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Abstract—Traditional compressive sensing (CS) primarily as-
sumes light-tailed models for the underlying signal and/or noise
statistics. Nevertheless, this assumption is not met in the case
of highly impulsive environments, where non-Gaussian infinite-
variance processes arise for the signal and/or noise components.
This drives the traditional sparse reconstruction methods to
failure, since they are incapable of suppressing the effects of
heavy-tailed sampling noise. The family of symmetric alpha-
stable (SαS) distributions, as a powerful tool for modeling heavy-
tailed behaviors, is adopted in this paper to design a robust
algorithm for sparse signal reconstruction from linear ran-
dom measurements corrupted by infinite-variance additive noise.
Specifically, a novel greedy reconstruction method is developed,
which achieves increased robustness to impulsive sampling noise
by solving a minimum dispersion (MD) optimization problem
based on fractional lower-order moments. The MD criterion
emerges naturally in the case of additive sampling noise modeled
by SαS distributions, as an effective measure of the spread of
reconstruction errors around zero, due to the lack of second-
order moments. The experimental evaluation demonstrates the
improved reconstruction performance of the proposed algorithm
when compared against state-of-the-art CS techniques for a broad
range of impulsive environments.

Index Terms—Compressive sensing, sparse recovery, symmet-
ric alpha-stable distributions, heavy-tailed statistics, fractional
lower-order moments, minimum dispersion criterion.

I. INTRODUCTION

USING the concept of transform coding, compressive
sensing (CS) enables a potentially large reduction in

the sampling and computation costs for capturing signals that
have a sparse or compressible representation. Furthermore, CS
is characterized by an intrinsic denoising mechanism, which
suppresses the non-sparse contributions due to noise. This
is extremely important in practical applications, where an
observed signal and/or its corresponding set of compressive
measurements are typically corrupted by noise.

In order to suppress the noise impact, which deteriorates
the accurate reconstruction of the original signal from a
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reduced set of compressive measurements, a broad range
of noise-aware sparse reconstruction algorithms have been
developed. These include: greedy pursuit [1], [2], convex re-
laxation [3], [4], [5], Bayesian formulation [6], [7], nonconvex
optimization [8], [9], [10] and brute force [11]. Each method
has its own advantages and limitations. For instance, greedy
pursuits and convex optimization are computationally more
tractable and yield provably correct reconstructions under
well-determined conditions. However, apart from sparsity, they
are not able to account for any prior statistical information
about the signal and noise, which could be used to improve the
reconstruction accuracy. On the other hand, Bayesian methods
and nonconvex optimization are typically based on rigorous
principles, but often they do not provide theoretical guarantees.
Finally, brute force approaches are algorithmically solid, but
their practical use is restricted to small-scale problems.

The majority of previous CS reconstruction methods is
primarily based on light-tailed, finite-variance assumptions for
the statistics of the signal and/or noise generating processes.
Despite the analytical tractability and practical appeal, these
assumptions may yield a dramatic degradation of the recon-
struction quality when we operate in highly impulsive environ-
ments, which give rise to heavy-tailed processes with infinite
variance. To alleviate the effects of gross errors that mask
the information conveyed by the compressive measurements,
recent state-of-the-art methods rely on algebraic-tailed models,
specifically on Cauchy and generalized Cauchy (GCD) distri-
butions, to design robust reconstruction methods [12], [13].

On the other hand, alpha-stable distributions [14] have
been proven very powerful in accurately modeling impulsive
phenomena. However, their intractability due to the lack of
closed-form expressions for the density functions of all except
for a few stable distributions (Gaussian, Cauchy and Lévy)
has prevented their exploitation in the framework of CS. To
address this problem, whilst also revealing the advantages of
alpha-stable models in designing efficient CS systems, this
paper proposes a method for robust sparse signal reconstruc-
tion under heavy-tailed sampling noise, by modeling the noise
statistics via symmetric alpha-stable (SαS) distributions. To
the best of our knowledge, this is the first thorough study
that bridges the fields of sparse signal reconstruction and
SαS models for the design of a CS system with increased
robustness to heavy-tailed infinite-variance sampling noise.
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A. Motivation

In practical CS acquisition systems, the generated compres-
sive measurements are typically corrupted by sampling noise.
The presence of large-amplitude noise in the measurement
domain degrades dramatically the reconstruction accuracy of
traditional CS techniques based on `1 or `2 norms. The
problem becomes even more challenging when we operate
in impulsive environments, where the corrupting sampling
noise can be of infinite variance. This causes conventional
sparse reconstruction algorithms to fail in recovering a close
approximation of the original signal.

The problem of accurate sparse signal reconstruction from
random measurements corrupted by gross sampling errors has
been previously addressed in the context of error correction
coding [16] and incomplete measurements [17], [18]. The
main limitation of these approaches is that their reconstruction
performance relies on the sparsity of the error term, which is
a condition that may not be met often in practice.

Recently, the problem of robust sparse signal reconstruction
from random measurements corrupted by impulsive sam-
pling noise has been addressed efficiently by employing the
Lorentzian norm either as an objective function or as a con-
straint. In particular, in [12], [19] the true sparse signal is re-
constructed by solving an `0-regularized least logarithmic de-
viation problem. The logarithmic deviation is defined in terms
of the Lorentzian norm, which does not over-penalize large
deviations, and is therefore more robust than the commonly
used `1 and `2 norms for the suppression of impulsive noise.
A similar approach is proposed in [13], where a nonconvex
optimization problem is solved to reconstruct the sparse signal
by minimizing the `1 norm subject to a nonlinear constraint
based on the Lorentzian norm. The use of the Lorentzian
norm in these papers is further justified by the existence
of logarithmic moments for heavy-tailed distributions, whose
second-order moments are infinite or even undefined.

Despite the enhanced reconstruction quality of the above
methods in the presence of heavy-tailed additive sampling
noise, the specific use of Cauchy [12], [19] or GCD distri-
butions [13] can be restrictive in capturing more generic non-
Gaussian heavy-tailed behaviors of the sampling noise. Moti-
vated by this limitation, first we model the statistics of highly
impulsive sampling noise, with possibly infinite variance, by
members of the SαS family. Then, we propose a novel greedy
sparse reconstruction algorithm, which minimizes the disper-
sion of the random measurements’ error. As it will become
clear in the subsequent analysis, the minimum dispersion (MD)
criterion arises naturally as a measure of the spread of estima-
tion errors around zero for random variables modeled by SαS
distributions, as is the case with the infinite variance sampling
noise adopted in this study. Most importantly, we show that the
MD criterion is equivalent to a minimum `p estimation error
criterion, which simplifies the design of our proposed sparse
reconstruction algorithm. Nevertheless, we emphasize that the
subsequent analysis considers a conventional linear sampling
operator for the generation of random measurements.

