 activity have been ascribed to protein denaturation (Hoekstra et al. 2001), decreased 659 synthesis of the small RuBisCO units and increased binding of RuBisCO inhibitors (Vu et al. 1999, Parry et al. 2002, Galmés et al. 2013, Fahad et al. 2017). In contrast, RuBisCO 660 661 (and Ru5PK) activities were unaffected in Icatu SWD plants, a result consistent with a 662 tendency to higher abundance of RuBisCO small units under drought, and greater 663 RuBisCO activase abundance. This catalytic chaperone modulates RuBisCO activity, and 664 was suggested to constitute a crucial factor in plant response to climate changes (Sage et 665 al. 2008) due to its stress sensitivity, namely to heat and drought (Kumar et al. 2016, 666 Perdomo et al. 2017). Notably, within each genotype, RuBisCO activation state remained 667 mostly unaffected regardless of water and CO₂ conditions, close to previously reported 668 values for coffee (Ramalho et al. 2003, Martins et al. 2013, Dubberstein et al. 2020).

669

670 Long-term eCO₂ impact on photosynthetic apparatus functioning

671 The Ψ_{pd} and g_s responsiveness was not modified by long-term eCO₂. This confirmed 672 earlier findings for g_s in coffee (Ramalho et al. 2013, Ghini et al. 2015, Avila et al. 2020a), 673 in contrast to many other species in which g_s is reduced by eCO₂ (Ainsworth and Rogers 674 2007). Given that coffee trees typically display low g_s, and stomatal limitations are the 675 main constraint to photosynthesis (Martins et al. 2019), the absence of stomatal 676 acclimation to eCO₂ is expected to allow for greater photosynthetic gains associated with 677 eCO₂ (DaMatta et al. 2016, Rodrigues et al. 2016, Avila et al. 2020a). Still, it is noteworthy 678 that lcatu plants tended systematically to lowered gs values at eCO₂, in good agreement 679 with previous reports (Ramalho et al. 2013), which is believed to have been associated 680 with their significantly higher leaf ABA content under well-watered conditions (Fig. 4). In 681 fact, even when leaf water potential remained unaffected by eCO₂, the observed 682 increases in leaf and xylem ABA concentrations seem to trigger g_s depression (Fang et al. 683 2019) via the ABA signalling pathway in guard cells (Chater et al. 2015).

684 No photosynthetic down-regulation (negative acclimation) to long-term eCO₂ was also 685 observed in both genotypes, as no significant P_n differences were observed between WW 686 380- and 700-plants when measurements were performed for both at 380 or 700 μ L CO₂ L^{-1} (data not shown). Additionally, the marked P_n rises under eCO₂ were likely to have 687 688 been supported by (i) an enlarged air-to-leaf CO₂ gradient (thus, at least, partially 689 overcoming the diffusional resistances, and then increasing CO₂ availability for RuBisCO 690 assimilation), and (ii) a reduction in photorespiration (associated with the competitive 691 inhibition of RuBisCO oxygenation activity) (DaMatta et al. 2016). This P_n stimulation was 692 in line with the potential increased (ca. 50%) values estimated for C3 trees (Drake et al. 693 1997, Ainsworth and Rogers 2007), as well as with previous results obtained in field-694 grown coffee trees (Ghini et al. 2015). Moreover, Pn increases under eCO2 likely 695 benefited from (i) a consistent trend to higher contents of all electron carriers (Table 2), 696 which likely contributed to the moderate increase in the potential PSs activity (Fig. 5), and 697 (ii) the strengthening of the activity of Calvin-Benson cycle enzymes (RuBisCO and Ru5PK). These concomitant activity increases of PSs and RuBisCO agree with the 698

699 maintenance of a functional balance between carboxylation and electron transport 700 capabilities (J_{max}/V_{cmax}), which seems to be transversally conserved in coffee (Ramalho et 701 al. 2013; DaMatta et al. 2016), as in other species (Possell and Hewitt 2009). Such 702 investments in photo- and biochemical components associated with eCO₂ further support 703 an absence of photosynthetic down-regulation in coffee leaves under long-term eCO2 704 (DaMatta et al. 2016, Rodrigues et al. 2016). This clearly contrasts with the reduction of 705 the potential for maximal carboxylation and electron transport due to lowered N-allocation 706 to RuBisCO, RuBP regeneration and proteins associated with electron transport that has 707 been reported in a number of species (Leakey et al. 2009, Bader et al. 2010). Such 708 negative acclimation is commonly associated with low sink strength, leading to an 709 unbalanced C-assimilate synthesis and use (Long et al. 2004, Ainsworth and Rogers 710 2007, Tausz-Posch et al. 2020). In the case of coffee, adjustments in carbohydrate 711 metabolism via a remarkable ability to accumulate starch has been also shown to allow 712 the plant to avoid photosynthetic acclimation by preventing the cycling and/or 713 accumulation of soluble sugars, especially under conditions of low sink demand (DaMatta 714 et al. 2016, Avila et al. 2020c).

715 Overall, fluorescence parameters reflecting the PSII photochemical efficiency, as well 716 as the photoprotective mechanisms, remained mostly unaffected by eCO₂, as also noted 717 in grapevine (Moutinho-Pereira et al. 2009). These results are in agreement with the 718 maintenance of abundance for most proteins related to the photosynthetic machinery 719 (Table 3). Among fluorescence parameters stand-up one exception related to the 720 significant F_0 rise. This, when coupled to an F_v/F_m reduction (which did not occur), has 721 been taken as an indication of irreversible photoinhibition of PSII reaction centers 722 (Pastenes and Horton 1999), as reported in coffee leaves under excessive irradiance 723 (Ramalho et al. 2000) or heat (Dubberstein et al. 2020). However, in the present case, it is 724 unlikely that such an irreversible damage has occurred. Instead, F₀ rise might have been 725 related to changes in the lipid matrix of chloroplast membranes, associated with increased 726 fluidity (as in CL153) and/or marked shifts in galactolipid and phospholipid classes (as in

727 Icatu) observed under eCO₂ (Scotti-Campos et al. 2019).

728

729 Can eCO₂ mitigate the drought impacts at the photosynthetic level in coffee?

The eCO₂ postponed decreases in Ψ_{pd} , as particularly observed in Icatu plants only under MWD, as recently found in coffee (Avila et al. 2020a, 2020b). This agreed with the absence of an aggravated stress status (assessed by CWSI and I_G) from WW to MWD under eCO₂ (Fig. 2).

734 Stomata opening response was somewhat modified by eCO2. Under MWD the 700-735 plants presented greater ABA levels than their 380-counterparts, especially in Icatu that 736 presented maximal values already under MWD. However, these greater ABA levels had 737 no corresponding impact on g_s since the 700-plants tended to higher g_s values than 380-738 ones, and g_s did not differ significantly between WW and MWD conditions in either 739 genotype. This is in good agreement with reports of a delayed g_s response to soil drought 740 under eCO_2 in coffee (Avila et al. 2020b) and tomato (Liu et al. 2019). Moreover, eCO_2 741 might have altered the ABA regulated stomatal control under moderate drought. In fact, 742 eCO₂ was reported to alter the close relation of g_s reduction with increasing xylem ABA 743 content commonly observed under aCO₂. In this case, stomata response can become 744 ABA-independent/insensitive (Liu et al. 2019), and controlled predominantly by turgor 745 pressure (Yan et al. 2017).

746 There are large uncertainties about the future positive impact of eCO₂ on plants 747 submitted to water deficits, strongly associated to species responses dependency (Tausz-748 Posch et al. 2020). Some studies have demonstrated only a modest impact of eCO₂ on 749 plant performance which usually fades with progressive heat and/or drought conditions 750 (Birami et al. 2020). In contrast, other studies have revealed that eCO₂ can significantly 751 mitigate the drought impairments on crop photosynthesis, growth, and yields (Vanaja et al. 752 2011, Koutavas 2013, Wang et al. 2018), as was the case of coffee (see also Avila et al. 753 2020a). In fact, a large attenuation of drought impacts on P_n was promoted by eCO₂ in 754 MWD plants, in line with a consistent tendency to greater values in all parameters related to the PSII photochemical use of energy (F_v'/F_m' , $Y_{(II)}$, q_L) and higher PSs activity in both genotypes. Such photochemical use of energy is, ultimately, the best photoprotective mechanism (Rodrigues et al. 2018), thus resulting in a lower need for dissipation processes ($Y_{(NPQ)}$), and a reduced PSII inhibition status (F_s/F_m') (Table 1). In good agreement, eCO₂ increased P_n, Y_(II) and q_P values, as well as crop yield, in soybean plants under severe water deficit, evidencing a greater drought tolerance linked to an improved photosynthetic functioning (Wang et al. 2018).

