Journal article Open Access

Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis

Elisabet Perona-Vico; Laura Feliu-Paradera; Sebastià Puig; Lluís Bañeras


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20201126094707.0</controlfield>
  <controlfield tag="001">4291051</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat de Girona</subfield>
    <subfield code="a">Laura Feliu-Paradera</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat de Girona</subfield>
    <subfield code="0">(orcid)0000-0003-2995-1443</subfield>
    <subfield code="a">Sebastià Puig</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat de Girona</subfield>
    <subfield code="0">(orcid)0000-0001-6908-3658</subfield>
    <subfield code="a">Lluís Bañeras</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2617010</subfield>
    <subfield code="z">md5:96534025d4b0b59cfaa5c983599c972f</subfield>
    <subfield code="u">https://zenodo.org/record/4291051/files/Perona‑Vico_etalSciRep2020.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-bioreco2ver-h2020</subfield>
    <subfield code="o">oai:zenodo.org:4291051</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">19852</subfield>
    <subfield code="v">10</subfield>
    <subfield code="p">Scientific Reports</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Universitat de Girona</subfield>
    <subfield code="0">(orcid)0000-0002-2948-6572</subfield>
    <subfield code="a">Elisabet Perona-Vico</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-bioreco2ver-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">760431</subfield>
    <subfield code="a">Biological routes for CO2 conversion into chemical building blocks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Hydrogen is a key intermediate element in microbial electrosynthesis as a mediator of the reduction of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) into added value compounds. In the present work we aimed at studying the biological production of hydrogen in biocathodes operated at&amp;thinsp;&amp;minus;&amp;thinsp;1.0&amp;nbsp;V &lt;em&gt;vs.&lt;/em&gt; Ag/AgCl, using a highly comparable technology and CO&lt;sub&gt;2&lt;/sub&gt; as carbon feedstock. Ten bacterial strains were chosen from genera &lt;em&gt;Rhodobacter&lt;/em&gt;, &lt;em&gt;Rhodopseudomonas&lt;/em&gt;, &lt;em&gt;Rhodocyclus&lt;/em&gt;, &lt;em&gt;Desulfovibrio&lt;/em&gt; and &lt;em&gt;Sporomusa&lt;/em&gt;, all described as hydrogen producing candidates. Monospecific biofilms were formed on carbon cloth cathodes and hydrogen evolution was constantly monitored using a microsensor. Eight over ten bacteria strains showed electroactivity and H&lt;sub&gt;2&lt;/sub&gt; production rates increased significantly (two to eightfold) compared to abiotic conditions for two of them (&lt;em&gt;Desulfovibrio paquesii&lt;/em&gt; and &lt;em&gt;Desulfovibrio desulfuricans&lt;/em&gt;). &lt;em&gt;D. paquesii&lt;/em&gt; DSM 16681 exhibited the highest production rate (45.6&amp;thinsp;&amp;plusmn;&amp;thinsp;18.8&amp;nbsp;&amp;micro;M&amp;nbsp;min&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) compared to abiotic conditions (5.5&amp;thinsp;&amp;plusmn;&amp;thinsp;0.6&amp;nbsp;&amp;micro;M&amp;nbsp;min&lt;sup&gt;&amp;minus;1&lt;/sup&gt;), although specific production rates (per 16S rRNA copy) were similar to those obtained for other strains. This study demonstrated that many microorganisms are suspected to participate in net hydrogen production but inherent differences among strains do occur, which are relevant for future developments of resilient biofilm coated cathodes as a stable hydrogen production platform in microbial electrosynthesis.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1038/s41598-020-76694-y</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
48
41
views
downloads
Views 48
Downloads 41
Data volume 107.3 MB
Unique views 43
Unique downloads 41

Share

Cite as