B. Main Contributions

The major contribution of this paper is twofold: i) we
propose a novel iterative greedy algorithm that combines the
characteristics of a gradient-descent approach with a statistical
optimization criterion, namely, the minimum dispersion (MD)
criterion, which is equivalent to minimizing the fractional
lower-order moments (FLOMs) of reconstruction errors. The
FLOMs measure the `p (p < 2) distance between the recon-
structed and the true sparse signal; ii) we provide theoretical
guarantees for the convergence of the algorithm and an upper
bound of the `2 norm of the reconstruction error, along with
rules of thumb for setting the key parameters that control the
performance of the proposed algorithm.

Furthermore, the use of `p distance metrics with p < 2,
which arise naturally when SαS models are coupled with a
minimum dispersion rule, provides an additional degree of
freedom (i.e., the value of p) yielding increased robustness
against gross sampling errors. The proposed reconstruction
algorithm resembles an orthogonal matching pursuit (OMP)
approach in the sense that, at each step, it selects the mea-
surement basis vector which is most correlated with the
current residuals. However, the key difference between our
algorithm and an OMP-based approach is that this correlation
is expressed in terms of FLOMs, thus it adapts perfectly to
non-Gaussian, heavy-tailed processes with infinite variance. At
each iteration, one or several elements of the sparse signal are
reconstructed, therefore, as the algorithm progresses, a refined
estimate of its nonzero elements is obtained by removing the
contribution of previously estimated elements.

C. Paper Organization

The rest of the paper is organized as follows: Section II
introduces the minimum dispersion as a proper optimiza-
tion criterion for heavy-tailed infinite-variance sampling noise
modeled by SαS distributions, and proves its equivalence with
a minimum `p estimation error criterion. Section III ana-
lyzes the design and implementation of our proposed iterative
greedy algorithm for sparse signal reconstruction, whilst also
providing theoretical proofs for its convergence, along with
an upper bound of the reconstruction error. An experimental
evaluation of the reconstruction performance is presented in
Section IV for a variety of impulsive environments, where our
proposed algorithm is compared against state-of-the-art sparse
reconstruction methods tailored to impulsive sampling noise.
Finally, Section V concludes and gives directions for future
work.

D. Notation

In the following, scalars are denoted by lower-case letters
(e.g. x), column vectors by lower-case boldface letters (e.g. x),
and matrices by upper-case boldface letters (e.g. X). Sets are
represented by calligraphic letters (e.g. S), while |S| denotes
their cardinality. The ith column of a matrix X is denoted
by xi, whereas xj indicates the jth element of a vector
x. Si denotes a subset of S, while XS is the submatrix
formed by the columns {xi | i ∈ S}, whose indices belong
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to S. Similarly, xS is the subvector formed by the elements
{xj | j ∈ S}, whose indices belong to S. Finally, we use x̂, xT,
x∗, and x(t) to denote the estimate (reconstruction), transpose,
optimal solution, and value at tth iteration of a vector x,
respectively. Similar notations are used for the matrices.

II. SPARSE RECONSTRUCTION VIA A MINIMUM
DISPERSION CRITERION

Let x = [x1, x2, . . . , xN ]
T ∈ RN be a real discrete-time

signal. In the general case, we assume that x can be sparsified
over a, possibly overcomplete, transform basis Ψ ∈ RN ′×N
with N ′ ≥ N , such that α = Ψx ∈ RN ′ is an s-sparse
vector of transform coefficients. Ψ and ΨT denote the analysis
(direct) and synthesis (inverse) transforms, respectively. In the
following, a linear sampling operator is employed for the
generation of a reduced set of compressive measurements.

Given a random measurement matrix Φ ∈ RM×N (M <
N ), which satisfies all the necessary and sufficient conditions
for accurate sparse reconstruction, the generic noisy sampling
model adopted in the subsequent analysis is as follows,

y = ΦΨTα0 + n , (1)

where α0 ∈ RN ′ is the true sparse signal to be recovered,
y ∈ RM is a vector of M noisy random measurements, and
n ∈ RM is the additive sampling noise. By setting A = ΦΨT,
various well-established approaches for recovering the sparse
signal solve a constrained optimization problem of the form,

min
α∈RN′

‖y −Aα‖p s.t. ‖α‖q ≤ s , (2)

or a regularized optimization problem,

min
α∈RN′

(‖y −Aα‖p + τ‖α‖q) , (3)

with 0 < q ≤ 1, p ∈ {2, ∞} or denoting the Lorentzian
norm1, s being the sparsity level and τ a regularization
parameter that balances the influence of the data fidelity term
and the sparsity-inducing term on the optimal solution. Having
obtained an estimate of the optimal sparse coefficients vector
α∗0, the original signal is given by x̂0 = ΨTα∗0.

At the core of our proposed sparse reconstruction algorithm
is the use of SαS distributions for modeling the statistics of
impulsive sampling noise. In particular, we assume that the
random noise n consists of independent and identically dis-
tributed (i.i.d.) components, ni ∈ R, i = 1, . . . ,M , that follow
a univariate SαS distribution. The probability density function
of a general univariate SαS distribution is as follows [15],

fα(x; γ, δ) =
1

γ
h

(
x− δ
γ

;α

)
, (4)

where
h(x;α) =

1

π

∫ ∞
0

cos(xt)e−t
α

dt . (5)

In the above expressions, α ∈ (0, 2] is the characteristic
exponent, γ > 0 is the dispersion, and δ ∈ R is the location

1The `p norm of a vector is defined by ‖x‖p =
(∑N

j=1 |xj |p
)1/p

for
0 < p ≤ 2 (`p is a quasi-norm for 0 < p < 1), whilst the Lorentzian norm
is defined by ‖x‖LL2

=
∑N
j=1 log(1 + x2j ).

parameter of the distribution. The characteristic exponent is a
shape parameter, which controls the thickness of the tails of the
density function. The smaller the α, the heavier the tails of the
SαS density function. The dispersion parameter determines the
spread of the distribution around its location, as the standard
deviation does for a Gaussian distribution. In most practical
applications, the estimated α is typically larger than or equal
to 1. Furthermore, the case of α = 2 corresponds to the
Gaussian, whereas our focus is on non-Gaussian heavy-tailed
statistics for the sampling noise. Because of these remarks,
we emphasize that, without loss of generality, our subsequent
analysis considers for the distribution of the noise components
that ni ∼ fαn(γn, δn) with αn ∈ [1, 2) and δn = 0. In the
following, the subscript n is used to denote variable related
with the additive sampling noise n.

Due to their algebraic tails, SαS distributions lack finite
second-order moments. Instead, all moments of order p less
than α do exist and are called the fractional lower-order
moments (FLOMs). In particular, the FLOMs of a SαS random
variable X ∼ fα(γX , 0) are given by [14]

E {|X|p} = (Cp,αγX)
p
, 0 < p < α , (6)

where

(Cp,α)
p

=
2p+1Γ

(
p+1
2

)
Γ
(
− p
α

)
α
√
π Γ
(
−p2
) =

Γ
(
1− p

α

)
cos
(
π
2 p
)

Γ(1− p)
.

(7)
In addition, (6) yields the following expression for the disper-
sion of X in terms of the FLOMs,

γX = (E {|X|p})1/p C−1p,α , (8)

which will be employed to quantify the spread of gross noise
samples around zero.