762 The harshest drought conditions were reflected in Ψ_{pd} , CWSI, I_G and ABA values, 763 and the maximal impacts on most parameters evaluated under steady-state conditions 764 (e.g., P_n, g_s, F_{v'}/F_m', Y_(II), q_L, Y_(NPQ)), A_{max} and RuBisCO activity, although the 700-plants 765 of both genotypes tended to be less affected in most parameters. An important relief of 766 SWD impact on the photochemical machinery by eCO₂ was observed in CL153, regarding 767 F_v/F_m, PSs activity, and electron carriers, whereas PQ-9 showed its maximal value, what 768 likely promoted CEF-PSII, thus with the capability to reduce the excitation pressure over 769 PSII (Miyake and Okamura 2003). Such better PSs performance was also in line with 770 tendency to increased abundance of proteins related to LHCII under eCO₂, suggesting an improved capability to repair damaged structures (Murata et al. 2007). However, the 771 772 impact at the biochemical level could have determined the different resilience of these 773 genotypes given that, in contrast to Icatu, CL153 had lowered RuBisCO activity under 774 SWD conditions irrespective of [CO₂].

775 In Icatu, the potential functioning of the photosynthetic apparatus (considering 776 photochemical and biochemical components) was barely affected by the single SWD, 777 therefore the exposure to eCO₂ was not evidently translated into a better photosynthetic performance. Still, greater abundance of most proteins at eCO2 was maintained at SWD 778 779 conditions, thus keeping the de novo synthesis (and repair) ability as regards the 780 photosynthetic structures (Murata et al. 2007). Additionally, Cyt b₅₆₃ (together with PGR5) 781 protein) involved in CEF-PSI were increased, reinforcing the ability for ATP synthesis, 782 which is the driving force for the highly energy cost of PSII repair processes (Murata and

Nishiyama 2018). Finally, Icatu plants exposed to SWD maintained an increased abundance of small RuBisCO subunits and RuBisCO activase, and small impacts on RuBisCO (and Ru5PK) activities, as compared to their WW controls irrespective of $[CO_2]$. Taking all the above information together, we contend that eCO_2 maintained the intrinsic high resilience of Icatu, and improve that of CL153 to harsh drought stress.

788

789 Conclusions

790 Globally, water restriction was the main environmental driver of coffee responses in terms 791 of photosynthetic functioning. Drought severity, as judged from Ψ_{pd} , CWSI and I_G, 792 progressively affected net photosynthesis rates that were mostly constrained by 793 mesophyll and photo/biochemical rather than stomatal limitations. Under drought, Icatu 794 showed no negative impacts on the potential photosynthetic functioning (e.g., A_{max} , F_v/F_m , 795 PSs and RuBisCO activities) and components (electron carriers), and a great abundance 796 increase of a larger number of proteins related to photosynthetic functioning and 797 protection, irrespective of [CO2], which altogether supported a high resilience upon 798 drought imposition, in a somewhat contrast to SWD CL153 plants under aCO₂.

Alone, eCO_2 caused no stomatal and photosynthetic acclimation, and the large P_n rises were likely resulted from overcoming diffusive constraints, decreased photorespiration, and global reinforcement of photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, Ru5PK) components in both genotypes.

803 In combination, eCO_2 largely attenuated the MWD impacts on the photosynthetic 804 machinery. For example, in Icatu plants eCO₂ postponed drought imposition, maintaining 805 their stress status (Ψ_{pd} , CWSI, I_G) from WW to MWD. In both genotypes, eCO₂ improved 806 the photosynthetic functioning together with lower energy dissipation and PSII inhibition. 807 Also, eCO_2 might have altered the regulation of stomatal closure given that the lowered g_s 808 in MWD plants was decoupled from the increased ABA levels. Additionally, the marked 809 impacts of SWD condition on most parameters related to energy use (through photochemistry or thermal dissipation) were to a some extent attenuated by eCO₂, or 810

even globally reversed in some cases (e.g., F_v '/ F_m ' in Icatu). As compared to aCO₂, the 811 812 eCO₂ cancelled the SWD impact on PSII photochemical efficiency, PSs activity, electron 813 carrier contents and the abundance of some proteins related to LHCII in CL153 plants. 814 Still, RuBisCO activity was the most sensitive photosynthetic component to drought in this 815 genotype, regardless of [CO₂], therefore deserving a special attention by breeders in 816 order to promote a future greater sustainability of this crop. Overall, we contend that eCO₂ 817 relieved MWD impact in both genotypes, while maintained the intrinsic high resilience of 818 Icatu, and improved that of CL153, to SWD conditions. In summary, we identified 819 genotype-related responses/impacts associated with the photosynthetic apparatus under 820 the exposure to drought and/or eCO₂, providing relevant findings in the context of the 821 coffee sustainability under future climate scenarios.

822

823 Conflict of Interest Statement

824 The authors declare that there are not any potential conflicts of interest.

825

826 Funding

827 This work received funding support from the European Union's Horizon 2020 research 828 and innovation program (grant agreement No 727934, project BreedCAFS), and from 829 national funds from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through the 830 project PTDC/ASP-AGR/31257/2017, and the research units UIDB/00239/2020 (CEF), 831 and UIDP/04035/2020 (GeoBioTec). Fellowships from the Conselho Nacional de 832 Desenvolvimento Científico e Tecnológico, Brazil (CNPg) to F.L. Partelli and F.M. 833 DaMatta, and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil 834 (FAPEMIG, project CRA-RED-00053-16), to F.M. DaMatta, are also greatly 835 acknowledged.

836

837 Acknowledgments

838 The authors would like to thank Novadelta – Comércio e Indústria de Cafés Lda., as well

839 as Tech. Paula Alves for technical assistance.

840

841 Authors' Contributions

842 J.N.S.: experiment execution, data collection, data analysis and interpretation, manuscript 843 writing and revision; A.P.R: experiment execution, data collection, data analysis and 844 interpretation, manuscript writing; F.C.L.: supervision, methodology implementation, 845 experiment execution, data collection, data analysis and interpretation, manuscript 846 revision; I.P.P., I.M., D.G., J.A., S.M., M.C.S., D.D.: methodology implementation, 847 experiment execution, data collection, data analysis; F.L.P.: supervision, data analysis 848 and interpretation, manuscript revision; M.J.S., F.H.R., P.S.-C.: data analysis and 849 interpretation; A.I.R.-B.: conception design, supervision, and methodology 850 implementation, data analysis and interpretation, manuscript writing; F.M.D.: conception 851 and design, data analysis and interpretation, manuscript writing and revision; J.C.R.: 852 conception and design, supervision, methodology implementation, experiment execution, 853 data collection, data analysis and interpretation, manuscript writing and revision.

854

855 References

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO₂
enrichment (FACE)? A meta-analytic review of the responses of photosynthesis,
canopy properties and plant production to rising CO₂. New Phytol 165:351-372.

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal
conductance to rising [CO₂]: mechanisms and environmental interactions. Plant Cell
Environ 30:258-270.

- Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the "source–sink" hypothesis
 of down-regulation of photosynthesis in elevated [CO₂] in the field with single gene
 substitutions in *Glycine max*. Agric For Meteo 122:85-94.
- Avila RT, Almeida WL, Costa LC, Machado KL, Barbosa ML, de Souza RP, Martino PB,
 Juárez MAT, Marçal DMS, Martins SCV, Ramalho JDC, DaMatta FM (2020a)

867 Elevated air [CO₂] improves photosynthetic performance and alters biomass 868 accumulation and partitioning in drought-stressed coffee plants. Environ Exp Bot 869 177:104137.

Avila RT, Cardoso AA, Almeida WL, Costa LC, Machado KLG, Barbosa ML, de Souza
RPB, Oliveira LA, Batista DS, Martins SCV, Ramalho JDC, DaMatta FM (2020b)
Coffee plants respond to drought and elevated [CO₂] through changes in stomatal
function, plant hydraulic conductance, and aquaporin expression. Environ Exp Bot
177:104148.

Avila RT, Martins SCV, Sanglard LMVP, Santos MS, Menezes-Silva PE, Detmann KC,
Sanglard ML, Cardoso AA, Morais LE, Vital CE, Araújo WL, Nunes-Nesi A, DaMatta
FM (2020c) Starch accumulation does not lead to feedback photosynthetic
downregulation in girdled coffee branches under varying source-to-sink ratios. Trees
34:1-16.

Bader MK-F, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in
mature deciduous forest trees after 8 years of free air CO₂ enrichment. Planta
232:1115-1125.

Birami B, Nägele T, Gattmann M, Preisler Y, Gast A, Arneth A, Ruehr NK (2020) Hot
drought reduces the effects of elevated CO₂ on tree water use efficiency and carbon
metabolism. New Phytol 226:1607-1631.

Brodribb TJ, McAdam SA (2017) Evolution of the stomatal regulation of plant water
content. Plant Physiol 174:639-649.

888 Brum CN, Melo FE (2013) Modifications in the metabolism of carbohydrates in (*Coffea* 889 *arabica* L. cv. Siriema) seedlings under drought conditions. Coffee Sci 8:140-147.

Buckley TN (2019) How do stomata respond to water status? New Phytol 224:21-36.

894

25:2709-2716.

Chater C, Peng K, Movahedi M, Dunn JA, Walker HJ, Liang Y-K, McLachlan DH, Casson
S, Isner JC, Wilson I, Neill SJ, Hedrich R, Gray JE, Hetherington AM (2015) Elevated
CO₂-induced responses in stomata require ABA and ABA signaling. Cur Biol

- Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress:
 regulation mechanisms from whole plant to cell. Ann. Bot. 103:551-560.
- 897 Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought -

From genes to the whole plant. Funct Plant Biol 30:239-264.

- Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits:
 prospects for water-saving agriculture. J Exp Bot, 55:2365-2384.
- 901 Chen Y-E, Liu W-J, Su Y-Q, Cui J-M, Zhang X-W, Yuan M, Zhang H-Y, Yuan S (2016)
- 902 Different response of photosystem II to short and long-term drought stress in
 903 Arabidopsis thaliana. Physiol Plant 158:225-235.
- 904 Chu H-A, Chiu Y-F (2016) The Roles of cytochrome b₅₅₉ in assembly and photoprotection
 905 of Photosystem II revealed by site-directed mutagenesis studies. Front. Plant Sci.
 906 6:1261.
- 907 Costa MJ, Grant OM, Chaves MM (2013) Thermography to explore plant–environment
 908 interactions. J Exp Bot 64:3937-3949.
- 909 Craparo ACW, Steppe K, Van Asten PJA, Läderach P, Jassogne LTP, Grab SW (2017)
- 910 Application of thermography for monitoring stomatal conductance of *Coffea arabica*911 under different shading systems. Sci Total Environ 609:755-763.
- Dalal VK, Tripathy BC (2018) Water-stress induced downsizing of light-harvesting antenna
 complex protects developing rice seedlings from photo-oxidative damage. Sci Rep
 8:5955.
- DaMatta FM, Avila RT, Cardoso AA, Martins S, Ramalho JC (2018) Physiological and
 agronomic performance of the coffee crop in the context of climate change and global
 warming: a review. J Agric Food Chem 66:5264-5274.
- DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SCV, Sanglard LMVP, Morais LE,
 Torre-Neto A, Ghini R (2016) Sustained enhancement of photosynthesis in coffee
 trees grown under free-air CO₂ enrichment conditions: disentangling the contributions
 of stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341-352.

- DaMatta FM, Rahn E, Läderach P, Ghini R, Ramalho JC (2019) Why could the coffee
 crop endure climate change and global warming to a greater extent than previously
 estimated?. Clim Change 152:167-178.
- Davis AP, Chadburn H, Moat J, O'Sullivan R, Hargreaves S, Lughadha EN (2019) High
 extinction risk for wild coffee species and implications for coffee sector sustainability.
 Sci Adv 5:eaav3473.
- 928 Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, 929 Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, 930 Cenci A, Combes MC, Crouzillat D, Silva C, Daddiego L, De Bellis F, Dussert S, 931 Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, 932 Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, 933 Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, 934 Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, De 935 Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff 936 D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome 937 provides insight into the convergent evolution of caffeine biosynthesis. Science 938 345:1181-1184.
- Drake BG, González-Meler MA, Long SP (1997) More efficient plants: A consequence of
 rising atmospheric CO₂? Annu Rev Plant Physiol Plant Mol Biol 48:609-639.

Dubberstein D, Rodrigues WP, Semedo JN, Rodrigues AP, Pais IP, Leitão AE, Partelli FL,
Campostrini E, Reboredo F, Scotti-Campos P, Lidon FC, Ribeiro-Barros AI, DaMatta
FM, Ramalho JC (2018) Mitigation of the negative impact of warming on the coffee
crop: The role of increased air [CO₂] and management strategies. In: Shanker A (ed)
Climate Resilient Agriculture, Strategies and Perspectives. Chapter 4, IntechOpen,
London, pp 57-85.

947 Dubberstein D, Lidon FC, Rodrigues AP, Semedo JN, Marques I, Rodrigues WP, Gouveia
948 D, Armengaud J, Semedo MC, Martins S, Simões-Costa MC, Moura I, Pais IP, Scotti949 Campos P, Partelli FL, Campostrini E, Ribeiro-Barros AI, DaMatta FM, Ramalho JC

950 (2020) Resilient and sensitive key points of the photosynthetic machinery of *Coffea*951 spp. to the single and superimposed exposure to severe drought and heat stresses.
952 Front Plant Sci 11:1049.

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins
S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production
under drought and heat stress: plant responses and management options. Front Plant
Sci 8:1147.

- Fang L, Abdelhakim LOA, Hegelund JN, Li S, Liu J, Peng X, Li X, Wei Z, Liu F (2019)
 ABA-mediated regulation of leaf and root hydraulic conductance in tomato grown at
 elevated CO₂ is associated with altered gene expression of aquaporins. Hortic Res
 6:104.
- Fortunato A, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC
 (2010) Biochemical and molecular characterization of the antioxidative system of *Coffea* spp. under cold conditions in genotypes with contrasting tolerance. J Plant
 Physiol 167:333-342.
- 965 Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO₂ effects on
 966 stomatal size and density over geologic time. PNAS, USA 106:10343-10347.
- Galmés J, Aranjuelo I, Medrano H, Flexas J (2013) Variation in Rubisco content and
 activity under variable climatic factors. Photosynth Res 117:73-90.

Ghini R, Torre-Neto A, Dentzien AFM, Guerreiro-Filho O, Lost R, Patrício FRA, Prado
JSM, Thomaziello RA, Bettiol W, DaMatta FM (2015) Coffee growth, pest and yield
responses to free-air CO₂ enrichment. Clim Change 132:307-320.

972 Gómez-Bellot MJ, Nortes PA, Sánchez-Blanco MJ, Ortuño MF (2015) Sensitivity of
973 thermal imaging and infrared thermometry to detect water status changes in
974 *Euonymus japonica* plants irrigated with saline reclaimed water. Biosyst Eng 133:21975 32.

976 Grant OM, Tronina Ł, Jones HG, Chaves MM (2007) Exploring thermal imaging variables
977 for the detection of stress responses in grapevine under different irrigation regimes. J

978 Exp Bot 58:815-825.

- 979 Grisi FA, Alves JD, Castro EM, Oliveira C, Biagiotti G, Melo LA (2008) Leaf anatomical
 980 evaluations in 'Catuaí' and 'Siriema' coffee seedlings submitted to water stress.
 981 Ciência Agrotec 32:1730-1736.
- 982 Hasan MM-U, Ma F, Prodhan ZH, Li F, Shen H, Chen Y, Wang X (2018) Molecular and
- 983 physio-biochemical characterization of cotton species for assessing drought stress984 tolerance. Int J Mol Sci 19:2636.
- Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance
 Trends Plant Sci 6:431-438.
- Huang W, Zhang S-B, Cao K-F (2011) Cyclic electron flow plays an important role in
 photoprotection of tropical trees illuminated at temporal chilling temperature. Plant
 Cell Physiol 52:297-305.
- Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M,
 Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water
 deficit at low cost through changes of carbon usage: an integrated perspective using
 growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357372.
- Hurlbert SH. (1984) Pseudoreplication and the design of ecological field experiments. Ecol
 Monogr 54:187-211.
- Hurlbert SH (2004) On misinterpretations of pseudoreplication and related matters: a reply
 to Oksanen. Oikos 104:591-597.
- 999 Idso SB, Kimball BA (1997) Effects of long-term atmospheric CO₂ enrichment on the
 1000 growth and fruit production of sour orange trees. Global Change Biol 3:89-96
- Ifuku K., Yamamoto Y., Ono T., Ishihara S., Sato F. (2005) PsbP protein, but not PsbQ
 protein, is essential for the regulation and stabilization of photosystem II in higher
 plants. Plant Physiol 139:1175-1184.
- 1004 IPCC Intergovernmental Panel on Climate Change (2013). Climate change 2013: The
 1005 physical science basis. Summary for policymakers, technical summary and frequent

asked questions. Part of the working group I contribution to the fifth assessment
report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, G-K
Plattner, MMB Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley
(eds.). Intergovernmental Panel on Climate Change, p. 203. ISBN 978-92-9169-1388.

1011 IPCC - Intergovernmental Panel on Climate Change (2014). Climate Change 2014:
1012 Mitigation of Climate Change. Contribution of Working Group III to the Fifth
1013 Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer,
1014 O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.;
1015 Baum, I.; Brunner, S.; Eickemeier, P.; Kriemann, B.; Savolainen, J.; Schlömer, S.;
1016 Von Stechow, C.; Zwickel, T.; Minx J.C. (eds.)]. Cambridge University Press,
1017 Cambridge, United Kingdom and New York, NY, USA. 2014.

1018 IPCC - Intergovernmental Panel on Climate Change (2018). Summary for policymakers. 1019 In: V. Masson -Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. 1020 Pirani, W. Moufouma -Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. 1021 Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (Eds.), 1022 Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming 1023 of 1.5 °C above pre -industrial levels and related global greenhouse gas emission 1024 pathways, in the context of strengthening the global response to the threat of climate 1025 change, sustainable development, and efforts to eradicate poverty. Switzerland: 1026 World Meteorological Organization.

Johnson SN, Gherlenda AN, Frew A, Ryalls JMW (2016) The Importance of testing
multiple environmental factors in legume–insect research: replication, reviewers, and
rebuttal. Front Plant Sci 7:489.

