There is a newer version of this record available.

Dataset Open Access

Data Supporting: "Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change"

Daniel M Gilford; Klaus Bittermann; Robert Kopp; Ben Strauss; Scott Kulp


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Daniel M Gilford</dc:creator>
  <dc:creator>Klaus Bittermann</dc:creator>
  <dc:creator>Robert Kopp</dc:creator>
  <dc:creator>Ben Strauss</dc:creator>
  <dc:creator>Scott Kulp</dc:creator>
  <dc:date>2020-12-02</dc:date>
  <dc:description>Code supporting Strauss et al. (2020) submitted to Nature Communications. If you use any original data from this archive, please cite the study as:

B. H. Strauss, P. Orton, K. Bittermann, M. K. Buchanan, D. M. Gilford, R. E. Kopp, S. Kulp, C. Massey, H. de Moel, S. Vinogradov, 2020: Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change. Nature Communications. (under review, Dec. 2020)

If you have any questions or comments, please contact Daniel Gilford at dgilford@climatecentral.org

Included are Input, Output, and Source files (compressed) used in the publication; data files are primarily in txt, csv, xlsx, and mat formats. In the absence of a MATLAB license, mat files may be read with open access software such as SciPy. Code supporting this publication may be found at https://github.com/climatecentral/cc_sandy_matlab.

Archived Data Short Descriptions:


	INPUT -- Input semi-empirical model and observational data files used to create distributions forming the backbone of the analyses in this study.

	
		8518750_meantrend.csv: The Battery, NY monthly mean sea levels and trends/uncertainty, accessed from https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8518750 on 29 July 2020.
		cmip5.zip: CMIP5 semi-empirical model analyses for each individual model and scenarios (historical and counterfactual), and index files for reference.
		hadcrut.zip: HadCRUT4 semi-empirical model analyses for each individual HadCRUT4 scenario (historical and counterfactuals)
		Dangendorf2019_GMSL.txt: Monthly mean global mean sea level rise from Dangendorf et al. (2019).
	
	
	OUTPUT -- Output analyses supporting this publication
	
		fig1_data.mat: Quick access source data file which may be used to recreate Fig. 1 in the manuscript
		SEanalysis.mat: The full output semi-empirical model analyses in this study
		summary_samps.mat: Summary/ensemble analyses in this study
	
	
	SOURCE -- Individual source data files for each Figure (1, 2, 3a-b), Table (1-2), Supplementary Figure (S1-4), and Supplementary Table (S1-6) in this study.
	
		Included is a readme.txt with full file descriptions.
	
	
</dc:description>
  <dc:identifier>https://zenodo.org/record/4289245</dc:identifier>
  <dc:identifier>10.5281/zenodo.4289245</dc:identifier>
  <dc:identifier>oai:zenodo.org:4289245</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.4289244</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>Nature Communications</dc:source>
  <dc:subject>Sea Level Rise</dc:subject>
  <dc:subject>Climate Change</dc:subject>
  <dc:subject>Hurricane Sandy</dc:subject>
  <dc:subject>Attribution</dc:subject>
  <dc:subject>Semi-empirical Modeling</dc:subject>
  <dc:subject>Damages</dc:subject>
  <dc:title>Data Supporting: "Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change"</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
765
10
views
downloads
All versions This version
Views 76525
Downloads 100
Data volume 25.3 GB0 Bytes
Unique views 32019
Unique downloads 100

Share

Cite as