Furthermore, due to the lack of finite variance for alpha-
stable distributed data, the traditional minimum mean squared
error (MMSE) criterion cannot be used as a measure of the
reconstruction quality to be optimized. Instead, we employ
the minimum dispersion (MD) criterion in our optimization
problem, since the dispersion of alpha-stable random variables
is finite and gives a good measure of the spread of estimation
errors around zero. Most importantly, our proposed reconstruc-
tion method belongs to the class of `p-based nonlinear, non-
convex relaxation techniques. Specifically, `p (quasi-)norms
(0 < p < 2), and subsequently the use of a least `p estimation
error criterion, emerge naturally in the case of infinite variance
sampling noise modeled as a SαS random variable. Indeed, as
we deduce from (8), an `p (quasi-)norm based approximation
of the dispersion of X can be obtained by replacing the FLOM,
E{|X|p}, with a discrete finite sum,

E{|X|p} ≈ 1

N

N∑
j=1

|xj |p =
1

N
‖x‖pp . (9)

The larger the sample size, the more accurate this approxima-
tion will be.

Let X̂ denote an estimate of the random variable X and
E = X − X̂ be the estimation error. Then, the minimum
dispersion criterion can be viewed as a minimum `p estimation
error criterion. Indeed, from (8) and (9) we deduce that
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minimizing the dispersion of the error, γE , is equivalent to
minimizing the `p (quasi-)norm of the associated error vector
e ∈ RN , consisting of N realizations of E.

A. Estimation of p

Notice that the selection of an appropriate value for the p
parameter in the above expressions is a critical step. Most
importantly, the optimal p depends on the characteristic ex-
ponent α = αn, which is estimated from the noisy com-
pressive measurements. A method for choosing the optimal
p as a function of α has been proposed in [20], which is
based on minimizing the standard deviation of a FLOM-based
covariation estimator2. Other authors suggest the optimal p
should be lower but as close as possible to the value of α,
if α can be inferred. However, this approach causes the pth
FLOM to approach infinity as p→ α, since Cp,α in (6) goes to
infinity. On the other hand, the FLOM-based approach yields
an almost linear relation between α and the optimal value of p,
and specifically p . α/2. In addition, if p < α/2 the FLOM
estimator has a finite variance, which is desirable [21]. In the
following, we adopt this rule and the optimal value of p is
set as a function of α by linearly interpolating the entries of
the lookup Table I, generated by the FLOM-based approach
in [20].

TABLE I
OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC

EXPONENT α.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
popt 0.52 0.56 0.58 0.61 0.64 0.69 0.72 0.76 0.81 0.88 0.98

III. ROBUST SPARSE RECONSTRUCTION ALGORITHM

In this section, we propose a novel iterative greedy recon-
struction algorithm, which suppresses efficiently the effects
of heavy-tailed sampling noise of infinite variance, whilst
achieving increased robustness to a broader range of impulsive
noise behaviors, from near linear (i.e., α → 2) to extremely
impulsive sampling noise (i.e., α → 1). To this end, we ana-
lyze the design and implementation of our proposed algorithm,
which solves an `0-constrained `pp optimization problem. For
convenience, yet without loss of generality, in the following
theoretical derivations we assume that the original signal x0

is sparse in the canonical basis Ψ = I, thus x0 = α0.

A. `0-Constrained Dispersion Minimization

In the following, we aim at designing a robust sparse recon-
struction algorithm, expressed as an operator R : RM 7−→ RN ,
which reconstructs accurately the true sparse signal x0 from
a highly reduced set of noisy linear measurements y. This
algorithm must be robust, especially when we operate in highly
impulsive environments, in the sense that small perturbations
to the noiseless measurements should yield small perturba-
tions in the reconstructed signal, even when a portion of the
measurements is corrupted by large-amplitude noise.

2The FLOM-based covariation estimator for two jointly SαS random vari-

ables X , Y with α > 1, is defined by cXY =
∑N
i=1 xi|yi|

p−1sign(yi)∑N
i=1 |yi|

p γαY .

To this end, the presence of the free parameter p in our
proposed `p-based penalization of the residual increases the
robustness against gross outliers, as opposed to the recently
used Lorentzian norm. This is because, in contrast to the
Lorentzian that is intrinsically related with a Cauchy model
(fixed α = 1), in our method the value of p depends
on the inherent impulsiveness of the noise as expressed by
its estimated characteristic exponent α. It is important to
emphasize that, given the constraints of Section II, namely,
i) 0 < p < α, for the existence of FLOMs, ii) α ∈ [1, 2), and
iii) p < α/2 for the selection of p as a function of α, we obtain
that 0 < p < 1. This turns `p into a quasi-norm, which has the
tradeoff of better approximating the ideal `0 objective function
for sparse reconstruction, but with an increased computational
complexity due to its highly nonconvex nature.

More specifically, from (8) and (9) the original sparse signal
x0 is recovered by minimizing the dispersion of the data
fidelity term, constrained on the maximum number of nonzero
elements of x0, that is,

min
x∈RN

(
C−pp,α
M
‖y −Φx‖pp

)
s.t. ‖x‖0 ≤ s . (10)

By noticing that, for the feasible ranges of α and p considered
herein, namely, 1 ≤ α < 2 and 0 < p < 1, respectively, the
constant 1

MC−pp,α is always positive (see Appendix A), then,
the original sparse signal x0 is reconstructed by solving an
`0-constrained least `pp optimization problem,

min
x∈RN

‖y −Φx‖pp s.t. ‖x‖0 ≤ s . (11)

Nevertheless, the numerical solution of (11) can be extremely
complex, even for moderate signal sizes. Therefore, the design
of a computationally tractable algorithm is imperative to solve
the above nonconvex, combinatorial, sparse recovery problem.
To this end, in [22], [23] it was shown that, depending on
the restricted isometry constant of the measurement matrix
Φ and the noise level, the resulting `pp optimization problem
provides better theoretical guarantees in terms of stability and
robustness than `1 minimization, whereas a local minimizer
can be computed in polynomial time. In general, it is difficult
to compute a global minimizer of a nonconvex functional. On
the other hand, any local optimization method can perform
well if initialized by a point sufficiently close to the global
optimum. In the following, an iterative algorithm is proposed
for solving (11), along with some remarks on its proper
initialization.

B. Gradient Projection Iterative Hard Thresholding

In this section, we derive a suboptimal approach to
solve (11) by employing a gradient projection (GP) formu-
lation combined with an iterative hard thresholding (IHT)
algorithm. This approach does not require the computationally
intense process of matrix inversion, while providing near-
optimal error guarantees [24].

More specifically, given the measurements vector y and the
measurement matrix Φ, let x(t) denote the estimated sparse
solution at tth iteration. Note that in the general case, where
the original signal is not sparse by itself but can be sparsified
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in an appropriate transform domain, the measurement matrix
is replaced by A = ΦΨT and the solution corresponds to a
sparse coefficients vector α∗0 (ref. Section II).