Kim E-H, Li X-P, Razeghifard R, Anderson JM, Niyogi KK, Pogson BJ, Chow WS (2009)
The multiple roles of light-harvesting chlorophyll a/b-protein complexes define
structure and optimize function of Arabidopsis chloroplasts: A study using two
chlorophyll b-less mutants. Biochim Biophys Acta 1787:973-984.

- Kohzuma K, Cruz JA, Akashi K, Hoshiasu S, Munekage N, Okota A, Kramer DM (2009)
 The long-term responses of the photosynthetic proton circuit to drought. Plant Cell
 Environ 32:209-219.
- Koutavas A (2013) CO₂ fertilization and enhanced drought resistance in Greek firs from
 Cephalonia Island, Greece. Global Change Biol 19:529-539.
- Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New flux parameters for the
 determination of Q_A redox state and excitation fluxes. Photosyn Res 79:209-218.
- Ksas B, Légeret B, Ferreti U, Chevalier A, Pospisil P, Alric J, Havaux M (2018) The
 plastoquinone pool outside the thylakoid membrane serves in plant photoprotection
 as a reservoir of singlet oxygen scavengers. Plant Cell Environ 41:2277-2287.
- Kumar RR, Goswami S, Singh K, Dubey K, Singh S, Sharma R, Verma N, Kala YK, Rai
 GK, Grover M, Mishra DC, Singh B, Pathak H, Chinnusamy V, Rai A, Praveen S
 (2016) Identification of putative RuBisCo Activase (TaRca1) The catalytic chaperone
 regulating carbon assimilatory pathway in wheat (*Triticum aestivum*) under the heat
 stress. Front Plant Sci 7:986.
- Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and
 approaches for their mitigation. Front Chem 6:26.
- Lang Y, Wang M, Xia J, Zhao Q (2018) Effects of soil drought tress on photosynthetic gas
 exchange traits and chlorophyll fluorescence in *Forsythia suspense*. J For Res 29:
 45-53.
- Lawson T, McElwain JCM (2016) Evolutionary trade-offs in stomatal spacing. New Phytol210:1149-1151.
- Leakey ADB, Ainsworth EA, Bernacchi CJ, Alistair R, Long SP, Ort DR (2009) Elevated
 CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from
 FACE. J Exp Bot 60:2859-2876.
- Li S, Li X, Wei Z, Liu F (2020) ABA-mediated modulation of elevated CO₂ on stomatal
 response to drought. Curr Op Plant Biol (in press).
 https://doi.org/10.1016/j.pbi.2019.12.002

- Liu R, Xu YH, Jiang S-C, Lu K, Lu Y-F, Feng X-J, Wu Z, Liang S, Yu Y-T, Wang X-F,
 Zhang D-P (2013) Light-harvesting chlorophyll a/b-binding proteins, positively
 involved in abscisic acid signalling, require a transcription repressor, WRKY40, to
 balance their function. J Exp Bot 64:5443-5456.
- Liu J, Hu T, Fang L, Peng X, Liu F (2019) CO₂ elevation modulates the response of leaf
 gas exchange to progressive soil drying in tomato plants. Agric For Meteorol 268:1811068 188.
- Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide:
 plants FACE the future. Annu Rev Plant Biol 55:591-628.
- 1071 Lu Y (2016) Identification and roles of photosystem II assembly, stability, and repair
 1072 factors in Arabidopsis. Front Plant Sci 7:168.
- Magrach A, Ghazoul J (2015) Climate and pest-driven geographic shifts in global coffee
 production: Implications for forest cover, biodiversity and carbon storage. PLoS ONE
 10:e0133071.
- Martins LD, Tomaz MA, Lidon FC, DaMatta FM, Ramalho JC (2014) Combined effects of
 elevated [CO₂] and high temperature on leaf mineral balance in *Coffea* spp. plants.
 Clim Change 126:365-379.
- Martins .MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, Pais IP, Martins LD,
 Silva MJ, Reboredo FH, Partelli FL, Campostrini E, Tomaz MA, Scotti-Campos P,
 Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC (2016) Protective response
 mechanisms to heat stress in interaction with high [CO₂] conditions in *Coffea* spp.
 Front Plant Sci 7:947.
- Martins SCV, Sanglard ML, Morais LE, Menezes-Silva PE, Mauri R, Avila RT, Vital CE,
 Cardoso AA, DaMatta FM (2019) How do coffee trees deal with severe natural
 droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf
 level. Trees 33:1679-1693.
- Matos MC, Campos PS, Ramalho JC, Medeira MC, Maia MI, Semedo JN, Marques N,
 Matos A (2002) Photosynthetic activity and cellular integrity of the Andean legume

1090 *Pachyrhizus ahipa* (Wedd.) Parodi under heat and water stress. Photosynthetica.1091 40:493-501.

- Melo EF, Fernandes-Brum CN, Pereira FJ, Castro EM, Chalfun-Júnior A (2014) Anatomic
 and physiological modifications in seedlings of *Coffea arabica* cultivar Siriema under
 drought conditions. Ciência Agrotec 38:25-33.
- Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its
 photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol
 44:457-462.
- Moutinho-Pereira J, Gonçalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009)
 Effects of elevated CO₂ on grapevine (*Vitis vinifera* L.): Physiological and yield
 attributes. Vitis 48:159-165.
- Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. (2011) Water
 deficits uncouple growth from photosynthesis, increase C content, and modify the
 relationships between C and growth in sink organs. J Exp Bot 62:1715-1729.
- Murata N, Nishiyama Y (2018) ATP is a driving force in the repair of photosystem II during
 photoinhibition. Plant Cell Environ 41:285-299.
- 1106 Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of 1107 photosystem II under environmental stress. Biochim Biophys Acta 1767:414-421.
- 1108 Newman JA, Anand M, Henry HAL, Hunt S, Gedalof Z (2011) Climate Change Biology.
 1109 Wallingford, UK: CABI.
- 1110 Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical
 1111 quenching in photosynthesis? J Exp Bot 56:375-382.
- 1112 Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J,
- 1113 McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF,
- 1114 Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren
- 1115 R (2005) Forest response to elevated CO₂ is conserved across a broad range of
 productivity. PNAS, USA 102:18052-18056.
- 1117 Osorio N (2002) The Global Coffee Crisis: A Threat to Sustainable Development.

1118 International Coffee Organization, London.

- Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects ofdrought stress. Ann Bot 89:833-839.
- Pastenes C, Horton H (1999) Resistance of photosynthesis to high temperature in two
 bean varieties (*Phaseolus vulgaris* L.). Photosynth Res 62:197-203.
- 1123 Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J (2017) Rubisco and rubisco
- activase play an important role in the biochemical limitations of photosynthesis in rice,
 wheat, and maize under high temperature and water deficit. Front Plant Sci 8:490.
- Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro E-M,
 Jansson S (2014) The Light-harvesting chlorophyll a/b binding proteins Lhcb1 and
 Lhcb2 play complementary roles during state transitions in *Arabidopsis*. Plant Cell
 26:3646-3660.
- Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought
 tolerance in relation to protection against oxidative stress in clones of *Coffea canephora* subjected to long-term drought. Plant Sci 167:1307-1314.
- Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010)
 Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light
 availabilities in winter conditions. J Plant Physiol 167:1052-1060.
- Possell M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the
 tropical tree *Acacia nigrescens* when grown in different CO₂ concentrations. Planta
 229:837-846.
- 1139 Rakocevic M, Braga KSM, Batista ER, Maia AHN, Scholz MBS, Filizola HF (2020) The
 1140 vegetative growth assists to reproductive responses of Arabic coffee trees in a long1141 term FACE experiment. Plant Growth Reg 91:305-316.
- 1142 Ramalho JC, Campos PS, Quartin VL, Silva MJ, Nunes MA (1999) High irradiance
 1143 impairments on electron transport, ribulose-1,5-bisphosphate carboxylase/oxygenase
 1144 and N assimilation as function of N availability in *Coffea arabica* L. plants. J Plant
 1145 Physiol 154:319-326.

Ramalho JC, Campos PS, Teixeira M, Nunes MA (1998) Nitrogen dependent changes in
antioxidant systems and in fatty acid composition of chloroplast membranes from *Coffea arabica* L. plants submitted to high irradiance. Plant Sci 135:115-124.

Ramalho JC, Pais IP, Leitão AE, Guerra M, Reboredo FH, Máguas CM, Carvalho ML,
Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM (2018a). Can elevated air
[CO₂] conditions mitigate the predicted warming impact on the quality of coffee bean?
Front Plant Sci 9:287.

