

HBRP Publication Page 1-5 2020. All Rights Reserved Page 1

Advanced Innovations in Computer Programming Languages

Volume 2 Issue 3

Review on a Linear Data Structure-Array

Gausiya Yasmeen*

Department of Computer Applications, Integral University, Lucknow, India.

*Corresponding Author

E-mail Id:-gausiyay@iul.ac.in

ABSTRACT

Arrays are the simplest data structure used in any programming language. It is used to store

element which belongs to same data type. Arrays signify the generic collection or list of data

elements. Array uses subscript variable to denote its elements. The name of the array is its

base address with the help of which rest of the memory address can be figured out. They are

used to build complex data structure. In the following paper I have pen down the basic

characteristics of array, its memory representation and calculation of address.

Keywords:-Arrays, abstract data type (ADT), pointers

INTRODUCTION

The array is an abstract data type (ADT)

that holds a collection of elements

accessible by an index. The elements

stored in an array can be anything from

primitives’ types such as integers to more

complex types like instances of classes.

While writing program code in any

language we need to store data. For e.g. we

need to store marks of A student. Hence

taking different variables for each mark

can cause too much handling of variables.

In such case Arrays are the most suitable

collection to store similar data under same

name. Thus, arrays are a list of similar type

of items stored at contiguous memory

locations. Similar type refers to the data

type to which particular item belongs. Data

type can be are…. etc. If we create a

collection of Cities then we need to store

only cities in that collection otherwise the

data will be invalid.

OPERATIONS ON ARRAY

Traverse- Accessing of data elements in

an array. In traversing we process every

element of array for once from either first

to last or vice versa. It is also called

visiting array members.

Insertion- Inserting an element in the

array. Elements are inserted from the first

index moving towards end of the array. In

case of sorted array element if inserted

according to its value. If it is ascending

order then elements with small value will

be placed in the beginning else at the end

of the array.

Deletion- Remove the data stored at

particular index.

Search- Searching of an element can be

performed on array elements. Linear and

binary search techniques are used to search

an element in the array.

Sorting- Array elements can be sorted

either in ascending or descending order.

CLASSIFICATION OF ARRAY

Arrays can be of following types:

One dimensional (1-D) arrays or Linear

arrays:

1-D array has only single row without any

columns. It uses one subscript to represent

the elements. Elements are arranged

serially.

Multi-dimensional arrays:

Two dimensional (2-D) arrays or Matrix

arrays: 2-D arrays use two subscripts to

represent the elements. They have rows

and columns-mxn. One row will have one

HBRP Publication Page 1-5 2020. All Rights Reserved Page 2

Advanced Innovations in Computer Programming Languages

Volume 2 Issue 3

column only. If first row has three

columns then all the rest of the rows in 2-

D array will have three columns only. E.g.,

Matrix, Sparse Matrix

Three dimensional arrays:
3-D arrays have row, columns and height.

It uses three subscripts to represent the

elements-mxnxh.

MEMORY REPRESENTATION

Array can be termed as a collection of

homogeneous data elements which stores

its elements in contiguous memory

allocation manner. Each element is

accessed and stored by using index number

or subscript value.

100 102 104 106 108 110 112 114 116 118

0 1 2 3 4 5 6 7 8 9

Here is a diagram representing the

contiguous allocation of array in the

memory.0,1…9 is the index or subscript

value through which each element can be

accessed separately. 100,102…118 are the

memory blocks where data is stored. Here

I have taken integer data type which

occupies 2 bytes of memory in C language.

Memory is allocated in blocks and

continuous format. These blocks are data

type dependent. Array elements share the

same name; so, in order to access any

element of array index numbers are used.

Like element 55 can be addressed as ar [5]

=55.Arrays subscripts starts from 0
th

 index

number and size-1 will be the last index

number. So, array is declared in the

program with its size. Arrays can never

store element equal to its size. If we say 10

elements in an array then it means from 0
th

to 9(10-1)
th

 position. Array will not store

element at 10
th

 index number.

Address Calculation in single (one)

Dimension Array- By using the given

formula we can calculate the address of

any index number.

Address of A [I] = B + W * (I – LB)

B- base address of array

W- Storage Size of one element stored in

the array (in byte according to data type)

I = Subscript of element whose address is

to be calculated

LB = Lower limit / Lower Bound of

subscript, if not specified assume 0 (zero)

Taking the example of array given above,

suppose we need to find the address of

ar[5].