Even though the optimization problem (11) is nonconvex
and NP-hard (ref. [23]), there are several advantages of using
this approach. First, according to [22], for a Gaussian measure-
ment matrix Φ, the restricted p-isometry property of order s
holds if s is almost proportional to M when p→ 0+. Second,
in [8], [25] it is demonstrated that when δ2s < 1, the solution
of an `p minimization problem is sparse when p > 0 is small
enough, where δ2s is the restricted isometry constant (RIC)
of Φ. The third advantage is that the `p minimization can
be applied to a broader class of measurement matrices, for
instance, when Φ is a random matrix whose entries are i.i.d.
pre-Gaussian random variables [26].

Due to the singularity of the gradient of the objective
function in (11) because of the sparsity of the solution, we
employ the following regularized version of the `pp introduced
in [27],

‖x‖pp,ε =
N∑
j=1

(
|xj |2 + ε

)p/2
, (12)

where ε > 0 is a parameter that will go to zero in order
to approximate ‖x‖pp. By combining (11) and (12), our `0-
constrained `pp,ε optimization problem becomes as follows,

min
x∈RN

‖y −Φx‖pp,ε s.t. ‖x‖0 ≤ s . (13)

The above problem has a solution for any p ∈ (0, 1) and
ε > 0, where ε can be also seen as an indicator of whether an
element of the local minimizer is zero or not. We will derive
an iterative algorithm to compute a solution of (13), proving
that the algorithm converges for any starting point.

More specifically, following an iterative hard thresholding
approach, at each iteration the algorithm computes the updated
solution as follows,

x(t+1) = Hs

(
x(t) + µ(t)g(t)

)
, (14)

where Hs(x) denotes the hard thresholding operator, which
sets all except for the largest (in magnitude) s elements of x
to zero, µ(t) is a step size and g(t) is a search direction. In
our implementation we adopt a gradient projection scheme,
thus the search direction is determined by the gradient of the
objective function in (13). After some algebraic manipulation,
the gradient vector is given by

g(t) = ∇x‖y −Φx(t)‖pp,ε = −pΦT W(t)
(
y −Φx(t)

)
,

(15)
where W(t) is a M ×M diagonal matrix, whose main diag-
onal elements are as follows,

W
(t)
i,i =

1(
(yi − φT

i x(t))2 + ε
)1− p2 , i = 1, . . . ,M . (16)

Notice also that the above weight matrix resembles the one
computed when working in an iteratively reweighted least
squares (IRLS) framework [28]. Furthermore, the inherent role
of the weights is to suppress the effect of large errors by
assigning a small weight when large deviations are estimated.

In the special case of W(t) = I the above GP-based IHT
method reduces to the conventional least squares IHT [24].
Moreover, the hard thresholding operation may not yield a
unique output. In this case, we select the s elements either at
random or based on a predetermined ordering. In the rest of the
text, we will refer to our proposed algorithm for minimizing
the error dispersion using the above gradient projection hard
thresholding technique as MD-IHT.

C. Key Parameters Setting and Convergence Analysis

The efficiency of our proposed MD-IHT algorithm is af-
fected by the accurate tuning of two key parameters, namely,
the parameter p, which determines the `pp objective function
and depends on the noise characteristic exponent, and the step
size µ(t).

Concerning the value of p, as we have already mentioned
in Section II, we adopt the almost linear relation p . α/2.
Thus the problem is reduced to estimating accurately the
noise characteristic exponent from the random measurements
y. Following the approach suggested by [28], the method of
log-cumulants is employed to estimate the SαS parameters by
equating sample log-cumulants to their theoretical counterparts
for a particular model and then solving the resulting system,
much in the same way as in the classical method of moments.
In particular, by applying the Mellin transform on a SαS
density we get the following expression for its second-kind
first characteristic function,

Φ(z) =
γz−12zΓ

(
z
2

)
Γ
(
− z−1α

)
α
√
πΓ
(
− z−12

) . (17)

Notice that by setting z = p + 1 in Φ(z) we obtain the
expression of the FLOMs of a SαS random variable, as defined
in (6). By taking the limit as z → 1 of the first and second
derivatives of the log (Φ(z)), we derive the following results
for the second-kind cumulants of a SαS model,

k̃1 =
α− 1

α
ψ(1) + log(γ) , k̃2 =

π2

12

α2 + 2

α2
, (18)

where ψ(·) is the Digamma function. On the other hand,
the first two sample second-kind cumulants can be estimated
empirically from the M measurements y as follows,

ˆ̃
k1 =

1

M

M∑
i=1

log (|yi|) ,
ˆ̃
k2 =

1

M

M∑
i=1

(
log (|yi|)− ˆ̃

k1

)2
.

(19)
The estimation process simply involves solving (18) for α and
γ by substituting k̃1, k̃2 with their sample estimates ˆ̃

k1, ˆ̃
k2,

respectively.
Regarding the tuning of the step size, we notice that the

convergence performance of the MD-IHT algorithm improves
if an adaptive step size, µ(t), is employed to normalize the
gradient update in (14). Specifically, let S(t) be the support
of x(t), and assume that the algorithm has identified the true
support of x0, that is, S(t+1) = S(t) = S. Then, we want to
minimize ‖y−ΦSxS‖pp,ε using a gradient projection algorithm
with updates

x
(t+1)
S = x

(t)
S + µ(t)g

(t)
S . (20)
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Optimality in estimating µ(t) is equivalent to finding a step size
which reduces maximally the `pp,ε objective function at each
iteration. This is a nontrivial task and, in general, there is no
known closed form for an optimal step size. To address this
issue, we update the step size at each iteration in a suboptimal
way according to the following proposition:

Proposition 1 A suboptimal adaptive step size µ(t), which
guarantees that the `pp,ε objective function in (11) does not
increase at each iteration, is given by

µ(t) = arg min
µ

∥∥∥y −ΦS

(
x
(t)
S + µg

(t)
S

)∥∥∥p
p,ε

= arg min
µ

∥∥∥(y −ΦSx
(t)
S

)
− µΦSg

(t)
S

∥∥∥p
p,ε

. (21)

Proof: By setting u =
(
y −ΦSx

(t)
S

)
and v = ΦSg

(t)
S ,

we deduce that the estimation of a suboptimal step size
µ(t) at the tth iteration is reduced to solving the following
optimization problem,

µ(t) = arg min
µ
Jp,ε(µ) , arg min

µ
‖u− µv‖pp,ε , (22)

whose treatment depends on the value of p. We emphasize
that in our proposed algorithm the value of p varies in the
interval (0, 1), thus the solution of (22) is examined only for
this specific case.