- Ramalho JC, Pons T, Groeneveld H, Azinheira HG, Nunes MA (2000) Photosynthetic
 acclimation to high light conditions in mature leaves of *Coffea arabica* L.: Role of
 xanthophylls, quenching mechanisms and nitrogen nutrition. Austr J Plant Physiol
 27:43-51.
- 1157 Ramalho JC, Pons T, Groeneveld H, Nunes MA (1997) Photosynthetic responses of
 1158 *Coffea arabica* L. leaves to a short-term high light exposure in relation to N
 1159 availability. Physiol Plant 101:229-239.
- Ramalho JC, Quartin V, Leitão AE, Campos PS, Carelli ML, Fahl JI, Nunes MA (2003)
 Cold acclimation ability of photosynthesis among species of the tropical *Coffea*genus. Plant Biol 5:631-641.
- Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AF, Pais IP,
 Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI (2018b) Stress
 cross-response of the antioxidative system promoted by superimposed drought and
 cold conditions in *Coffea* spp. PloS ONE 13:e0198694.
- 1167 Ramalho JC, Rodrigues AP, Semedo JN, Pais IP, Martins LD, Simões-Costa MC, Leitão

1168 AE, Fortunato AS, Batista-Santos P, Palos IM, Tomaz MA, Scotti-Campos P, Lidon

- FC, DaMatta FM (2013) Sustained photosynthetic performance of *Coffea* spp. under
 long-term enhanced [CO₂]. PloS ONE 8:e82712.
- 1171 Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato A, Lidon FC (2014) Moderate water
 1172 stress causes differential stomatal and non-stomatal changes on the photosynthetic
 1173 functioning of *Phaseolus vulgaris* L. genotypes. Plant Biol 16:133-146.

1174 Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of
1175 photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol
1176 161:1189-1202.

Rodrigues ML, Santos TP, Rodrigues AP, de Souza CR, Lopes CM, Maroco JP, Pereira
JS, Chaves MM (2008) Hydraulic and chemical signalling in the regulation of stomatal
conductance and plant water use in field grapevines under water deficit irrigation.
Funct Plant Biol 35:565-579.

Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simoes-Costa
MC, Pais IP, Leitão AE, Colwell F, Goulão L, Máguas C, Maia R, Partelli FL,
Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho
JC (2016) Long-term elevated air [CO₂] strengthens photosynthetic functioning and
mitigates the impact of supra-optimal temperatures in tropical *Coffea arabica* and *Coffea canephora* species. Global Change Biol 22:415-431.

1187 Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: Mechanism and
1188 effectiveness in protecting plants from photodamage. Plant Physiol 170:1903-1916.

Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate
change. J Exp Bot 59:1581-1595.

Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokoda A (2011)
Responses of the photosynthetic electron transport system to excess light energy
caused by water deficit in wild watermelon. Physiol Plant 142:247-264.

Schöttler MA, Toth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher
plants: environmental acclimation and photosynthetic flux control. Front Plant Sci
5:188.

Scotti-Campos P, Pais IP, Ribeiro-Barros AI, Martins LD, Tomaz MA, Rodrigues WP,
Campostrini E, Semedo JN, Fortunato AS, Martins MQ, Partelli FL, Lidon FC,
DaMatta FM, Ramalho JC (2019) Lipid profile adjustments may contribute to warming
acclimation and to heat impact mitigation by elevated [CO₂] in *Coffea* spp. Environ
Exp Bot 167:103856.

Semedo JN, Rodrigues WP, Martins MQ, Martins LD, Pais IP, Rodrigues AP, Leitão AE,
Partelli FL, Campostrini E, Tomaz MA, Reboredo FH, Scotti-Campos P, RibeiroBarros AI, Lidon FC, DaMatta FM, Ramalho JC (2018) Coffee responses to drought,
warming and high [CO₂] in a context of future climate change scenarios. In: Alves F.,
Leal W., Azeiteiro U (eds) Theory and Practice of Climate Adaptation, Chapter 26,
Climate Change Management Series, Springer, Cham, Switzerland, pp 465-477. doi:
10.1007/978-3-319-72874-2.

- Silva VA, Prado FM, Antunes WC, Paiva RM, Ferrão MAG, Andrade AC, Di Mascio P,
 Loureiro ME, DaMatta FM, Almeida AM (2018) Reciprocal grafting between clones
 with contrasting drought tolerance suggests a key role of abscisic acid in coffee
 acclimation to drought stress. Plant Growth Regul 85:221-229.
- Sun Y, Gao Y, Wang H, Yang X, Zhai H, Du Y (2018) Stimulation of cyclic electron flow
 around PSI as a response to the combined stress of high light and high temperature
 in grape leaves. Funct Plant Biol 45:1038-1045.
- Tausz-Posch S, Tausz M, Bourgault M (2020) Elevated [CO₂] effects on crops: Advances
 in understanding acclimation, nitrogen dynamics and interactions with drought and
 other organisms. Plant Biol 22:38-51.
- Tazoe Y, Hanba YT, Furumoto T, Noguchi K, Terashima I (2008) Relationships between
 quantum yield for CO₂ assimilation, activity of key enzymes and CO₂ leakiness in
 Amaranthus cruentus, a C4 dicot, grown in high or low light. Plant Cell Physiol. 49:
 19-29.
- Tovuu A, Zulfugarov IS, Lee C (2013) Correlations between the temperature dependence
 of chlorophyll fluorescence and the fluidity of thylakoid membranes. Physiol Plant
 147:409-416.
- van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for
 sustainable production of arabica coffee (*Coffea arabica* L.): A review. Euphytica
 204:243-256.
- 1229 Vanaja M, Yadav SK, Archana G, Lakshmi NJ, Reddy R, Vagheera P, Razak SKA,

- 1230 Maheswari M, Venkateswarlu B (2011) Response of C_4 (maize) and C_3 (sunflower) 1231 crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil 1232 Environ 57:207- 215.
- 1233 Vu JCV, Gesch RW, Allen LH, Boote KJ, Bowes G (1999) CO₂ enrichment delays a rapid,
- drought-induced decrease in Rubisco small subunit transcript abundance. J PlantPhysiol 155:139-142.
- Wang A, Lam SK, Hao X, Li FY, Zong Y, Wang H, Li P (2018) Elevated CO₂ reduces the
 adverse effects of drought stress on a high-yielding soybean (*Glycine max* (L.) Merr.)
 cultivar by increasing water use efficiency. Plant Physiol Biochem 132:660-665.
- Wang Y, Xu C, Wu M, Chen G (2016) Characterization of photosynthetic performance
 during reproductive stage in high-yield hybrid rice LYPJ exposed to drought stress
 probed by chlorophyll a fluorescence transient. Plant Growth Regul 81:489-499.
- 1242 Xiong L, Wang R-G, Mao G, Koczan JM (2006) Identification of drought tolerance
 1243 determinants by genetic analysis of root response to drought stress and abscisic acid.
 1244 Plant Physiol 142:1065-1074.
- 1245 Zargar SM, Gupta N, Nazir M, Mahajan R, Malik FA, Sof NR, Shikari AB, Salgotra RK
 (2017) Impact of drought on photosynthesis: Molecular perspective. Plant Gene
 1247 11:154-159.
- Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport
 around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci
 Rep 6:20147.
- Yan F, Li X, Liu F (2017) ABA signaling and stomatal control in tomato plants exposure to
 progressive soil drying under ambient and elevated atmospheric CO₂ concentration.
 Environ Exp Bot 139:99-104.
- Yang L, Huanga J, Yanga H, Donga G, Liub G, Zhub J, Wanga Y (2006) Seasonal
 changes in the effects of free-air CO₂ enrichment (FACE) on dry matter production
 and distribution of rice (*Oryza sativa* L.). Field Crops Res 98:12-19.
- 1257

1258 Figure legends

1259

Figure 1. Pre-*dawn* leaf water potential (Ψ_{pd}) in *Coffea canephora cv.* Conilon Clone 153 (CL153) and *C. arabica cv.* Icatu plants grown under ambient (380 µL L⁻¹ – white bars) or elevated (700 µL L⁻¹ – black bars) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit. For each parameter, different letters after the mean values \pm SE (n=5-6) express significant differences between water treatments within each [CO₂] (a, b, c), or between [CO₂] within each water treatment (A, B), always separately for each genotype.

1267

1268 **Figure 2.** Water stress index (CWSI) (A) and stomatal conductance index (I_G) (B), 1269 calculated from leaves of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu plants grown under ambient (380 μ L L⁻¹ – white bars) and elevated (700 1270 μ L L⁻¹ – black bars) CO₂ conditions, and submitted to well-watered (WW), moderate 1271 1272 (MWD) and severe (SWD) water deficit. For each parameter, different letters after the 1273 mean values \pm SE (n=5) express significant differences between water treatments within 1274 each [CO₂] (a, b, c), or between [CO₂] within each water treatment (A, B), always 1275 separately for each genotype.

1276

1277 Figure 3. Leaf gas exchange parameters A) net photosynthesis rate (P_n), B) stomatal 1278 conductance to water vapor (g_s) , C) internal concentration of CO₂ (C_i), and D) 1279 photosynthetic capacity (A_{max}) in Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu plants grown under ambient (380 μ L L⁻¹ – white bars) or elevated (700 μ L 1280 1281 L^{-1} – black bars) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) 1282 or severe (SWD) water deficit. For each parameter, different letters after the mean values 1283 \pm SE (n=5-6) express significant differences between water treatments within each [CO₂] 1284 (a, b, c), or between [CO₂] within each water treatment (A, B), always separately for each

1285 genotype.