B=100,W=2 bytes,I=5,LB=0

Address of A [5]= 100+2*(5-0)

 =110 [Ans]

Address Calculation in Double (Two)

Dimensional Array-

Memory Address Space

11 22 33 44 55 66 77 88 99 00

Index or subscript number

HBRP Publication Page 1-5 2020. All Rights Reserved Page 3

Advanced Innovations in Computer Programming Languages

Volume 2 Issue 3

 0 1 2

0 2 3 4

1 5 6 7

2 8 9 1

2-D array is also called matrix. It’s an

image of 3x3 matrix having 3 rows and 3

columns. But in memory 2-day is also

stored in contiguous fashion which can be

either Row-Major and Column-Major

format.

Row Major System:

The address of a location in Row Major System is calculated using the following formula:

Address of A [I][J] = B + W * [N * (I – Lr) + (J – Lc)]

Column Major System:

The address of a location in Column Major System is calculated using the following formula:

Address of A [I][J] Column Major Wise = B + W * [(I – Lr) + M * (J – Lc)]

Where,

B = Base address

I = Row subscript of element whose address is to be found

J = Column subscript of element whose address is to be found

HBRP Publication Page 1-5 2020. All Rights Reserved Page 4

Advanced Innovations in Computer Programming Languages

Volume 2 Issue 3

W = Storage Size of one element stored in the array (in byte)

Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero)

Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero)

M = Number of rows of the given matrix

N = Number of columns of the given matrix

Number of rows (M) will be calculated as = (Ur – Lr) + 1

Number of columns (N) will be calculated as = (Uc – Lc) + 1

Examples:

Q 1. An array is [-15……….10, 15……………40] requires one byte of storage. If beginning

location is 1500 determine the location of X [15][20].

Solution:

Number or rows say M = (Ur – Lr) + 1 = [10 – (- 15)] +1 = 26

Number or columns say N = (Uc – Lc) + 1 = [40 – 15)] +1 = 26

(i) Column Major Wise Calculation of above equation

The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, M = 26

Address of A [I][J] = B + W * [(I – Lr) + M * (J – Lc)]

= 1500 + 1 * [(15 – (-15)) + 26 * (20 – 15)] = 1500 + 1 * [30 + 26 * 5] = 1500 + 1 * [160] =

1660 [Ans]

(ii) Row Major Wise Calculation of above equation

The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, N = 26

Address of A [I][J] = B + W * [N * (I – Lr) + (J – Lc)]

= 1500 + 1* [26 * (15 – (-15))) + (20 – 15)] = 1500 + 1 * [26 * 30 + 5] = 1500 + 1 * [780 +

5] = 1500 + 785

= 2285 [Ans]

ADVANTAGES AND

DISADVANTAGES OF ARRAYS

Advantages

1. Array is the simplest and efficient

data structure. It has O (1) time

complexity in both best and worst

case.

2. Any array element can be accessed

directly by using its index number.

3. With array complex data structure like

Linked O (can be possible.

4. Insertion and deletion are

comparatively easy as no overheads of

pointers is involved.

Disadvantages

1. It uses compile time memory

allocation. So, its size has to be

declared in the program.

2. If we need to add more elements than

array size for code has to be modified.

3. When a smaller number of elements

are stored in the array then the declared

size, unused memory is wasted.

4. No actual deletion is performed in case

of array. It overwrites the data element

and memory occupied by the deleted

element remains with the array.

CONCLUSION

Hence, we observed that due to fixed size

memory allocation its implementation is

hindered. Array can be implemented using

pointers. Jagged arrays are also used in

some programming languages. The

concept of jagged array gives user to

create dynamic size columns in each row.

HBRP Publication Page 1-5 2020. All Rights Reserved Page 5

Advanced Innovations in Computer Programming Languages

Volume 2 Issue 3

Jagged Arrays are 2-D arrays. Arrays can

be sorted using different types of sorting

like bubble, heap, shell, radix, insertion

and quick sort techniques.

REFERENCES

1. Balagurusamy, E. (1992).

programming in ANSI C. Tata

McGraw-Hill Education.

2. Kanetkar, Y. (1999). Let us C, BPB

Pub. New Delhi.

3. Kernighan, B. W., & Ritchie, D. M.

(2006). The C programming language.

4. Schildt, H. C. (1987). ö The Complete

Reference (AI-based problem

solving). London: Osborne-McGraw

Hill, 645-648.

5. S. Srivastava, C - In Depth - 2Nd

Revised Edition, 30 June 2009.

6. K. Pimparkhede, Computer

Programming with C++, Cambridge

University Press,, 16-Jan-2017 .

7. L. Uhr, Algorithm-Structured

Computer Arrays and Networks,

Academic Press, 10-May-2014.