First, we observe that, although for p ∈ (0, 1) the min-
imization of Jp,ε(µ) corresponds to a nonconvex problem
with several local minima, however, it is still feasible to find
a global minimizer. In particular, we start by defining the
fractions {ri = ui

vi
}Mi=1, which are then sorted in ascending

order, r(1), . . . , r(M). Then, the optimization problem in (22)
can be reformulated as follows,

µ(t) = arg min
µ
Jord
p,ε (µ) , arg min

µ

M∑
i=1

(
|v[i]|2|µ− r(i)|2 + ε

) p
2

(23)
where {|v[i]|}Mi=1 denote the corresponding concomitant
weights. Doing so, the domain of the objective function
Jord
p,ε (µ) is the union of M + 1 adjacent intervals, namely,

(−∞, r(1)], (r(1), r(2)], ..., (r(M−1), r(M)], (r(M),+∞). Let
µ ∈ (r(m−1), r(m)] for some 1 ≤ m ≤M , then, the objective
function becomes

Jord
p,ε (µ) =

m−1∑
i=1

|v[i]|p
(

(µ− r(i))2 +
ε

|v[i]|2
) p

2

+
M∑
i=m

|v[i]|p
(

(r(i) − µ)2 +
ε

|v[i]|

) p
2

. (24)

We notice that Jord
p,ε (µ) is concave as a nonnegative combina-

tion of concave functions. Specifically, Jord
p,ε (µ) is piecewise

concave in each interval, thus it attains its local minima among
the boundary points {r(i)}Mi=1. Finally, since Jord

p,ε (µ)→ +∞
as µ → ±∞, we deduce that the global minimizer of (22) is
given by

µ(t) = min
i=1,...,M

{
Jord
p,ε (r(i))

}
. (25)

In order to prove the piecewise concavity of Jord
p,ε (µ), for

µ ∈ (r(m−1), r(m)], it suffices to prove that (i) g1(µ) =
(
(µ−

r(i))
2 + ε

|v[i]|2
)p/2

is concave for i = 1, . . . ,m − 1 and (ii)

g2(µ) =
(
(r(i)−µ)2+ ε

|v[i]|2
)p/2

is concave for i = m, . . . ,M .
Both functions are twice differentiable, thus it suffices to show
that their second derivative is negative. Indeed, for g1(µ) we
have that

g
′′

1 (µ) = p

(
(µ− r(i))2 +

ε

|v[i]|2

)p/2−1
·

(
(p− 1)(µ− r(i))2 + ε

|v[i]|2

(µ− r(i))2 + ε
|v[i]|2

)
. (26)

The first two terms on the right side of (26) are strictly positive,
thus we examine the sign of the third term. By noticing that
the denominator of this term is positive, we focus on the
numerator, which is a second-degree polynomial,

θ(µ) = (p−1)µ2−2(p−1)r(i)µ+
(
(p−1)r2(i)+

ε

|v[i]|2
)
. (27)

The discriminant of the above quadratic equation is equal to
∆ = 4(1 − p) ε

|v[i]|2
. Since 0 < p < 1, we have that ∆ > 0,

thus (27) has two distinct roots,

µ1 = r(i) −

√
ε

|v[i]|2

1− p
, µ2 = r(i) +

√
ε

|v[i]|2

1− p
. (28)

Then, θ(µ) < 0, and thus g
′′

1 (µ) < 0, for µ < µ1 and µ > µ2.
Given that i = 1, . . . ,m − 1 and µ ∈ (r(m−1), r(m)], we
deduce that g1(µ) is concave if, in addition, µ2 ≤ r(m−1). By
solving this inequality in terms of ε, the concavity of g1(µ) is
guaranteed by setting

ε ≤ ε1,m , min
i=1,...,m−1

{
|v[i]|2(1− p)(r(m−1) − r(i))2

}
.

(29)
Following a similar procedure for g2(µ), we end up with

the same roots µ1 and µ2 as in (28). Given that i = m, . . . ,M
and µ ∈ (r(m−1), r(m)], we deduce that g2(µ) is concave if,
in addition, r(m) ≤ µ1. By solving this inequality in terms of
ε, the concavity of g2(µ) is guaranteed by setting

ε ≤ ε2,m , min
i=m,...,M

{
|v[i]|2(1− p)(r(i) − r(m))

2
}
. (30)

This completes the proof for the piecewise concav-
ity of Jord

p,ε (µ) over its domain, by choosing ε ≤
minm=1,...,M{ε1,m, ε2,m}. Notice that this requirement gives
us also a guideline for setting the value of ε in the `pp,ε objective
function.

We note that the proposed rule for updating the step size,
as given by (21), guarantees that the `pp,ε objective function
in (11) does not increase at each iteration. Indeed, the follow-
ing proposition holds:

Proposition 2 Let x
(t+1)
S = x

(t)
S + µ(t)∗g

(t)
S be the updated

sparse solution, where the suboptimal step size µ(t)∗ is calcu-
lated by (21). Then, if S(t+1) = S(t) = S, the proposed update
step guarantees the monotonicity of the `pp,ε objective function,
that is,

‖y −Φx
(t+1)
S ‖pp,ε ≤ ‖y −Φx

(t)
S ‖

p
p,ε , (31)

and thus the convergence to zero, due to the nonnegativity of
`pp,ε.
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Proof: By construction, the suboptimal step size µ(t)∗

calculated by (21) yields an updated sparse solution, x
(t+1)
S ,

that minimizes the `pp,ε of the measurement error, among all
µ(t) ∈ R. From this, we deduce directly that

‖y −Φx
(t+1)
S ‖pp,ε =

∥∥∥y −Φ
(
x
(t)
S + µ(t)∗g

(t)
S

)∥∥∥p
p,ε

≤
∥∥∥y −Φ

(
x
(t)
S + 0 g

(t)
S

)∥∥∥p
p,ε

= ‖y −Φx
(t)
S ‖

p
p,ε .

Given also that `pp,ε is lower bounded by zero, we deduce
that the proposed update of the sparse solution results in the
convergence of the `pp,ε of the measurement error to zero.

If the support of x(t+1) differs from the support of x(t)

estimated at the previous iteration, then the optimality of µ(t)

may not be guaranteed. To alleviate this issue, a backtracking
line search is typically used, that is, if

‖y −Φx(t+1)‖pp,ε > ‖y −Φx(t)‖pp,ε ,

then, µ(t) is reduced geometrically, µ(t) ← cµ · µ(t), where
cµ ∈ (0, 1), until the objective function in (11) is reduced.
Except if mentioned otherwise, in the subsequent evaluations
we set the value of the common ratio equal to cµ = 0.5.

Furthermore, in order to improve the convergence perfor-
mance of MD-IHT, a weighting scheme is employed in our im-
plementation, which assigns small weights to large deviations
and large weights to small deviations, as they are computed
in the previous iteration. Specifically, the suboptimal step size
µ(t) is calculated by setting u =

(
W(t)

)1/2 (
y −ΦSx

(t)
S

)
and v =

(
W(t)

)1/2
ΦSg

(t)
S in (22). Doing so, we further

suppress the effect of those elements of x(t) that yield er-
roneous contributions to the measurements y, while enforcing
the contribution of those elements which better agree with
the measurements. We also emphasize that, in contrast to
the previous reconstruction techniques, our proposed MD-
IHT algorithm does not assume any prior information for the
sampling noise, such as the scale of its associated distribution.