1286

Figure 4. Abscisic acid (ABA) content from leaves of *Coffea canephora* cv. Conilon Clone 1288 153 (CL153) and *C. arabica* cv. Icatu plants grown under ambient (380 μ L L⁻¹ – white 1289 bars) or elevated (700 μ L L⁻¹ – black bars) CO₂ conditions, and submitted to well-watered 1290 (WW), moderate (MWD) or severe (SWD) water deficit. For each parameter, different 1291 letters after the mean values \pm SE (n=4) express significant differences between water 1292 treatments within each [CO₂] (a, b, c), or between [CO₂] within each water treatment (A, 1293 B), always separately for each genotype.

1294

1295 Figure 5. Potential thylakoid electron transport rates of PSII, A) with (+OEC), or B) without 1296 (-OEC) the oxygen evolving complex participation, and of C) PSI in Coffea canephora cv. 1297 Conilon Clone 153 (CL153) and C. arabica cv. Icatu plants grown under ambient (380 µL 1298 L^{-1} – white bars) or elevated (700 µL L^{-1} – black bars) CO₂ conditions, and submitted to 1299 well-watered (WW), moderate (MWD) or severe (SWD) water deficit. For each parameter, 1300 different letters after the mean values \pm SE (n=3) express significant differences between 1301 water treatments within each [CO₂] (a, b, c), or between [CO₂] within each water 1302 treatment (A, B), always separately for each genotype.

1303

1304 Figure 6. Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) initial activity, B) 1305 total activity, and C) activation sate, and D) ribulose-5-phosphate kinase (Ru5PK) 1306 maximal activity in Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu plants grown under ambient (380 μ L L⁻¹ – white bars) or elevated (700 μ L L⁻¹ – black 1307 1308 bars) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit. For each parameter, different letters after the mean values \pm SE 1309 (n=4) express significant differences between water treatments within each [CO₂] (a, b, c), 1310 1311 or between [CO₂] within each water treatment (A, B), always separately for each 1312 genotype.

Table 1. Leaf chlorophyll *a* fluorescence parameters in *Coffea canephora cv.* Conilon Clone 153 (CL153) and *C. arabica cv.* lcatu plants grown under ambient (380 μ L L⁻¹) or elevated (700 μ L L⁻¹) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit. Parameters include the: initial fluorescence (F₀), maximum *PSII* photochemical efficiency (F_v/F_m), photochemical quenching coefficient (q_L), actual PSII photochemical efficiency of energy conversion (F_v'/F_m'); and the rate constant of PSII inactivation (F_s/F_m'), as well as the estimate of quantum yields of non-cyclic electron transport (Y_(II)), of regulated energy dissipation in PSII (Y_(NO)). For each parameter, different letters after the mean values ± SE (n=5) express significant differences between water treatments within each [CO₂] (a, b, c), or between [CO₂] within each water treatment (A, B), always separately for each genotype.

Genotype	[CO₂] (µL L ⁻¹)	Water treatment	Fo	F√/F _m	F _v '/F _m '	Y (II)	Y _(NPQ)	Y _(NO)	q∟	Fs/Fm'
		ww	0.210±0.004 aB	0.770±0.008 aA	0.595±0.023 aA	0.358±0.044 aA	0.245±0.043 bA	0.397±0.015 aA	0.448±0.066 aA	0.642±0.044 bA
	380	MWD	0.224±0.007 aA	0.771±0.010 aA	0.550±0.015 aA	0.130±0.034 bB	0.552±0.032 aA	0.319±0.024 aA	0.132±0.038 bA	0.870±0.034 aA
CL153 -		SWD	0.233±0.008 aA	0.705±0.025 bA	0.355±0.037 bA	0.065±0.010 bA	0.615±0.021 aA	0.320±0.026 aA	0.156±0.030 bA	0.935±0.010 aA
	700	WW	0.285±0.014 aA	0.774±0.006 aA	0.642±0.013 aA	0.396±0.023 aA	0.303±0.021 bA	0.301±0.022 aB	0.375±0.032 aA	0.604±0.023 bA
		MWD	0.235±0.007 bA	0.777±0.010 aA	0.649±0.025 aA	0.354±0.021 aA	0.272±0.041 bB	0.373±0.035 aA	0.304±0.031 aA	0.646±0.021 bB
		SWD	0.236±0.009 bA	0.747±0.023 aA	0.423±0.039 bA	0.153±0.032 bA	0.564±0.039 aA	0.283±0.015 aA	0.247±0.044 aA	0.847±0.032 aA
Icatu -	380	ww	0.251±0.007 aB	0.753±0.005 aA	0.593±0.022 aA	0.356±0.029 aA	0.295±0.034 bA	0.349±0.018 aA	0.380±0.029 aA	0.644 ± 0.029 bA
		MWD	0.247±0.009 aA	0.755±0.011 aA	0.416±0.026 bA	0.191±0.032 bA	0.564±0.039 aA	0.246±0.020 aA	0.345±0.063 abA	0.809±0.032 aA
		SWD	0.244±0.005 aA	0.761±0.008 aA	0.449±0.020 bA	0.136±0.013 bA	0.585±0.026 aA	0.280±0.024 aA	0.205±0.028 bA	0.864±0.013 aA
		ww	0.308±0.011 aA	0.734±0.004 aA	0.588±0.019 aA	0.351±0.029 aA	0.314±0.019 bA	0.335±0.024 aA	0.385±0.033 aA	0.649±0.029 bA
	700	MWD	0.254±0.007 bA	0.744±0.012 aA	0.529±0.024 aA	0.265±0.019 abA	0.361±0.043 abB	0.374±0.035 aA	0.320±0.021 abA	0.735±0.019 abA
		SWD	0.242±0.005 bA	0.757±0.008 aA	0.521±0.032 aA	0.199±0.017 bA	0.486±0.028 aA	0.315±0.024 aA	0.236±0.024 bA	0.801±0.017 aA

Table 2. Contents of the thylakoid electron carriers plastoquinone (PQ-9), and cytochromes (Cyt) b_{559LP} , b_{559HP} ; b_{563} and *f* in *Coffea canephora cv.* Conilon Clone 153 (CL153) and *C. arabica cv.* Icatu plants grown under ambient (380 µL L⁻¹) or elevated (700 µL L⁻¹) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit. For each parameter, different letters after the mean values \pm SE (n=3) express significant differences between water treatments within each [CO₂] (a, b, c), or between [CO₂] within each water treatment (A, B), always separately for each genotype.

Genotype	[CO₂] (µL L ⁻¹)	Water treatment	PQ-9 (nmol g ⁻¹ DW)	Cyt b 559LP (nmol g ⁻¹ DW)	Суt <i>b</i>_{559НР} (nmol g⁻¹ DW)	Cyt <i>f</i> (nmol g ⁻¹ DW)	Cyt b 563 (nmol g ⁻¹ DW)
		ww	318±60 aA	14.5±0.4 aA	17.0±0.4 aB	16.7±0.5 aA	26.2±1.5 aA
CL153	380	MWD	329±29 aA	8.7±0.2 bB	10.2±0.1 bB	11.5±0.1 bB	16.0±0.1 bB
		SWD	381±33 aB	10.1±0.2 bB	11.8±0.2 bB	13.3±0.1 bB	18.5±0.1 bB
		ww	383±57 bA	15.9±0.6 aA	18.4±0.4 aA	17.5±0.8 abA	28.2±1.6 aA
	700	MWD	530±12 abA	11.3±0.2 bA	13.5±0.2 bA	14.6±0.1 bA	20.4±0.2 bA
		SWD	775±59 aA	14.6±0.3 aA	17.4±0.2 aA	18.9±0.1 aA	26.3±0.3 abA
		ww	315±89 bA	13.5±0.5 aA	15.3±0.4 aA	16.4±0.5 bA	26.7±1.4 aB
	380	MWD	585±111 abA	13.4±0.2 aA	15.3±0.2 aA	19.2±0.2 abA	25.8±0.2 aA
lcatu		SWD	638±121 aA	14.6±0.3 aA	16.7±0.2 aA	20.9±0.2 aA	28.1±0.2 aB
louiu		ww	460±53 aA	15.3±0.5 aA	16.3±0.3 aA	18.2±0.4 abA	31.7±0.5 aA
	700	MWD	461±18 aA	10.4±0.3 bB	11.0±0.2 bB	15.7±1.3 bB	19.3±0.1 bB
		SWD	585±69 aA	15.9±0.3 aA	18.3±0.5 aA	22.0±0.2 aA	31.5±0.9 aA

Table 3. Changes in the relative abundance of proteins from the photosynthetic apparatus, regarding Photosystem (PS) I and II, Oxygen Evolving Complex (OEC, related to PSII), light harvesting complexes (LHC) I and II, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO Activase, as well as associated with Cyclic Electron Flow (CEF) involving both PSs, in *Coffea canephora cv.* Conilon Clone 153 (CL153) and *C. arabica cv.* Icatu plants grown under ambient (380 μ L L⁻¹) or elevated (700 μ L L⁻¹) CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit. For each protein, different letters after the mean values ± SE (n=3) express significant differences between water treatments within each [CO₂] (a, b), or between [CO₂] within each water treatment (A, B), always separately for each genotype.