It must be noted that, since (13) is a highly nonconvex
optimization problem for p ∈ (0, 1), the proposed algo-
rithm converges to a local minimum that depends on the
initial point x(0). Nevertheless, given that in practice we are
able to achieve accurate reconstruction of the original sparse
signal, in conjunction with the theoretical outcomes in [8],
[22], [27] that give conditions where the `pp,ε minimization
problem has a unique global minimizer, indicates that the
computed local minimizers can be actually very close to the
global one. Intuitively, the incorporation of the parameter ε
is critical, since the selection of a relatively large ε in the
weights (16) makes the basin around undesirable local minima
more shallow, whilst increasing the probability of making
the basin containing the optimal solution deeper. Concerning
the selection of x(0), [27] suggests that a good heuristic
condition to ensure that the GP updates x(t+1) converge
to a good approximate global minimizer is to choose x(0)

such that Φx(0) = y and ‖x(0)‖pp < M/2. A solution to
this problem can be obtained by applying the primal-dual
interior point scheme proposed in [25]. Apart from this initial
guess, in our implementation we also support the option of

a least-squares initialization, that is, x(0) = (ΦTΦ)−1ΦTy.
This option is motivated by its successful use in similar `p
(0 < p ≤ 1) optimization problems (e.g. [9], [28], [32]). Our
subsequent experimental evaluation using both synthetic and
real data showed that the two initialization schemes perform
equally well. If not mentioned otherwise, the first initialization
scheme is employed. Nonetheless, the optimal selection of an
initial point that guarantees convergence of the regularized `pp,ε
objective to the global minimum is still an open problem.

The algorithm terminates when either a maximum number
of iterations, maxIterMDIHT, has been reached, or the relative
change of the `pp,ε objective function is less than a prede-
termined threshold tolMDIHT. In our implementation we set
maxIterMDIHT = 200 and tolMDIHT = 10−16. Algorithm 1
summarizes the steps of our MD-IHT sparse reconstruction
method.

In the following, we measure the reconstruction quality of
the proposed MD-IHT algorithm for the noisy measurements
model in (1) by comparing the original sparse signal x0 with
the reconstructed sparse solution x∗0. Specifically, Theorem 1
below shows that the solution of (11) is an s-sparse signal
with an `2 error that depends on the noise dispersion. This
dependence on the pth FLOM of the noise, instead of its
second-order moment that is either infinite or may not exist,
yields an increased robustness of MD-IHT to heavy-tailed
sampling noise.

Theorem 1 Let x0 ∈ RN with S = supp(x0) and |S| ≤ s.
Assume Φ ∈ RM×N is a measurement matrix with a restricted
isometry constant (RIC) δks <

√
(k − 1)/k for some k ≥ 4/3.

Then, for a multivariate additive sampling noise n ∈ RM con-
sisting of i.i.d. SαS components with characteristic exponent
αn ∈ [1, 2) and dispersion γn ≤ η, the solution of (11), x∗0,
yields a bounded reconstruction error,

‖x0 − x∗0‖2 ≤ C0 Cp,αn η , (32)

where the constant C0 depends on k, δks, M and p, and Cp,αn
is given by (7).

Proof: Following a similar approach as in [30], we set
x∗0 = x0 + h, where h is a perturbation of the original sparse
signal x0. Since x∗0 is a feasible point and the dispersion of
the error (i.e., the noise) is assumed to be bounded, γn ≤ η,
it follows that

‖Φh‖2 = ‖Φx∗0 −Φx0‖2 = ‖(Φx∗0 − y) + (y −Φx0)‖2
(a)
≤ ‖Φx∗0 − y‖2 + ‖y −Φx0‖2

(b)
≤ ‖Φx∗0 − y‖p + ‖y −Φx0‖p

≤ 2‖n‖p = 2

( M∑
j=1

E{|nj |p}
)1/p

(c)
= 2

( M∑
j=1

γpnE{|Zj |p}
)1/p

(d)
= 2M1/p γn Cp,αn

γn≤η
≤ 2M1/p(Cp,αnη) , (33)

where (a) follows from the triangle inequality and (b) from
the property that if 0 < p < q then ‖x‖q ≤ ‖x‖p (in our
case 0 < p < 1). The equality (c) is obtained by writing
nj = γnZj , j = 1, . . . ,M , where Zj are standardized SαS
random variables, i.e., Zj ∼ fαn(1, 0), and then combining
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Algorithm 1 The proposed MD-IHT sparse reconstruction
algorithm
Input: y, Φ, s, ε, cµ, maxIterMDIHT, tolMDIHT

Initialize:
SαS parameters: [αy, γy] = Mellinfit(y) (∗), p =

αy
2 − 0.001

Solution: x(0) such that Φx(0) = y and ‖x(0)‖pp < M/2

Residual: r(0) = y −Φx(0)

Weights: W
(0)
i,i = 1((

r
(0)
i

)2
+ε

)1− p
2
, i = 1, . . . ,M (from (16))

Gradient: g(0) = −pΦT W(0)r(0) (from (15))
objValold = ‖r(0)‖pp,ε
S(0) = ∅, relChange = 1016, t = 0

1: while (relChange > tolMDIHT or t < maxIterMDIHT)
do

2: Calculate step size µ(t) by solving (22) with
u =

(
W(t)

)1/2 (
y −ΦS(t)x

(t)

S(t)

)
and

v =
(
W(t)

)1/2
ΦS(t)g

(t)

S(t)

3: Update solution via (14): x(t+1) = Hs

(
x(t) + µ(t)g(t)

)
4: Update support S(t+1) = {j |x(t+1)

j 6= 0}
5: Update residual r(t+1) = y −ΦS(t+1)x

(t+1)

S(t+1)

6: objValnew = ‖r(t+1)‖pp,ε
# Perform backtracking if necessary #

7: if S(t+1) 6= S(t) then
8: while objValnew > objValold do
9: µ(t) ← cµ · µ(t)

10: Update solution via (14):
x(t+1) = Hs

(
x(t) + µ(t)g(t)

)
11: Update support S(t+1) = {j |x(t+1)

j 6= 0}
12: Update residual r(t+1) = y −ΦS(t+1)x

(t+1)

S(t+1)

13: objValnew = ‖r(t+1)‖pp,ε
14: end while
15: end if
16: relChange = |objValnew − objValold|/objValnew

17: objValold = objValnew
18: Update weights W(t+1) (from (16))
19: Update gradient g(t+1) = −pΦT W(t+1)r(t+1) (from

(15))
20: t = t+ 1
21: end while
Output: The original sparse signal x∗0 = x(t)

(∗) Mellinfit(y) denotes the algorithm described in Section III-C
for the estimation of the SαS model parameters from the noisy
measurements y using the method of log-cumulants.

Note: In the general case, the measurement operator Φ is replaced
by A = ΦΨT. Then, MD-IHT estimates a sparse coefficients vector
α∗0 and the original signal is obtained by x∗0 = ΨTα∗0.

with (6) to get E{|Zj |p} = (Cp,αn)p, and subsequently the
equality (d) (ref. [14], pg. 18).

To complete the proof, we utilize an intermediate result
shown in [31] (see proof of Theorem 2.1), which states that

if δks <
√

(k − 1)/k for some k ≥ 4/3 then, we have

‖h‖2 ≤
√

2(1 + δks)‖Φh‖2
1−

√
k/(k − 1)δks

. (34)

By combining (33) and (34) we have

‖h‖2 ≤
2M1/p

√
2(1 + δks)

1−
√
k/(k − 1)δks

(Cp,αnη) , (35)

which is the desired result for C0 =
2M1/p

√
2(1+δks)

1−
√
k/(k−1)δks

.

From (32) we deduce that as the noise dispersion γn →
0 the reconstruction error approaches zero, whereas in the
noiseless case (η = 0) the reconstruction is perfect. Further-
more, the factor M1/p in (35) expresses the dependence of
the reconstruction error on both the size and impulsiveness
of the noise vector. In addition, the above RIC condition,
δks <

√
(k − 1)/k, proposed by [31], yields sharp restricted

isometry property (RIP) conditions on the higher order RICs,
which can be satisfied by a significantly larger set of random
measurement matrices in some settings.

IV. PERFORMANCE EVALUATION

This section evaluates the efficiency of our proposed MD-
IHT algorithm as a robust sparse reconstruction method under
impulsive sampling noise. To this end, numerical experiments
are performed with synthetic signals, as well as with real
data, along with a comparison against state-of-the-art sparse
reconstruction methods tailored to impulsive noise. In partic-
ular, the following methods are used for comparisons, which
recover the original sparse signal by solving either `2 or `p
(p ≤ 2) optimization problems: 1) orthogonal matching pursuit
(OMP) [1]3, 2) `p-reweighted least squares (LpRLS) [32]4,
and 3) Lorentzian iterative hard thresholding (LIHT) [33].
Appropriate parameters tuning is done for each algorithm
according to the guidelines of the associated toolboxes, in
order to achieve the optimal reconstruction performance. For
the OMP we assume that the noise tolerance η is known and
used as a stopping criterion.

A. Experiments with Synthetic Signals

The synthetic signals are generated using the following
settings, unless stated otherwise: signal length N = 1024; car-
dinality of the sparse support s = |S| = d2%Ne; the nonzero
coefficients are drawn from a Student’s-t distribution with one
degree of freedom and their positions are chosen uniformly at
random from the index set {1, 2, . . . , N}; the DCT matrix is
used as the sparsifying dictionary Ψ, that is, the measurement
operator is given by A = ΦΨT; the measurement matrix Φ
has i.i.d. entries drawn from a Bernoulli distribution {−1,+1}
with equal probability; the number of linear random measure-
ments is set to M = d25%Ne unless otherwise specified.
Furthermore, the results of each experiment are averaged over
500 Monte Carlo repetitions with different realizations of the

3MATLAB code available from https://goo.gl/VHvyJe.
4MATLAB code available from https://sites.google.com/site/igorcarron2/

cscodes.
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sparse signals, the random measurement matrices, and the
additive noise term. The reconstruction quality is measured
in terms of the signal-to-error ratio (SER) (in dB) defined by

SER(x, x̂) = 10 log10

( ∑N
j=1 x

2
j∑N

j=1(xj − x̂j)2

)
, (36)

where x and x̂ correspond to the original and reconstructed
signals, respectively.

First, we examine the performance of MD-IHT as a func-
tion of the noise strength. To this end, we vary the noise
dispersion γn ∈ {0.001, 0.01, 0.1, 1}, whilst fixing the noise
characteristic exponent αn ∈ {1, 1.5}. The choice of αn = 1
(i.e., Cauchy distribution) is made for a fair comparison with
LIHT which is derived from Cauchy statistics. The number
of linear projections is set to M = d25%Ne and the noise
tolerance η = Mγ2n (for the OMP). Furthermore, all the re-
quired SαS parameters in Algorithm 1 are estimated from the
noisy measurements directly. Fig. 1 shows the reconstruction
performance of each method, in terms of the achieved SER
averaged over 500 Monte Carlo runs. As the noise strength in-
creases, the reconstruction accuracy of all methods decreases,
as expected. However, MD-IHT yields the highest accuracy
among the four methods for the whole range of γn and for
both the αn values. Especially in the Cauchy case (αn = 1),
this reveals that our MD-IHT algorithm outperforms LIHT,
which is tailored to Cauchy statistics, thus demonstrating an
increased robustness of MD-IHT to a broader range of noise
strength and impulsiveness. Indeed, in contrast to the LIHT,
whose performance is controlled by tuning only the scale
parameter of the Lorentzian norm, the performance of MD-
IHT depends on both the value of p in the `pp,ε optimization
and the estimated dispersion from the noisy measurements.
Furthermore, OMP results in the worst reconstruction quality,
illustrating the inefficiency of `2-based methods to suppress
the presence of infinite variance sampling noise in the random
measurements.

As a second experiment, we evaluate the performance of
MD-IHT as a function of the noise impulsiveness. To this
end, we vary the noise characteristic exponent αn ∈ [1, 2),
whilst fixing the noise dispersion γn ∈ {0.01, 0.1}. As before,
the number of linear projections is set to M = d25%Ne
and the noise tolerance η = Mγ2n (for the OMP). Fig. 2
shows the reconstruction performance of each method, in
terms of the achieved SER averaged over 500 Monte Carlo
runs. As the noise impulsiveness decreases (i.e., αn → 2) the
reconstruction accuracy of all methods increases, whilst they
all result in a comparable average SER. As expected, the lower
the noise dispersion, γn, the higher the reconstruction quality
for the four methods. Furthermore, MD-IHT outperforms the
other three methods over the whole range of αn and for
both noise dispersion values. Interestingly, both the MD-IHT
and the LIHT algorithms, which yield the same performance
for Gaussian sampling noise, outperform clearly the least
squares-based OMP method, which better adapts to light-tailed
environments.

As a last experiment, we examine the reconstruction per-
formance of MD-IHT as the number of linear measurements,

(a)

(b)

Fig. 1. Comparison of reconstruction error as a function of noise strength
for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used corrupted
by SαS sampling noise with αn ∈ {1, 1.5} and γn ∈ {0.001, 0.01, 0.1, 1}.
Average SER is shown over 500 Monte Carlo runs.

M , varies from 2s (i.e., twice the cardinality of the sparse
support) to N/2, for a varying sampling noise impulsiveness
with αn ∈ {1, 1.5, 1.9}, and a fixed γn = 0.05. Fig. 3
shows that MD-IHT starts yielding fair reconstructions of
the original signals using only M ≈ 10%N corrupted linear
measurements. Most importantly, this observation holds even
for heavily corrupted measurements (i.e., small αn values),
which illustrates the robustness of MD-IHT in a broad range
of impulsive environments. However, as the noise impulsive-
ness increases, more measurements are required to achieve a
satisfactory reconstruction quality. This is an expected result,
which also resembles the conventional `2-based reconstruction
methods that require more measurements as the noise variance
increases.