Genotype	CL153							Icatu						
[CO₂] (µL L ⁻¹)	380			700				380		700				
Water Treatment	ww	MWD	SWD	ww	MWD	SWD	ww	MWD	SWD	ww	MWD	SWD		
				F	Photosystem	II and Oxy	/gen Evolvir	ng Complex	(
Cc07_g05350 - Oxygen-evolving enhancer protein 1, chloroplastic	227.4±12.0aA	226.7±52.9aA	247.7±47.0aA	189.7±43.2aA	221.7±6.7aA	197.7±22.4aA	184.7±59.9aA	260.3±2.9aA	271.0±14.9aA	162.3±30.2abA	101.3±25.8bB	217.7±9.2aA		
Cc05_g00840 - Oxygen-evolving enhancer protein 2, chloroplastic	109.3±2.3aA	98.7±27.5aA	115.7±21.8aA	98.7±22.7aA	117.7±17.3aA	98.7±7.4aA	102.0±45.7aA	145.3±3.8aA	140.7±10.7aA	99.7±28.3aA	45.3±15.4aB	133.7±11.5aA		
Cc02_g11770 - Oxygen-evolving enhancer protein 3-2, chloroplastic	41.3±8.1aA	41.3±6.7aA	61.7±3.5aA	28.0±4.0bA	49.0±11.4abA	56.0±6.7aA	56.0±15.2aA	58.0±2.9aA	63.7±5.5aA	53.0±4.0abA	22.3±8.1bB	71.7±7.3aA		
Cc10_g11890 - Photosystem II 22 kDa protein, chloroplastic	42.0±7.0aA	42.3±1.8aA	48.3±6.0aA	38.3±1.9aA	37.7±2.4aA	44.7±3.7aA	54.3±12.3bA	66.7±5.4abA	85.0±9.3aA	44.7±3.5bA	32.3±4.1bB	76.0±4.5aA		
Cc02_g35130 - PsbP domain-containing protein 1, chloroplastic	12.7±5.7aA	14.7±2.2aA	18.0±2.0aA	9.3±5.5aA	8.3±0.3aA	10.3±0.9aA	10.3±3.5bA	15.7±2.2abA	19.3±3.0aA	9.3±0.3abA	6.3±2.3bB	17.0±0.6aA		
Cc06_g20190 - PsbP domain-containing protein 6, chloroplastic	2.3±0.3aA	2.0±0.0aA	4.7±2.7aA	2.0±0.0aA	1.7±0.3aA	4.7±0.9aA	5.0±2.6bA	9.0±2.0abA	14.7±0.3aA	4.3±1.9bA	1.7±0.7bB	15.3±0.7aA		
				Light-	Harvesting (Complex Pr	Proteins from Photosystems II							
Cc10_g16210 - Chlorophyll a-b binding protein CP26, chloroplastic	28.0±6.0aA	28.3±8.0aA	54.0±15.9aA	30.3±9.1aA	36.3±7.6aA	54.3±8.1aA	39.7±18.2bA	75.7±6.7abA	96.0±14.7aA	46.0±13.7abA	18.7±7.7bB	78.3±4.3aA		
Cc09_g09500 - Chlorophyll a-b binding protein 36, chloroplastic	15.7±4.3aA	18.0±6.7aA	30.7±9.8aA	19.7±6.4aA	18.3±6.1aA	35.7±3.8aA	27.0±15.8bA	43.3±0.9abA	69.7±3.8aA	25.0±9.5bA	8.7±3.2bB	64.0±7.2aA		
Cc09_g09030 - Chlorophyll a-b binding protein 21, chloroplastic	2.3±2.3aA	4.3±4.3aA	14.7±9.8aA	1.7±1.2aA	4.7±2.9aA	20.7±5.2aA	14.3±13.8aA	48.9±17.9aA	49.0±17.9aA	13.3±7.3aA	0.3±0.3aA	44.7±8.4aA		
Cc02_g21720 - Chlorophyll a-b binding protein CP24 10A, chloroplastic	5.7±2.7aA	7.3±3.9aA	17.7±8.2aA	7.7±2.3aA	8.0±3.5aA	17.0±4.4aA	8.3±5.0bA	12.7±0.9abA	21.0±3.5aA	7.0±3.2abA	1.3±0.9bB	17.3±0.3aA		

Cc05_g12720 - Chlorophyll a-b binding protein 13, chloroplastic	4.7±1.2abA	3.7±0.7bA	9.0±2.1aA	4.0±1.2bA	3.3±0.3bA	8.7±1.2aA	4.7±2.9bA	6.0±1.2bA	16.0±2.3aA	3.0±0.6bA	1.7±0.9bA	15.3±2.2aA
Cc11_g16910 - Chlorophyll a-b binding protein, chloroplastic	1.0±1.0aA	0.0±0.0aA	2.7±1.7aA	0.0±0.0bA	0.7±0.7abA	4.0±1.0aA	2.7±2.7bA	1.3±0.3bA	11.7±3.3aA	3.7±2.0bA	0.0±0.0bA	13.0±1.5aA
Cc09_g09020 - Chlorophyll a-b binding protein 21, chloroplastic	0.0±0.0aA	0.0±0.0aA	0.3±0.3aA	0.3±0.3bA	0.7±0.7bA	2.3±0.3aB	0.7±0.7bA	1.3±0.9abA	3.7±0.7aA	0.3±0.3bA	0.0±0.0bA	4.0±1.0aA
	Photosystem I											
Cc03_g03590 - Photosystem I reaction center subunit II, chloroplastic	109.0±10.5aA	96.0±24.0aA	128.0±17.1aA	78.3±12.5aA	94.7±4.3aA	103.0±13.7aA	106.0±47.4aA	147.0±5.3aA	187.3±20.2aA	94.7±15.6abA	37.0±16.5bB	128.3±8.5aA
Cc04_g03050 - Photosystem I reaction center subunit VI, chloroplastic	14.7±6.6aA	12.0±6.4aA	39.3±12.3aA	9.7±5.9aA	20.3±7.7aA	36.3±6.9aA	26.7±12.6aA	31.3±3.8aA	46.3±5.4aA	19.7±6.4bA	2.7±1.2bB	44.3±0.3aA
Cc09_g08490 - Photosystem I reaction center subunit psaK, chloroplastic	10.3±2.4aA	10.3±3.4aA	18.3±3.9aA	11.3±2.3aA	11.0±0.0aA	16.0±2.5aA	11.7±4.3aA	18.3±0.9aA	13.0±4.7aA	10.0±2.1aA	5.3±0.9aB	14.0±1.5aA
Cc01_g15890 - Photosystem I reaction center subunit XI, chloroplastic	5.3±1.9aA	8.0±3.5aA	12.7±5.7aA	7.3±1.7aA	5.7±0.3aA	12.3±2.4aA	8.3±3.5bA	12.3±1.3abA	19.7±3.5aA	7.7±2.6bA	2.7±0.3bB	17.7±1.2aA
	Light-Harvesting Complex Proteins from Photosystems I											
Cc05_g09930 - Chlorophyll a-b binding protein 8, chloroplastic	16.3±2.8aA	15.7±5.0aA	29.7±7.9aA	19.7±3.0aA	20.7±2.2aA	25.0±4.7aA	18.7±8.7bA	34.0±0.6abA	40.0±6.1aA	23.3±5.2abA	10.0±5.5bB	36.3±3.8aA
Cc09_g02010 - Chlorophyll a-b binding protein 6A, chloroplastic	7.0±2.1aA	6.7±2.2aA	15.0±5.0aA	5.0±0.0aA	7.0±1.2aA	13.7±1.5aA	8.3±3.9bA	11.3±2.0bA	31.7±6.7aA	9.3±2.7bA	3.7±2.2bA	32.0±4.6aA
Cc04_g16410 - Chlorophyll a-b binding protein 4, chloroplastic	5.0±2.0aA	3.7±3.2aA	10.3±2.4aA	4.0±2.1aA	6.3±2.0aA	10.0±2.0aA	6.7±3.8bA	15.3±1.9abA	26.0±3.1aA	10.7±3.0bA	3.0±2.5bB	29.3±2.6aA
						Cyclic Elec	ctron Flow					
Cc06_g22890 - NDH-dependent cyclic electron flow 1	2.0±1.2aA	3.0±1.5aA	3.3±1.3aA	3.0±2.5aA	4.7±1.2aA	3.7±1.9aA	3.7±1.9aA	6.0±0.6aA	9.0±1.5aA	4.3±2.2aA	1.3±1.3aA	6.3±0.9aA
Cc04_g05100 - NDH-dependent cyclic electron flow 1	0.3±0.3aA	0.0±0.0aA	1.3±0.9aA	1.0±0.6aA	1.3±0.9aA	1.3±0.3aA	1.0±0.6bA	1.7±0.3abA	3.3±0.3aA	1.7±0.9abA	0.0±0.0bA	2.7±0.7aA
Cc08_g13730 - PGR5-like protein 1A, chloroplastic	0.0±0.0aA	0.7±0.7aA	0.3±0.3aA	0.7±0.7aA	4.7±3.7aA	2.3±1.2aA	3.3±2.8aA	8.3±0.9aA	9.3±3.0aA	6.3±3.2abA	1.0±1.0bA	11.3±1.9aA
					RuBis	CO and Ru	BisCO Activ	/ase				
Cc00_g15710 - Ribulose bisphosphate carboxylase small chain SSU11A, chloroplastic	46.3±7.4aA	49.0±8.2aA	58.0±8.1aA	51.0±10.0aA	62.7±27.4aA	53.0±5.7aA	51.0±17.9aA	78.7±20.3aA	79.7±5.4aA	47.7±11.6abA	25.3±5.2bB	82.7±3.2aA
Cc02_g07500 - Ribulose bisphosphate carboxylase/ oxygenase activase 1, chloroplastic	62.3±16.8aA	63.0±15.5aA	76.7±22.1aA	69.3±14.9aA	112.3±42.4aA	112.7±17.5aA	73.7±43.2aA	143.0±9.3aA	153.0±13.7aA	103.3±44.4abA	43.7±22.9bA	154.0±18.5aA
Cc04_g14500 - Ribulose bisphosphate carboxylase/ oxygenase activase 1, chloroplastic	1.7±1.7aA	2.3±1.5aA	3.0±1.2aA	3.0±1.7aA	5.7±1.3aA	4.7±0.7aA	1.7±0.9bA	13.0±3.1aA	21.0±0.6aA	3.7±2.0bA	1.3±1.3bB	18.0±4.6aA