B. Experiments with EEG Data

The following experiments evaluate and compare the re-
construction performance of our proposed algorithm on real
data [34]. Specifically, the utilized dataset contains electroen-
cephalography (EEG) signals of 32 channels with sequence
length of 30720 data points. Each channel signal consists of
80 epochs, each one containing N = 384 points. Artifacts
caused by muscle movement also occur in the signals. The
EEG signals are compressively sampled in an epoch-by-epoch
fashion using a Bernoulli matrix Φ, whereas the 384 × 384
DCT matrix is used as the sparsifying dictionary Ψ. The
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(a)

(b)

Fig. 2. Comparison of reconstruction error as a function of noise impul-
siveness for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used
corrupted by SαS sampling noise with αn ∈ [1, 2) and γn ∈ {0.01, 0.1}.
Average SER is shown over 500 Monte Carlo runs.

Fig. 3. Average SER of MD-IHT as a function of the number of linear
measurements corrupted by SαS sampling noise with αn ∈ {1, 1.5, 1.9}
and γn = 0.05.

sparsity level is fixed at s = d5%Ne, whilst the number of
linear measurements is set to M = N/2. The measurements
are contaminated by additive SαS noise with αn ∈ {1, 1.5}
and γn ∈ {0.1, 0.5, 1.5}. The reconstruction quality is mea-
sured in terms of the structural similarity index (SSIM) for
1D signals [35], which is a better performance index for
structured signals. The higher the SSIM value the better the
reconstruction quality, with a value equal to 1 corresponding
to an excellent reconstruction. Furthermore, the length of the

Fig. 4. Original EEG epoch, DCT coefficients and best s-term approximation
(s = d5%Ne).

Fig. 5. Reconstructed EEG epoch from noisy measurements (αn = 1, γn =
1.5) using MD-IHT, OMP, LIHT, and LpRLS.

sliding window for the calculation of SSIM is set to 100.
Fig. 4 shows an original EEG epoch, along with the corre-

sponding DCT coefficients and the best s-term approximation
(s = d5%Ne). Clearly, the signal is nonsparse both in time and
frequency. Nevertheless, for the reconstruction we consider
that the targeted sparsity level of the DCT coefficients is upper
bounded by s = d5%Ne. In Fig. 5, the corresponding recon-
structed epochs are plotted, by applying MD-IHT, OMP, LIHT
and LpRLS on linear measurements corrupted by heavy-tailed
noise with parameters αn = 1, γn = 1.5. For this specific
epoch, MD-IHT and LIHT yield the best reconstruction (i.e.,
closest to the best s-term approximation), followed by OMP
and LpRLS, which result in a smoother and more oscillatory,
respectively, reconstructed epoch.

In order to study the effects of various impulsive behaviors
for the corrupting noise, we vary αn in {1, 1.5} and γn in
{0.1, 0.5, 1.5}. The choice of αn = 1 is made for a fair com-
parison with LIHT, which is best adapted to Cauchy statistics
for the sampling noise. Figs. 6a-6b show the reconstruction
performance, in terms of the SSIM averaged over all the
epochs and Monte Carlo runs, for MD-IHT, OMP, LIHT,
and LpRLS. The linear measurements are corrupted by SαS
sampling noise with αn = 1 and αn = 1.5, respectively.
Clearly, as the noise impulsiveness increases (αn = 1), OMP
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and LpRLS fail to achieve a fair reconstruction of the epochs
for increasing noise dispersion. On the contrary, MD-IHT and
LIHT are highly robust over the whole range of γn values,
with MD-IHT presenting a slightly better reconstruction when
compared with LIHT. This is very important if we notice
that LIHT is intrinsically related with a Cauchy model for
the sampling noise. A similar behavior is observed when
αn = 1.5. In particular, the performance of OMP and LpRLS
improves as the noise impulsiveness decreases. However, both
methods are still inferior against MD-IHT and LIHT, which
better adapt to heavy-tailed environments. As before, MD-IHT
evidently achieves a more accurate reconstruction, on average,
when compared with LIHT for all the dispersion values.

(a)

(b)

Fig. 6. Comparison of reconstruction SSIM as a function of noise dispersion
for MD-IHT, OMP, LIHT, and LpRLS. Linear projections are used corrupted
by SαS sampling noise with (a) αn = 1 and (b) αn = 1.5. The SSIM values
are averaged over all the epochs and Monte Carlo runs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a robust method was proposed for the recon-
struction of sparse signals whose compressive measurements
are corrupted by impulsive sampling noise. More specifically,
the heavy-tailed statistics of sampling noise, with possibly
infinite variance, was modeled by means of SαS distribu-
tions. Subsequently, the effects of additive impulsive sampling
noise were suppressed by designing a novel iterative hard
thresholding method based on a minimum dispersion (MD)
optimization criterion. This criterion emerges naturally in the

case of additive sampling noise modeled by SαS distributions.
The proposed MD-IHT algorithm demonstrated an increased
robustness against gross outliers through a least `pp,ε estimation
error criterion, where p depends on the inherent impulsiveness
of the noise. A reconstruction error bound was derived that
depends on the noise strength, along with rules for tuning
the key parameters, such as the value of p and the gradient
projection step size, in order to guarantee convergence for
a broad range of impulsive noise behaviors. Experimental
evaluations with synthetic and real data revealed that MD-
IHT outperforms significantly state-of-the-art methods in the
case of highly impulsive sampling noise, whilst resulting in a
comparable performance in light-tailed environments.

However, a theoretical framework for selecting the optimal
values of the key parameters for the MD-IHT algorithm is
still an open question. Given the importance of initializing
appropriately our proposed iterative algorithm to guarantee
convergence to the global minimum, using convex results to
initialize an efficient search for a locally optimal nonconvex
solution could combine the strengths of convex and non-
convex formulations. Furthermore, incorporating some prior
knowledge about the unknown sparse support in the recon-
struction process typically improves the reconstruction quality.
To address this issue, we will examine a modification of
the MD-IHT algorithm for stable recovery from compressive
measurements given a partially known support. Finally, our
current study focused on multivariate sampling noise with i.i.d.
components. It would be also of interest to investigate the
more generic case of sampling noise with dependent, jointly
SαS components.
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APPENDIX A
PROOF OF POSITIVITY OF C−pp,α

Given the definition in (7), in order to prove the positivity
of C−pp,α in (10), it suffices to show that

Γ
(
1− p

α

)
cos
(
π
2 p
)

Γ(1− p)
> 0 . (37)

Indeed, the requirement for the existence of FLOMs induces
that 0 < p < α. This, combined with our empirical rule for
setting the optimal value of p as p . α

2 (ref. Section II), and
our focus on α ∈ [1, 2), yield 0 < p < 1. Based on this, the
sign of each term in (37) is as follows:
(i) p . α

2 ⇒ 1− p
α & 1

2 > 0⇒ Γ
(
1− p

α

)
> 0

(ii) 0 < p < 1⇒ 0 < π
2 p <

π
2 ⇒ 1 > cos

(
π
2 p
)
> 0

(iii) 0 < p < 1⇒ 1 > 1− p > 0⇒ Γ(1− p) > 0

From (i)-(iii) we deduce that all the terms are positive, which
proves that C−pp,α > 0 for α ∈ [1, 2). Notice though that, in
fact, the above result holds for the whole range of feasible
values of α ∈ (0, 2].
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