Supplementary Table S1 - Results from the three-way ANOVA considering the variables genotype (G), water availability (W), and air [CO₂], as well as for their interaction, regarding the physiological and biochemical parameters: pre-dawn leaf water potential (Ψ_{pd}), water stress index (CWSI), stomatal conductance index (I_G), net photosynthesis rate (P_n), stomatal conductance to water vapor (g_s), internal concentration of CO₂ (C_i), photosynthetic capacity (A_{max}), the potential thylakoid electron transport rates of photosystem (PS) I and PSII, with (+OEC), or without (-OEC) the oxygen evolving complex participation, of the Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) initial activity, total activity, and activation sate, and ribulose-5-phosphate kinase (Ru5PK) maximal activity, the initial antenna fluorescence (F_0), maximum PSII photochemical efficiency (F_v/F_m), photochemical quenching coefficient (q_L), actual PSII photochemical efficiency of energy conversion (F_v/F_m), the rate constant of PSII inactivation (F_s/F_m), the estimate of the quantum yields of non-cyclic electron transport ($Y_{(III)}$), of regulated energy dissipation in PSII ($Y_{(NO)}$), and of non-regulated energy dissipation in PSII ($Y_{(NO)}$), as well as the thylakoid electron carriers plastoquinone (PQ-9), and cytochromes (Cyt) b_{559LP} , b_{559LP} , b_{563} and f, always in *Coffea canephora cv*. Conilon Clone 153 (CL153) and *C. arabica cv*. lcatu plants grown under ambient (380 µL L⁻¹) or elevated (700 µL L⁻¹) air CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit.

Parameters	G	[CO ₂]	w	G x [CO ₂]	GxW	[CO ₂] x W	G x [CO ₂] x W
Ψ_{pd}	ns	***	*	ns	ns	*	*
CWSI	ns	*	***	ns	ns	*	ns
I _G	ns	*	***	ns	ns	ns	ns
P _n	ns	***	***	ns	ns	***	ns
9 _s	ns	ns	***	ns	ns	**	ns
C _i	ns	***	***	*	ns	***	*
A _{max}	ns	**	***	ns	ns	ns	ns
ABA	ns	***	***	*	*	ns	**
F ₀	***	***	***	ns	ns	***	ns
F _v /F _m	ns	ns	ns	ns	***	ns	ns
F _v '/F _m '	ns	***	***	ns	***	ns	ns
Y _(II)	ns	***	***	*	ns	**	ns
Y _(NPQ)	ns	***	***	ns	ns	***	ns
Y _(NO)	ns	ns	*	*	ns	***	ns
qL	ns	ns	***	ns	ns	ns	ns
F _s /F _m '	ns	***	***	*	ns	**	ns
PSII+OEC	ns	***	ns	***	***	***	ns
PSII-OEC	***	***	*	***	***	***	ns
PSI	ns	***	*	***	***	***	ns
PQ-9	ns	*	**	*	ns	ns	ns
Cyt b 559LP	***	***	***	***	***	***	***
Cyt b 559HP	***	***	***	***	***	***	***
Cyt f	***	**	***	***	***	*	**
Cyt b 563	***	***	***	***	***	***	***
RuBisCO Initial Activity	ns	***	***	ns	***	***	ns
RuBisCO Total Activity	ns	ns	***	ns	***	***	ns
RuBisCO Activation	***	***	**	ns	*	ns	ns
Ru5PK	***	*	***	ns	ns	***	ns

Supplementary Table S2 - Results from the three-way ANOVA considering the variables genotype (G), water availability (W), and air [CO₂], as well as for their interaction, regarding the abundance of proteins associated with the photosynthetic apparatus, regarding Photosystem (PS) I and II, oxygen evolving complex (OEC, related to PSII), light harvesting complexes (LHC) I and II, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO Activase, as well as associated with cyclic electron flow (CEF) involving both PSs, always in *Coffea canephora cv.* Conilon Clone 153 (CL153) and *C. arabica cv.* Icatu plants grown under ambient (380 µL L⁻¹) or elevated (700 µL L⁻¹) air CO₂ conditions, and submitted to well-watered (WW), moderate (MWD) or severe (SWD) water deficit.

Proteins	G	[CO ₂]	W	G x [CO ₂]	GxW	[CO ₂] x W	G x [CO ₂] x W
Photosystem II and Oxygen Evolving Complex							
Cc07_g05350 - Oxygen-evolving enhancer protein 1, chloroplastic	ns	**	ns	ns	ns	ns	ns
Cc05_g00840 - Oxygen-evolving enhancer protein 2, chloroplastic	ns	ns	ns	ns	ns	ns	ns
Cc01_g10720 - Oxygen-evolving enhancer protein 3-2, chloroplastic	ns	ns	ns	ns	ns	ns	ns
Cc10_g11890 - Photosystem II 22 kDa protein, chloroplastic	***	**	***	ns	**	ns	ns
Cc02_g35130 - PsbP domain-containing protein 1, chloroplastic	*	**	ns	ns	ns	ns	ns
Cc06_g20190 - PsbP domain-containing protein 6, chloroplastic	***	ns	***	ns	**	ns	ns
Light-Harvesting Complex Proteins from Photosystems II							
Cc10_g16210 - Chlorophyll a-b binding protein CP26, chloroplastic	***	ns	**	ns	ns	*	ns
Cc09_g09500 - Chlorophyll a-b binding protein 36, chloroplastic	***	ns	***	ns	*	ns	ns
Cc09_g09030 - Chlorophyll a-b binding protein 21, chloroplastic	**	ns	**	ns	ns	ns	ns
Cc02_g21720 - Chlorophyll a-b binding protein CP24 10A, chloroplastic	***	ns	ns	ns	ns	ns	ns
Cc05_g12720 - Chlorophyll a-b binding protein 13, chloroplastic	***	ns	*	ns	**	ns	ns
Cc11_g16910 - Chlorophyll a-b binding protein, chloroplastic	***	ns	***	ns	**	ns	ns
Cc09_g09020 - Chlorophyll a-b binding protein 21, chloroplastic	***	ns	***	ns	*	*	ns
Photosystem I							
Cc03_g03590 - Photosystem I reaction center subunit II, chloroplastic	**	**	ns	ns	ns	ns	ns
Cc04_g03050 - Photosystem I reaction center subunit VI, chloroplastic	***	ns	ns	ns	ns	ns	ns
Cc09_g08490 - Photosystem I reaction center subunit psaK, chloroplastic	ns	ns	ns	ns	ns	ns	ns
Cc01_g15890 - Photosystem I reaction center subunit XI, chloroplastic	***	ns	ns	ns	ns	ns	ns
Light-Harvesting Complex Proteins from Photosystems I							
Cc05_g09930 - Chlorophyll a-b binding protein 8, chloroplastic	**	ns	ns	ns	ns	ns	ns
Cc09_g02010 - Chlorophyll a-b binding protein 6A, chloroplastic	***	ns	**	ns	**	ns	ns
Cc04_g16410 - Chlorophyll a-b binding protein 4, chloroplastic	***	ns	***	ns	**	ns	*
Cyclic Electron Flow							
Cc06_g22890 - NDH-dependent cyclic electron flow 1	ns	ns	ns	ns	ns	ns	ns
Cc04_g05100 - NDH-dependent cyclic electron flow 1	**	ns	*	ns	ns	ns	ns
Cc08_g13730 - PGR5-like protein 1A, chloroplastic	ns	ns	***	ns	ns	ns	ns
RuBisCO and RuBisCO Activase							
Cc00_g15710 - Ribulose bisphosphate carboxylase small chain SSU11A, chloroplastic	ns	ns	ns	ns	ns	ns	ns
Cc02_g07500 - Ribulose bisphosphate carboxylase/ oxygenase activase 1, chloroplastic	ns	ns	ns	ns	ns	ns	ns
Cc04 g14500 - Ribulose bisphosphate carboxylase/ oxygenase activase 1, chloroplastic	***	ns	***	ns	***	*	*